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ABSTRACT 
 

 This study introduces a new qualitative randomized response technique for gathering 

trust-worthy sensitive data using a perfect (imperfect) ranked set sampling design. This 

model takes into account the sizes (weights) of various balls on the randomizing device to 

choose one of the two questions (out of which one is sensitive); so the respondent feels, 

liberty in choosing balls. In this way, the likelihood of an honest response increases. It is 

established that the procedure is easy to apply and the estimate under the proposed model 

is more precise than the original Warner's randomized response model. In addition, an 

application to real medical data is considered. Finally, a cost analysis of the proposed 

model is also presented. 
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1. INTRODUCTION 
 

 In survey sampling, gathering of reliable data becomes problematic when it pertains to 

stigmatizing characteristics (e.g., questions about private matters). In such surveys, some 

respondents may refuse to respond or provide falsified answers. Thus, a direct inquiry of 

the respondent fails to collect reliable data relating to sensitive topics. To this end, Warner 

(1965) launched a randomized response technique (RRT) model using a simple random 

sampling (SRS) design. The novelty of this model is that it fully protects the respondent's 

privacy. This model involves a probabilistic approach to asking sensitive questioning. An 

interviewee uses the randomizing device to select one of the two questions (one of which 

is sensitive) that is to be answered by “Yes” or “No”. The interviewer, standing in front of 

the respondent, does not know the result of a randomizing device; hence the interviewee 

can honestly respond without privacy concerns. As a parameter of the randomizing device 

is known to the interviewer, the response gives some information relating to stigmatizing 

question.  
 

 After development of the first randomized response model, several variants have been 

proposed by different researchers to obtain more reliable estimates of the population 
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sensitive proportion, say  , by increasing respondent's degree of privacy. A detailed 

literature will not be demonstrated. However, some interesting theories established under 

SRS design can be seen, for example, in Horvitz et al. (1967), Greenberg et al. (1969), Kuk 

(1990) and the studies referred to therein. Much of the RRT literature have been proposed 

in SRS design. But little attention has been paid to address this problem in RSS design, 

which is superior to its SRS counterpart in estimating population parameters. 
 

 Ranked set sampling (RSS) was introduced by McIntyre (1952), as an efficient 

alternative to simple random sampling (SRS), for estimation of pasture and forage yields. 

However, nowadays, all standard statistical problems are being addressed in RSS design, 

see Zamanzade and Mahdizadeh (2017). The RSS employs ranking of the small sets of 

units visually or via a concomitant information before selecting a final sample for actual 

quantification. For example, suppose a medical researcher is interested in estimating the 

prevalence of human immunodeficiency virus (HIV) in the population; in other words, the 

population sensitive proportion having HIV positive. Before using the RRT model, a 

medical expert can easily rank (by visual inspection) a group of people from the population 

according to the severity of the disease. Moreover, this would be cheaper and require least 

amount of effort compared to, for instance, using a costly, but more reliable process such 

as Nucleic acid test (NAT) to determine viral load in the body. Lastly, a gynecologist might 

be able to order his patients based on the perceived likelihood of a particular sexual disease 

by their facial expressions or asking some medical non-sensitive questions. More detail 

and application of RSS design can be explored in the studies carried out by Terpstra (2004), 

Al-Nasser (2007),Al-Omari (2011), Haq et al. (2014), Zamanzade and Vock(2015), Abbasi 

and shad (2017), Zamanzade et al. (2020a), Mahdizadeh and Zamanzade(2021),Bhushan 

and Kumar (2022), Abbasi and Shad (2022), Bhushan and Kumar (2022a), Bhushan and 

Kumar (2022b) and Mahdizadeh and Zamanzade (2022). 
 

 Recently, Abbasi and Shad (2021) have presented a modified version of Warner's 

model using a concomitant-based RSS design. They showed that their estimator is 

unbiased, and its variance is less than that of Warner's model. In this study, we introduce a 

new RRT model under RSS design without using a concomitant variable, and taking into 

account a new chance device. The idea is that, sometimes, auxiliary information is not 

available and, hence, units are to be ranked on the basis of study variable. To increase 

confidence of the respondent, we use balls of the same color but different predetermined 

weights (in grams), ranging from a  to b  i.e., [ a , b ], in a randomizing device (weight-

machine) instead of using only two types of balls/playing cards, as in Warner (1965) model, 

for selection of sensitive(non-sensitive) question or statement. The details of the new RRT 

model is provided in the next section. 

 

2. DESCRIPTION OF THE MODEL 
 

 The chance device used in the new model is displayed in Figure 1. A number of balls  

of different predetermined weights (grams), ranging from a  to b , are placed in a  

bottle. To proceed, define a constant c [ a , b ]. The proportion of balls, say w , having  

weight c  is known. A respondent selected by RRS design is asked to select one ball at 

random from the bottle by turning it upside down and put the selected ball on the weight-

machine (randomizing device). If weight lies in the interval [ a , c ], he/she is required to 

answer the sensitive question (e.g., do you have HIV positive), otherwise, he would 
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respond to the non-sensitive question (e.g., I don't have HIV positive). The respondent will 

accordingly respond in either “Yes” or “No”, depending on whether he/she belongs to that 

group or not. An interviewer standing opposite to the respondent does not know what 

weight appeared in the screen of the device, and, therefore, do not know if the respondents 

have experienced the sensitive (non-sensitive) event in question. That is, the privacy of a 

respondent is fully protected. 

 

 

Figure 1: Proposed Randomizing Device 

 

3. ESTIMATION OF THE PARAMETERS 
 

 To select a sample of size k  using the RSS design, the experimenter begins by 

randomly choosing  2 1k k   units from the target population and then randomly arrange 

them into k  small groups each of size k . Thereafter, for each set of size k  individuals, 

an expert ranks (by visually or any cheapest way) the units from smallest to largest. For 

example, the ranking procedure could be founded on the perceived likelihood of the 

attribute of interest, as discussed in the introduction. Next, the subject with rank one is 

retained from the first set of k  units, the subject with rank two is retained for the second 

set of individuals and so on, until the subject with rank k  is determined for the last set of 

k  units for actual quantification. Thus, this process yields a set of k  independent 

observations. The whole process can be repeated n  times to get a sample of size m nk , 

say  ( ) ;  1,2,..., ;  1,2,...,i ijy i k j n  , where ( )i ijY  denotes the ith order statistic of ith  

set obtained in jth cycle of size k  units. In short, we can denote ( )i ijY  by ( )i jY . Note  

that, (.) denotes perfect ranking. The RRS method, for 3k   and 2n  , is displayed in 

Table 1.  
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Table 1 

A Layout of RSS for 𝒌 = 𝟑 and 𝒏 = 𝟐 

Cycle(𝒏) Set(𝒎)  Set Units  Acquired Data 

1 

1 Y(1)11 
 

Y(2)11 Y(3)11 Y(1)1 = 1 

2 Y(1)21 Y(2)21 
 

Y(3)21 Y(2)1 = 1 

3 Y(1)31 Y(2)31 Y(3)31 
 

Y(3)1 = 1 

2 

1 Y(1)12 
 

Y(2)12 Y(3)12 Y(1)2 = 1 

2 Y(1)22 Y(2)22 
 

Y(3)22 Y(2)2 = 1 

3 Y(1)32 Y(2)32 Y(3)32 
 

Y(3)2 = 1 

 

 Recall that in case of direct questioning when under study characteristic is non-

sensitive, the probability of “Yes” response i.e., ( )kip   of the ith respondent is given by 
 

   
1

( )  1   for 1,2,..., ;  0 1
k k rr

ki
r k i

k
p i k

r



  


        

 
  

 

 For details, see Arnold (1992a). As this study involves the RRT model for acquiring 

data for sensitive question, the respondents are instructed to choose one of the two above-

mentioned statements using the given randomizing device. The respondent reports “Yes” 

(“No”) according to the outcomes of the randomizing device and his/her actual status.  

If w  denotes the proportion (probability) that a chance device selects a sensitive question, 

then, ( )i , the probability of a “Yes” response of ith unit is modeled as 
 

  ( )  ( ) (1 ) (1- ( ))i ki kiw p w p                    (1) 
 

 Let      1 2
, ,...,

i i i n
Y Y Y  are n  independent and identically distributed (IID) Bernoulli 

randomized responses out of which   ( )1
n

i jji
z y  report “Yes” responses. Since the 

sampling process is Bernoulli with parameter ( )i , the likelihood function of ( )kip   for 

the given data ( ) ;   1,2,...,i jY j n  is 

 

    ( )( )

( ) ( )( )  1  for 1 ,  0 1ii n zz

i iiL w w w


          

 

 In terms of ( )kip   
 

     ( ) ( )2 1 ( ) (1 ) (2 1) ( )  for 0 ( ) 1
i i

z n z

ki ki kiL w p w w w p p


              
 

 The log likelihood function gives 
 

     ( ) ( )log 2 1 ( ) (1 ) ( )log (2 1) ( ) .i ki i kiL z w p w n z w w p             
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 It is easy to obtain the estimate of ( )kip   from the equation log / ( ) 0kiL p    , and 

after simple algebra, we have  ( ) ( ) ( )
ˆ ˆˆ ( ) (1 ) / (2 1),  /ki i i ip w w z n        . Now, 

combining these individual proportions, using the relation 
1

( ) /
k

ki
i

p k


   , see Abbasi 

and shad (2021), the MLE of  , denoted by ˆ
N , is given by 

 

   1 1
( )2 1

1

ˆ 1
k

N iw m
i

w z





    

 
 ,               (2) 

 

 Since ( )iz  is binomial ( )( , )in z , therefore, ˆ
N  is an unbiased estimator and its 

associated variance is 
 

   11

1

ˆVar( ) ( ) 1 ( )
k

N ki kim
i

k p p




      

 
 ,           (3) 

 

 2(1 ) / (2 1) .w w w     Note that, as expected, the variance given in (3) is greater than 

that of the estimator suggested by Terpstra (2004a) due to indirect inquiry method.  
 

 Now, we consider the asymptotic distribution of ˆ
N  for later use in comparison of the 

estimates under RSS and SRS designs. Since ( ) ( )
ˆ /i iz n   is an estimate of Bernoulli 

proportion ( )i , and for large n , ( )
ˆ

i  will follow normal distribution. Moreover, the sum 

of the normal variates is also normal, ( )
1

k

i
i

z


 will also follow normal distribution. It is also 

well known that any linear combination of normal distribution is also normal, hence, the 

following result holds true for ˆ
N , being linear combination of ( )iz , when k  is fixed and 

n  is infinitely large. 
 

   1

1

ˆ( )  Normal 0,  ( ) 1 ( ) .
d k

N ki ki
i

nk k p p




        

 
        (4) 

 

 Note that, for 1k  , (4) simplifies to the conventional Warner's result, as given by 
 

   ˆ( )  Normal 0,  (1 ) .
d

Wn                    (5) 
 

 A closer look at the expression (4) shows some other interesting outcomes. For 

example, when 1w   i.e., the likelihood of selection of a stigmatizing characteristic is 1 

and the interviewee’s privacy goes to zero, (4) reduces to Terpstra (2004a) direct method 

of inquiry under RSS design. Whereas the choice 𝑤 = 0 i.e., the likelihood of selection of 

a stigmatizing characteristic is zero, it also reduced (4) to Terpstra (2004a) procedure. 

Furthermore, if both w and k  are equal to 1, (4) takes the usual method of direct inquiry 

under SRS design. For obtaining precise and reliable estimate, the conditions 2k   and 
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0 0.5w   are required. If 0.5w  , the estimate fails. It is notable that the variance, in 

(4), is central symmetric i.e., it gives the same value in the parametric space 

 ( , );(1 , );( ,1 );(1 ,1 ) .w w w w       

 

3.1 An Application: HIV in Pakistan 

 This section continues the example from Section 1 in which a medical researcher is 

taking interest in estimating the prevalence of HIV-positive patients in a population. 

Following Abbasi (2021), a small scale survey is conducted to collect the primary data set 

of 150 patients from different hospitals located in Islamabad/Rawalpindi, Pakistan. In this 

survey, each patient was investigated about the attribute of interest using our randomizing 

device for 0.3w  . The purpose of this exercise was to make known the population 

sensitive proportion  . That is 0.33. An interested reader can get the data from the 

corresponding author. 
 

 Assuming the above population data of 150 patients, we took ranked set samples  

of size 𝑘 = 2,3,4,5 using R-package and computed the estimates, standard errors and 

confidence intervals (CI) of ˆ ˆan d W N  , for each value of 𝑘. For illustration, the  

method for selection of the patients and necessary calculations are manually replicated for 

𝑘 = 4 and 𝑛 = 25. To this end, 2 16k   patients are selected by SRS method and arranged 

them into 4 sets each of size 4. Furthermore, the patient in each set are ranked (visually) 

and then ith patient is selected from the ith set (𝑖 = 1,2,3,4) to estimate  . The same 

process is repeated 25 times to get a sample of size 𝑚 = 100. Next, suppose both samples 

i.e., RSS and SRS have 30% HIV-positive patients. Note that, this permits us for a direct 

evaluation between the different estimators. Further, assuming 𝑤 = 0.3, we obtained 

(1) (2) (3) (4)( , , , ) (10,18,16,14)z z z z  . Thus, 
 

  
(1) (2) ( ), 10 18 16 14ˆ 0.58

100

k
N

z z z

m

    
     

 

 Therefore, ˆ 0.30N  . Likewise, other estimates, along with their standard errors and 

corresponding 95 percent confidence intervals, based on (4) and (5), are given in Table 2. 
 

 It is pertinent to highlight that we can also apply the bootstrap method to compute CIs 

for  . For example, to construct a 95% CI, choose the constants 1d  and 2d  such that the 

probability of 1 2
ˆ ; ,   95%hd d h W N is    . To obtain the estimate of 1d  and 2d , 

one can proceed as follows. Select a ranked set sample of size 𝑘 from the target population 

and compute ̂  and repeat this process a number of times, say 𝐵, to get the estimates 

1 2 3
ˆ ˆ ˆ ˆ, , , , B     . Thereafter, estimate lower and upper population quantile points  2

B   

and  2
1B   respectively. For example, 𝐵 =1000, sort the above estimates as 

(1) (2) (3) (1000)
ˆ ˆ ˆ ˆ, , , ,      and use (25)̂  and (975)̂  as estimate of 1d  and 2d , respectively. 

Using this information, we can easily obtain a 95% CI for a particular sensitive proportion. 

For more details, see Taconeli (2022). 
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 From Table 2, it can be seen that all intervals contained the true proportion of HIV 

cases i.e., 0.33.   As expected, the length of the confidence intervals (CI) based on the 

RSS design are narrow (shorter) than those based on the SRS design. That is, a substantial 

gain in precision has been obtained by adopting the RSS protocol. 
 

 Furthermore, for the RSS estimates, the standard errors are much smaller than those 

based on SRS for larger set sizes. These results are aligned with the RSS theory given in 

Dell (1972).This gain in precision obtained from RSS may be classified in terms of the 

number of units desired in both designs for obtaining the same estimation precision. For 

example, from Hettmansperger (1998), Terpstra (2004), the Percentage relative efficiency 

(PRE) between two estimation procedures can be interpreted as the ratio of sample sizes 

needed in order to obtain the same estimation precision i.e., 1 2
ˆ ˆPRE( , ) /N W K K   . Now, 

suppose we want to use an SRS and a 95 per cent confidence interval to estimate the 

proportion of HIV positive in the population. Assuming true sensitive proportion of HIV-

positive cases as 0.33 and the desired margin of error ( e ) as 5 per cent. Then, classical 

sample size formula, as given below, suggests that 1 2356K   patients would need medical 

check-up.  

 

Table 2 

An Empirical Example Results 

Set Size Estimate Standard Error 95 percent CI Width Reduction 

2 
ˆ

ˆ

0.30

0.30

W

N








 

0.0951 

0.0875 

(0.1136, 0.4864 ) 

(0.1285, 0.4715) 

- 

8.00% 

3 
ˆ

ˆ

0.30

0.30

W

N








 

0.0776 

0.0684 

(0.1479, 0.4521) 

(0.1659, 0.4340) 

- 

11.87% 

4 
ˆ

ˆ

0.30

0.30

W

N








 

0.0672 

0.0575 

(0.1682, 0.4317) 

(0.1873, 0.4127) 

- 

14.46% 

5 
ˆ

ˆ

0.30

0.30

W

N








 

0.0614 

0.0502 

(0.1822, 0.4178) 

(0.2016, 0.3984) 

- 

16.46% 

 

   
2

/2
1 (1 ) ,  0 1

z
K

e

 
         
 

 

 

 On the other hand, suppose we decide to use RSS procedure with 𝑘 = 3; Table 1 

suggests that 2ˆ ˆPRE( , ) (0.0776 / 0.0684) 100 128.7%N W     . Then, for the RSS case, 

the experimenter would only require 2 (1/1.287)2356 1831K    patients to be diagnosed. 

This gives a measurement savings of 525 units. Similarly, when 25,  1574k K   i.e., 

measurement saving increases with an increase to 𝑘. Here, it is important to recall that a 

measurement is based on an expensive NAT test. 
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3.2 Relative Efficiency Comparison 

 In this section, we compare the estimators via Percentage relative efficiency (PRE), as 

given by  
 

  
ˆVar( )

ˆ ˆPRE( , ) 100
ˆVar( )

W
N W

N


   


 

 

 Thus, an PRE larger than one implies that ˆ
N  is more efficient than ˆ

W . In Table 3, 

we have computed its values against different   and 𝑤 for 𝑘 = 2,3,4,5. Clearly, ˆ
N  is 

uniformly more efficient than ˆ
W . A closer look on the table, shows that PRE is an 

increasing function of 𝑘 and  . Note also that the greatest gains in efficiency occur  

when   is close to 0.5. To more easily look into the trend of PRE values, the results are 

displayed in Figure 2 for different parametric values ( , ,w k ). From Figure 2, it can be 

seen that the PRE values have a decreasing trend when w approaches to 0.5. Here, it may 

be recalled that the variance of the proposed model is central symmetric as explained above 

in Section 3. That is, when 𝑤 > 0.5, PRE values will again get increasing trend. It is also 

worthwhile that the PRE results given in Table 3 are smaller than those calculated by 

Terpstra (2004a) due to the RRT procedure. 

 

Table 3  

PRE ( ˆ , ˆ
WN  ) for Different Values of 𝝅, 𝒘 and 𝒌 

True Sensitive 

Population Proportion 

(𝝅) 

Size of Ranked 

Set Sample 

(𝒌) 

Probability of Selecting  

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

0.1 

2 

3 

4 

5 

103.6 

105.4 

109.6 

112.1 

101.5 

102.2 

103.9 

104.9 

100.6 

100.8 

101.4 

101.8 

100.1 

100.2 

100.3 

100.4 

0.2 

2 

3 

4 

5 

109.3 

116.7 

122.6 

127.5 

104.4 

107.6 

110.1 

112.0 

101.7 

103.0 

103.9 

104.6 

100.4 

100.7 

100.9 

101.1 

0.3 

2 

3 

4 

5 

114.4 

124.8 

132.7 

144.8 

107.2 

111.9 

115.2 

119.8 

102.9 

104.8 

106.0 

107.7 

100.7 

101.1 

101.4 

101.8 

0.4 

2 

3 

4 

5 

117.8 

130.0 

138.8 

146.0 

109.2 

114.7 

118.4 

121.2 

103.8 

105.9 

107.3 

108.3 

100.9 

101.4 

101.7 

102.0 
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Figure 2: PRE vs  for different ,  andˆ  ˆ
WN w k   
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4. SIMULATION STUDY 
 

 To validate the theoretical finding given in Table 3, we carried out a comprehensive 

simulation study. The simulated results, against different parameters such as  

𝑤 = 0.1,0.2,0.3,0.4, 𝑘 = 2,3,4,5 and 𝑛 = 20, 40, 80, 200 for 0.1,0.2,0.3,0.4 , are 

given in the Tables 4-7. For each combination ( , , , )w k n  , the results were simulated 10000 

times. The PRE values given in Tables 4-7 are defined in Section 3 wherein we have used 

empirical variance instead of asymptotic variance. As expected, the results in Tables 4-7 

are similar to those found in Table 3 or Figure 2. This validates our theoretical results. 

 

Table 4 

PRE ( ˆ , ˆ
WN  ) for different Values of 𝒘 and 𝒌 when 𝝅 = 𝟎. 𝟏 

Number of Cycles 

(𝒏) 

Size of Ranked 

Set Sample 

(𝒌) 

Probability of Selecting 

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

20 

2 

3 

4 

5 

101.7 

103.6 

106.2 

109.3 

101.0 

101.4 

102.2 

103.3 

100.1 

101.0 

100.4 

101.2 

100.1 

100.5 

100.1 

100.1 

40 

2 

3 

4 

5 

101.6 

104.0 

104.8 

110.0 

101.4 

103.1 

102.6 

103.1 

101.0 

101.1 

100.7 

101.2 

100.3 

100.2 

100.3 

100.2 

80 

2 

3 

4 

5 

104.1 

103.4 

110.0 

113.4 

102.1 

102.3 

102.7 

103.7 

101.3 

100.2 

102.3 

102.4 

100.8 

100.1 

101.0 

101.2 

200 

2 

3 

4 

5 

102.8 

104.8 

107.9 

113.0 

102.2 

102.1 

104.3 

105.2 

101.0 

101.2 

101.2 

102.8 

100.5 

100.2 

100.0 

100.8 
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Table 5 

PRE ( ˆ , ˆ
WN  ) for different Values of 𝒘 and 𝒌 when 𝝅 = 𝟎. 𝟐 

Number of Cycles 

(𝒏) 

Size of Ranked 

Set Sample 

(𝒌) 

Probability of Selecting 

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

20 

2 

3 

4 

5 

110.4 

118.2 

124.0 

128.7 

102.8 

105.4 

111.1 

113.1 

103.1 

102.5 

102.4 

103.2 

100.8 

101.2 

101.2 

101.5 

40 

2 

3 

4 

5 

104.5 

115.8 

123.3 

128.2 

103.7 

106.8 

109.2 

110.8 

102.2 

104.3 

102.1 

103.9 

101.0 

101.0 

101.1 

101.3 

80 

2 

3 

4 

5 

110.3 

115.2 

120.0 

124.4 

103.7 

104.9 

111.1 

111.6 

102.4 

102.4 

104.3 

103.5 

100.2 

100.2 

101.3 

100.7 

200 

2 

3 

4 

5 

108.1 

117.0 

121.2 

128.3 

103.3 

105.7 

111.2 

110.1 

102.2 

102.3 

103.3 

103.9 

100.0 

101.0 

101.0 

100.4 

 

Table 6 

PRE ( ˆ , ˆ
WN  ) for different Values of 𝒘 and 𝒌 when 𝝅 = 𝟎. 𝟑 

Number of Cycles 

(𝒏) 

Size of Ranked 

Set Sample 

(𝒌) 

Probability of Selecting 

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

20 

2 

3 

4 

5 

115.6 

125.1 

133.1 

145.5 

105.9 

112.2 

113.8 

121.0 

103.3 

105.0 

105.4 

108.1 

100.8 

100.3 

100.8 

102.0 

40 

2 

3 

4 

5 

113.2 

123.6 

133.5 

143.4 

108.0 

112.4 

116.3 

118.6 

103.0 

105.2 

107.2 

108.5 

101.0 

100.8 

102.1 

102.2 

80 

2 

3 

4 

5 

115.0 

124.4 

133.2 

143.9 

106.6 

110.6 

116.3 

118.9 

104.3 

105.1 

105.0 

106.7 

101.0 

100.2 

100.8 

102.7 

200 

2 

3 

4 

5 

113.3 

125.1 

130.5 

145.6 

106.6 

110.6 

114.4 

118.4 

103.2 

105.0 

107.1 

108.4 

101.0 

100.2 

102.1 

101.2 
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Table 7 

PRE ( ˆ , ˆ
WN  ) for different Values of 𝒘 and 𝒌 when 𝝅 = 𝟎. 𝟒 

Number of Cycles 

(𝒏) 

Size of Ranked 

Set Sample 

(𝒌) 

Probability of Selecting 

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

20 

2 

3 

4 

5 

118.4 

129.6 

137.6 

148.1 

110.0 

113.9 

117.6 

122.4 

102.9 

106.6 

106.7 

107.1 

101.5 

102.1 

102.2 

102.7 

40 

2 

3 

4 

5 

118.8 

131.1 

139.6 

147.0 

108.4 

115.0 

119.1 

120.8 

104.8 

104.0 

106.7 

107.4 

101.3 

100.8 

101.4 

101.6 

80 

2 

3 

4 

5 

118.1 

129.6 

139.7 

146.8 

110.0 

115.5 

117.8 

120.8 

102.8 

104.4 

106.6 

107.7 

101.1 

101.2 

102.2 

101.8 

200 

2 

3 

4 

5 

118.9 

129.4 

139.7 

147.4 

108.8 

115.4 

119.0 

121.2 

102.8 

104.8 

108.1 

107.9 

101.1 

102.1 

100.8 

101.7 

 

5. IMPERFECT RANKING MODEL 
 

 In the preceding work, we assumed that the experimental units are perfectly ordered 

(ranked) according to the characteristics of interest. However, in real life problems, it is 

sometimes difficult to perfectly rank the units, and we have to rely on judgment ranking; 

that causes error in the ranking process. This section covers the effects of error in relation 

to PRE by demonstrating a RRT model for imperfect ranking situations. The method will 

be illustrated with the help of an example. 
 

 In the foregoing sections, ( )iY  has a Bernoulli distribution with parameter ( )kip  . 

However, for the case of errors in rankings, the value of Y against the ith judgment ranking, 

say [ ]iY , is not usually equal to ( )iY . For details, see Terpstra (2004a). To further proceed 

with the study, we need to specify the distribution of [ ],  1,2, ,iY i k  . From Terpstra 

(2004a), the ith order statistic and the event that it receives judgment rank j are independent. 

Thus, it follows that the distribution of [ ]iY  is a blend of k order Bernoulli variate with 

parameter, denoted by ( )kip  , is given by 
 

  
1

for  1,2, ,( ) ( ) 
k

ki il kl
l

p t p i k



      
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 Let ilt  is transition probability that ith order statistic is judged to be the lth ( 1,2, , )l k   

order statistics i.e., if [ ] ( )l iY Y . If [ ]ilT t  is a transition matrix, then 
1

1
k

il
l

t


 ;

1,2, ,i k  . Some examples of 𝑇, for 𝑘 = 2, are: 
 

  1 2 3

1 0 1/ 2 1/ 2 1/ 3 2 / 3
T ,T  and T

0 1 1/ 3 2 / 3 2 / 3 1/ 3

    
      
    

 

 

 Using the new randomizing device, [ ]i
 , the probability of “Yes” response is given by 

 

   [ ] ( ) (1 ) 1 ( ) .             i ki kiw p w p                   (6) 

or 

  [ ]
ˆˆ ( ) ( 1 ) / (2 1),ki ip w w        

or 

  ( )
1

ˆˆ ,                            ( )
k

il kl i
l

t p


               (7) 

 

( ) [ ]
ˆ ˆ( 1 ) / (2 1).i i w w       In matrix notation, (7), can be written as 

 

  ,           TP                     (8) 
 

where 

  

111 12 1 1

21 22 2 2 2

1 2

ˆˆ

ˆˆ
,   and  

ˆ ˆ

k k

k k

k k kk kk
k

t t t p

t t t p
T P

t t t p

   
 

          
    

 

 

 If [ ] [ ]
1

n

i i j
j

z Y


   represents “Yes” reports out of 𝑛 respondents, then values of 𝑃, from 

(8), can be obtained as 
 

    1
1 2

ˆ ˆ ˆ ,k k kkP p p p T S
        

 

where 
1S T  , provided that 𝑇 is non-singular. 

 

 Since the [ ] ; 1,2, ,i jY j n   are IID and follow Bernoulli distribution and hence 

[ ] [ ]
ˆ /i iz n   follow Binomial distribution with parameters [ ]( , )in  . Now, the dispersion 

matrix of   is 1 2disp( ) diag( , , , ),kV V V  
2

[ ] [ ](1 ) / (2 1)i i iV n w     . Hence, the 

estimate of   is given by 
 

  
1 1ˆ ,          k IP k IS                    (9) 
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where I 11 1( )   is a row matrix. It follows that dispersion of ̂  is given by 
 

  2
1 2

ˆdisp( ) diag( , , ,  )    kk IS V V V S I                   (10) 

 

5.1 An Example 

 To illustrate and compare the imperfect ranking based RRT model with that of perfect 

ranking based model, let 1
ˆ0.4,  0.1,  2,  20,  8 / 20w k n        and 2

ˆ 12 / 20  . 

Furthermore, if 3T T , then 
1 2 0.625 0.125

S ,  Δ  and  P
2 1 0.375 0.875

     
      

    
 

 

 From the above information, we have, ˆ (0.125 0.875) / 2 0.50N    and variance of 

ˆ
N  is 0.915%, and similarly the dispersion in Warner's estimator ˆ

W  is given by 0.951%. 

Hence, ˆ ˆPRE( , ) (0.951/ 0.915) 100N W     is equal to 103.9%. As expected, this gain is 

less than that of under perfect ranking, see the value against 𝑤 = 0.1, 0.4   and 𝑘 = 2 

in Table 3. These results are consistent with the theory, given by Dell (1972); RSS based 

results are better than corresponding SRS results even under imperfect ranking situation. 

To further explore the behavior of imperfect RSS (IRSS) under other parametric values, 

we need to calculate estimated PRE. 
 

 To proceed with IRSS, we first assume transition matrices such 2 3 4 5,  ,  d  anT T T T  as  
 

2 3 4

5

2 / 6 1 / 6 2 / 6 1 / 6
1 / 3 1 / 3 1 / 3

1 / 3 2 / 3 1 / 6 1 / 6 2 / 6 2 / 6
,   1 / 3 1 / 3 1 / 3 ,   

2 / 3 1 / 3 3 / 6 1 / 6 1 / 6 1 / 6
1 / 3 1 / 3 1 / 3

1 / 6 2 / 6 2 / 6 1 / 6

2 / 7 1 / 7 1 / 7 2 / 7 1 / 7

1 / 7 1 / 7 2 / 7 1 / 7 2 / 7

and      1 / 7 2 / 7 1 / 7 2 / 7 1 / 7

3 / 7 1 / 7 1 / 7 0 2 / 7

T T T

T


 

           
 



2 / 7 1 / 7 1 / 7 2 / 7 1 / 7








 
 

 

 

 The results of estimated PRE under IRSS are obtained on the same lines as we 

proceeded in the Section-3 except that we have adjusted transition matrices. The results so 

obtained are displayed in the Table 8. As expected, it can be observed that PRE values are 

less than those obtained in the Table 3. All these results are allied with Dell (1972) theory 

of imperfect ranked set sampling. That is, the results under IRSS are also better than their 

SRS counterparts. 
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Table 8 

PRE ( ˆ , ˆ
WN  ) under IRSS for different Values of 𝒘, 𝒌 and 𝝅 

True Sensitive 

Population 

Proportion 

(𝝅) 

Size of 

Ranked 

Set sample 

(𝒌) 

Transition 

Matrix 

(𝑻) 

Probability of Selecting  

Sensitive Question (w) 

0.1 0.2 0.3 0.4 

0.1 

2 
3 
4 
5 

T2 
T3 
T4 
T5 

101.3 
103.3 
104.2 
106.0 

100.7 
101.0 
100.9 
101.1 

100.2 
100.3 
100.4 
100.2 

100.1 
100.1 
100.1 
100.1 

0.2 

2 
3 
4 
5 

T2 
T3 
T4 
T5 

103.4 
105.4 
109.2 
112.2 

101.5 
102.5 
104.0 
104.6 

100.7 
100.4 
100.5 
102.4 

100.1 
100.2 
100.1 
100.1 

0.3 

2 
3 
4 
5 

T2 
T3 
T4 
T5 

107.5 
111.9 
119.4 
129.2 

102.3 
104.6 
107.7 
109.9 

100.7 
101.7 
101.8 
104.3 

100.3 
100.1 
101.4 
100.3 

0.4 

2 
3 
4 
5 

T2 
T3 
T4 
T5 

103.9 
120.3 
128.0 
136.0 

103.0 
104.4 
111.3 
110.2 

101.3 
101.0 
102.3 
101.2 

100.1 
101.2 
101.1 
100.1 

 

6. COST ANALYSIS 
 

 In the previous sections, we have not taken into account the cost of ranking the units 
by supposing that it is cost-free. In fact, for the selection of an appropriate sampling design, 
we need to consider factors such as cost, time and accuracy or precision. Among these 
factors, cost of sampling units is, generally, the main focus of all sampling methods. 
 

 Following Dell (1972), we construct a cost model to evaluate the performance of the 

proposed estimator with respect to Warner's model. Let sc  be the cost of stratification to 

adhere to each quantified unit in RSS. Generally, this is the cost of choosing k-1 items and 

completing judgment ordering of the k units of a sample. Similarly, qc  denotes the cost of 

choosing and measuring a item without ranking. Now, the PRE is defined as the ratio of 
the variance of the estimator under SRS to that of under RSS by assuming that the total 

sampling cost, say C, is the same for both designs. Now, the PRE of ˆ
N  with respect to 

ˆ
W  is given by 

 

  
ˆVar( )

ˆ ˆPRE( , ) 10      0
ˆ(

 
r )

 
Va

q W
N W

q s N

c

c c


   

 
             (11) 

 

 From (11), it appears that for fixed qc , when sc  increases, the value of PRE decreases. 

The PRE attains it maximum value when 0sc  . For example, when 5qc   and 0.4sc  , 

the graph of (11) is given in Figure 3. From Figures 2-3, it can be observed that PRE 

decreases as 0sc  . However, the proposed model still remains superior. 
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Figure 3: PRE ˆ

N vs ˆ
W for different  , 𝒘 and 𝒌 when $5qc   and $0.4sc   
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7. CONCLUSION 
 

 The paper has highlighted the importance of ranked-set sampling design in estimating 

the population-sensitive proportion. In addition, we have used a different randomizing 

device that takes into account the weight of balls on a chance device for selecting one of 

the two statements (out of which one is sensitive). Since balls of different sizes and weights 

are used, the respondent feels liberty in choosing balls from the device, ultimately, the 

probability of honest response increases. 
 

 Furthermore, it was shown that the proposed model asymptotically follows normal 

distribution. The confidence interval (CI) estimates, using real medical data, were derived 

for different 𝑘, and found that these are shorter or narrower than their usual counterparts. 

Moreover, the percentage relative efficiency (PRE) of the proposed model is better than 

the Warner's model. In addition, simplicity and feasibility are other key points of the model. 

The cost analysis also supports the new model.  
 

 This study can be extended by using other variants of RSS design. For example, RSS 

with tie information or judgment post-stratification. 
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