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ABSTRACT 
 

 Penalized quantile regression is a hybrid statistical technique used for selecting the 

significant and meaningful predictor variables that strongly affect the response variable, 

estimating conditional quantiles, and addressing the multicollinearity among the predictor 

variables. The empirical mode decomposition (EMD) technique is implemented to analyze 

nonlinear and nonstationary data into several components called the intrinsic mode 

functions (IMFs) and one residue. This paper aims to apply three proposed methods for 

penalized quantile regression, namely, EMD-QR-R, EMD-QR-L, and EMD-QR-ENET, to 

determine the decomposed components of predictor variables that exhibit the strongest 

effects on the response variable and address the multicollinearity between the decomposed 

components to improve the prediction accuracy. Simulation studies and real data 

applications illustrate the performance and implementation of the proposed method. 

Results show that the penalized quantile regression method with EMD can determine the 

decomposition components with the most significant impact on the response variable and 

improve prediction accuracy. 
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1. INTRODUCTION 
 

 Although the least-squares method has been widely used in statistical analysis and 

many other applications, including but not limited to finance, economics, environmental 

science, and society, with the best properties such as linearity, unbiasedness, and 

efficiency, it is not resistant to outliers and leverage points. Furthermore, least-squares 

predict only the impact of predictors mostly on the conditional mean of the response. On 

the other hand, quantile regression was proposed by (Koenker & Bassett, 1978) and has 

become an alternative to least squares in the presence of outliers, which estimates the 
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conditional quantile of the response based on the predictors. In recent decades, with rapid 

development, quantile regression has become an appealing statistical tool in modern 

regression analysis.  
 

 Quantile regression studies the relationship between the response variable and the 

predictor variables at any quantile of the conditional distribution function providing more 

comprehensive visibility of the phenomena under study. The quantile regression has no 

distributional assumption about the error term in the model. It can give complete 

information about the relationship between the response variable and predictors on the 

whole conditional distribution (Koenker & Bassett, 1978). Moreover, quantile regression 

is robust against outliers and can handle heteroscedastic datasets (as opposed to linear 

regression). Quantile regression has become widely used in practical applications thanks 

to these properties. The quantile estimator can quantify the whole conditional distribution 

of the response variable conditional on predictors and provide an overall assessment of the 

predictor variables' effects at various quantiles of the response variable (Koenker, 2005). 
 

 Variable selection has become important in the model-building process. In many 

applications, the number of variables is enormous. Keeping useless variables in the model, 

on the other hand, is undesirable since it makes the model harder to comprehend and may 

impair its predictive performance. Many different penalties were proposed in order to 

achieve variable selection. For instance, Ridge (Hoerl & Kennard, 1970), Lasso 

(Tibshirani, 1996), SCAD (Fan & Li, 2001), elastic-net (Zou & Hastie, 2005), Variable 

selection has become important in the model-building process. In many applications, the 

number of variables is enormous. Keeping useless variables in the model, on the other 

hand, is undesirable since it makes the model harder to comprehend and may impair its 

predictive performance. Many different penalties were proposed to achieve variable 

selection. For instance, Ridge (Hoerl & Kennard, 1970), Lasso (Tibshirani, 1996), SCAD 

(Fan & Li, 2001), elastic-net (Zou & Hastie, 2005), adaptive Lasso (Zou, 2006), adaptive 

elastic-net (Zou & Zhang, 2009), and MCP (Zhang, 2010). Adaptive Lasso (Zou, 2006), 

adaptive elastic-net (Zou & Zhang, 2009), and MCP (Zhang, 2010). 
 

 Recently, the empirical mode decomposition (EMD) approach was presented by 

(Huang et al., 1998), which is an intuitive, direct, and adaptable method for decomposing 

nonlinear and nonstationary time series data. This approach is the first part of the Hilbert-

Huang transform (HHT). In contrast to traditional approaches, EMD does not impose any 

a priori constraints on the data (such as stationarity or linearity) but instead lets the data 

speak for itself. Despite this approach being completely derived from empirical evidence 

and lacking a formal mathematical foundation, it may efficiently divide a data series into 

distinct components, each corresponding to a particular oscillation frequency. Since its 

inception, this technique has been used in a wide variety of fields, including economics 

(Huang et al., 2003), engineering (Yang et al., 2003), medicine (Yang et al., 2011), physics 

(Varadarajan et al., 2004), and environmental science (Huang et al., 1999). This technique 

supplies more accurate findings in many situations than traditional methodologies, 

uncovering novel patterns within the analyzed data sets. EMD decomposes the original 

time series data into several components called intrinsic mode functions (IMFs) and one 

residual. One can use these components as new predictors to predict the response variable 

and enhance regression analysis predictive performance. 
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 This paper is organized as follows. Section 2 presents the literature review. Section 3 

describes the proposed penalized quantile regression using Ridge, LASSO, and Elastic net 

penalties. In section 4, we compare the proposed methods by performing numerical 

experiments. Section 5 displays the proposed penalized quantile regression methods 

applied to the daily exchange rate, and the conclusions are presented in Section 6. 

 

2. LITERATURE REVIEW  
 

 In the case of high-dimensional data, variable selection and parameter estimation are 

crucial in quantile regression in the case of high dimensional data. It generates a sparse 

model that is easy to interpret, efficient, and robust to outliers. Koenker (2004) was the 

first to use regularization in quantile regression, he used the L1-norm penalty to decrease 

the random effects in mixed-effect quantile regression models for longitudinal data. The 

L1-penalized quantile regression method was developed by (Belloni & Chernozhukov, 

2011), (Ahmed & Ismail, 2014), (Wang et al., 2018), (Bonaccolto, 2019) and (Liu et al., 

2020). The variable selection in quantile regression is implemented by (Amin et al., 2015), 

(Peng & Wang, 2015), (Shen et al., 2018), (Khan et al., 2019), (Wang et al., 2018) and  

(Hu et al., 2021) with SCAD and adaptive LASSO penalties. While (Yan & Song, 2019) 

with an adaptive elastic-net penalty. In (Ranganai & Mudhombo, 2021) study, Ridge, 

LASSO, and elastic net penalties are considered. In (Burgette et al., 2011) the Lasso and 

elastic-net penalties are used to identify important predictors. 
 

 In addition, (Mkhadri et al., 2017) suggested a coordinate descent algorithm for 

computing the penalized smooth quantile regression. (Zhong et al., 2016) used quantile 

regression to identify important covariates for a general class of ultrahigh dimensional 

single-index models. Hierarchical penalty in quantile regression has been suggested  

in the literature by (Kang et al., 2018). (Xu et al., 2017) introduced both the sampling 

method and the Lasso technique to quantile regression. (Ahn & Kim, 2018) proposed a 

penalized competing risks quantile regression model, including the group bridge and the 

adaptive group bridge. A new regularization method for performing simultaneous model 

selection in multiple quantiles regression was introduced by (Zou & Yuan, 2008). More 

recently, (Ciuperca, 2020) proposed quantile regression with an adaptive elastic net penalty 

for computing the adaptive elastic-net group quantile estimator of the regression 

parameters. (Shi & Wilke, 2020) used the (adaptive) group Ridge to identify the relevant 

variable in heterogeneous and high-dimensional data and proved that the estimates have an 

oracle property. In (Su & Wang, 2021) the elastic net is used to identify important 

predictors for quantile regression. (Yousif & Housain, 2021) proposed a new version of 

penalty functions for quantile regression called Atan to estimate parameters and variable 

selection. 
 

 Bayesian techniques for variable selection in quantile regression have gained popularity 

among many researchers. For example, (Alhamzawi et al., 2012) proposed a Bayesian 

adaptive Lasso in quantile regression. The Bayesian elastic net penalty approach was 

proposed by (Alshaybawee et al., 2017) for estimating and selecting variables in a single 

index quantile regression model. (Tang et al., 2020) studied the quantile regression with 

adaptive Lasso and Lasso penalty. (Tian et al., 2021) developed Bayesian bridge-

randomized penalized quantile regression. 
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 In recent years, many studies have combined the EMD algorithm and the penalized 

regularization regression method to determine the impact of decomposition components on 

the response variable; for example, (Shen et al., 2012) used a combination of ridge 

regression with EEMD, (Qin et al., 2016) and (Masselot et al., 2018) used the Lasso 

approach with EMD. In recent years, the authors (Al-Jawarneh et al., 2020) and  

(Al-Jawarneh & Ismail, 2021) combined EMD and elastic net penalty to select important 

predictor variables with significant effects on response variables.  
 

 Another interesting study by (Tweneboah et al., 2020) used the EEMD-based QQR. 

(Owusu et al., 2020) used both the ensemble empirical mode decomposition (EEMD) and 

the quantile-on-quantile regression (QQR) on spot and futures energy and precious metal 

prices in India. (Zhang et al., 2020) proposed a framework for probability density 

forecasting of wind speed based on QR and kernel density estimation (KDE). EMD is 

implemented to reduce the noise of raw wind speed series. 
 

 Time series processes are frequently used to represent variables of interest, which can 

lead to modelling and accuracy issues. Such time series are often nonstationary and 

nonlinear. Moreover, several predictors may suffer from multicollinearity problems. The 

existence of these issues in quantile regression may lead to an increase in the variability of 

parameter estimations, rendering the result less dependable. These also potentially affect 

prediction accuracy. In practice, it is often discovered that the data exhibits violation of the 

linear model assumptions or that the researchers are interested in modelling other values 

other than the mean of the response variable, for instance, the median and other 

quantiles(Chatterjee & Hadi, 2013) (Chatterjee & Hadi, 2013). It is well known that the 

quantile regression that was proposed by (Koenker & Bassett, 1978) required no 

assumptions to impose on the residual term, which is used as an alternative to least squares 

in the presence of assumptions. To address these issues, the penalized quantile regression 

based on the EMD method with Ridge (RQR), Lasso (LQR), and elastic-net (ENQR) 

penalties are proposed for variables selection and estimation of regression coefficients to 

improve the performances of the predictions further. The purpose of this study aims to 

determine the decomposition components of the original time-series predictors that display 

the most substantial effects on the response variable and address multicollinearity among 

the decomposition components at different quantiles. Therefore, the innovation and 

contributions of this study can be summarized as follows: 

 The Ridge, LASSO and ENET penalties procedure to the QR framework are 

proposed for improving the prediction accuracy in model selection. EMD is 

implemented to decompose the nonstationary and nonlinear predictor signals into a 

finite set of IMF components and one residual component. 

 The decomposition components are used as new predictor variables in the QR-R, 

QR-L and QR-ENET methods to select the decomposition components that have 

the most effect on the response variable and to address multicollinearity among the 

components. 

 The simulation study and real dataset are conducted to evaluate the performance of 

the proposed methods.   
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3. METHODOLOGY 
 

3.1 Empirical Mode Decomposition 

 Empirical Mode Decomposition (EMD) has been described by (Huang et al., 1998). 

The EMD is an adaptive signal analysis algorithm that decomposes a nonlinear and 

nonstationary signal into a finite number of functions called intrinsic mode functions 

(IMFs) and residual components through a sifting process. The IMFs cover local 

instantaneous frequencies; the low-level IMF includes high local frequencies, whereas the 

high-level IMF covers low local frequencies. Each IMF must fulfil the following two 

conditions: 

i. The number of local extreme values (maxima and minima) and the number of  

zero-crossing must be equal or by differ at most one. 

ii. The local mean must be zero, defined as the mean of the upper and lower envelopes. 
 

 A time series 𝑥(𝑡) is decomposed via EMD approach into some intrinsic mode function 

(IMFs) 𝐶𝑘(𝑡), 𝑘 = 1, … . , 𝐾, and as well as a residual 𝑟(𝑡) representing the overall trend  

of the original series. Then to reconstruct the original data 𝑥(𝑡), the sum of all IMFs and 

final residual is calculated as: 
 

𝑥(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡)

𝐾

𝑘=1

  (1) 

 

 The IMFs are produced using an iterative process known as “sifting”. The basic aim of 

the EMD technique is to remove riding waves and make wave profiles more symmetric. 

The following is a description of the sifting procedure: 
 

1) Identify all local extrema, including minima and maxima of a time series signal 

𝑥(𝑡). 

2) Produce Envelope. Connect all local extrema with a cubic spline line to generate 

the upper envelope 𝑥𝑢𝑝(𝑡) and the lower envelope 𝑥𝑙𝑜𝑤(𝑡), respectively. 

3) Calculate the mean of the upper and the lower envelopes 𝑚(𝑡) =
𝑥𝑢𝑝(𝑡)+𝑥𝑙𝑜𝑤(𝑡)

2
 

4) Subtract the mean 𝑚(𝑡) from the original time series 𝑥(𝑡) to obtain the component 

ℎ(𝑡) as shown ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) 

5) Check whether series ℎ(𝑡) is an IMF or not 

i. If not an IMF, substitute ℎ(𝑡) for 𝑥(𝑡) and repeat the sifting process, which 

consists of step 1 to step 4 until ℎ(𝑡) meets the conditions of IMF. 

ii. If ℎ(𝑡) is an IMF according to the definition of IMF, then calculate the residual 

as: 𝑟(𝑡) = 𝑥(𝑡) − ℎ(𝑡) 

6) Repeat steps 1–5 until the residual satisfies the stopping criterion of the standard 

deviation 𝑆𝐷𝑘, which needs the normalized squared difference between two 

successive sifting operations to be small. The difference is defined as follows: 
 

𝑆𝐷𝑘 = ∑
ℎ𝑘−1(𝑡) − ℎ𝑘(𝑡)2

ℎ𝑘−1
2 (𝑡)

𝑇

𝑡=0

 (2) 
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 To decompose the time series into a collection of IMFs and a residue via the EMD 

approach described above. We can further analyze the signal and compute the 

instantaneous frequency of each converted IMF by applying the Hilbert transform to each 

IMF. The entire process is called the Hilbert-Huang transform (HHT) (Huang et al., 1998). 
 

3.2 Regularized Quantile Regression 

 Quantile regression was proposed by (Koenker & Bassett, 1978). Quantile regression 

can estimate the response in different quantiles of the data distribution. It is incredibly 

beneficial when the aim of the modelling is limited to a specific area of the data 

distribution, such as modelling extreme values on the top quantile of the data distribution. 
 

 The simple linear quantile regression model is given by,  
 

𝑦𝑖 = 𝛽0 + 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 𝑓𝑜𝑟 𝑖 = 1,2,3, … … , 𝑛 (3) 

 

where 𝑦𝑖 are response variables, 𝑥𝑖
𝑇 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) are the 𝑝 known predictors, 𝛽0 is 

the intercept, indicates 𝛽 a 𝑝 × 1 the vector of yet estimated unknown regression 

coefficients (parameters) and 𝜀𝑖 are random errors whose 𝜏th conditional quantile given Xi 

equals zero for 𝜏 ∈ (0,1). Then the 𝜏𝑡ℎ conditional quantile function may be estimated by 

solving 
 

�̂�𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽) (4) 

 

where 𝜌𝜏 the check function defined by 
 

𝜌𝜏(𝑢) = {
𝜏𝑢 𝑖𝑓 𝑢 > 0

(𝜏 − 1)𝑢 𝑖𝑓 𝑢 ≤ 0
 

 

3.2.1 Ridge Penalty  
 (Hoerl & Kennard, 1970) introduced Ridge regression as one of the most popular 

alternative solutions to OLS. This method is used to improve the estimation of regression 

parameters in the case multicollinearity is present among the predictor variables. 
 

 The ridge estimate is given by 
 

𝛽(𝜏𝑅) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

) + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

} (5) 

 

where 𝜆 is a positive ridge parameter in the range 0 < 𝜆 < 1. 
 

 We consider QR penalized with the Ridge penalty (7) denoted by QR-R. The QR-R is 

given by the minimization problem of 
 

 The quantile regression with ridge regression uses the ridge coefficients to build the 

penalized quantile regression model. The solution of the ridge coefficient can be written as 

the following 
 

�̂�𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

) + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 (6) 
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3.2.2 LASSO Penalty 

 The LASSO (Least Absolute Shrinkage and Selection Operator) was proposed by 

(Tibshirani, 1996) which can effectively identify important predictor variables and 

estimate regression coefficients simultaneously. 
 

 LASSO imposes a slightly different penalty on the coefficient vector 𝑗, 𝑗 = 1,2, … 𝑘 − 1 

than Ridge. In the case of LASSO, the 𝜆 parameter is multiplied by the 𝐿1-norm of the 

vector (𝛽1 … 𝛽𝑘−1) whereas Ridge uses the 𝐿2-norm. The LASSO estimates are defined as 
 

𝛽(LASSO) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

) 𝑠. 𝑡. ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

≤ 𝑠} (7) 

 

where 𝑠 ≥ 0 is a tuning parameter. The LASSO penalty is often called an 𝐿1 penalty 

because of the first power in the penalty term.  
 

 The LASSO quantile regression estimates are defined as 
 

𝛽(LASSO) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 + ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

) + 𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

} (8) 

 

 We first consider quantile regression with the LASSO penalty. The lasso regularized 

quantile regression (Li & Zhu, 2008) is given by 
 

�̂�𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽) + 𝜆 ∑|𝛽𝑗|,

𝑝

𝑗=1

 

 

where 𝜆 is the penalty parameter (regularizer) that controls the amount of shrinkage. 

 

3.2.3 Elastic Net Penalty 

 The elastic net penalty proposed by (Zou & Hastie, 2005) combines the ridge and 

LASSO penalties. Elastic Net coefficient estimates are obtained by using an Elastic Net 

penalty to reduce the regression loss function. 
 

∑[𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗
2] ≤ 𝑘

𝑝

𝑗=1

 (9) 

 

when the value of 𝛼 = 0 then we get to ridge regression, but if 𝛼 = 1, then we get LASSO 

regression and the Elastic Net penalty for 0 ≤ 𝛼 ≤ 1. Regularized quantile regression 

based on elastic-net regularized is defined as: 
 

�̂�𝜏 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ 𝜌𝜏(𝑦𝑖 − 𝛽0 − 𝑥𝑖
𝑇𝛽) + 𝜆 ∑[𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗

2]

𝑝

𝑗=1

𝑛

𝑖=1

} (10) 

 

3.3 Multicollinearity 

 Multicollinearity is a common problem in multiple regression analysis. It occurs when 

two or more predictor variables in a regression model are highly correlated. Such an 
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interrelationship between explanatory variables obscures their link with the explained 

variable. Furthermore, the reliability of the regression analysis is decreased and reduced in 

the presence of multicollinearity by the low quality of the resultant estimates. The variance 

inflation factor (VIF) test will be used to measure the correlation value between predictor 

variables. When variance inflation factor (VIF) values are less than 10, there is no 

multicollinearity (Januaviani et al. 2019; Tamura et al., 2017). 
 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2. (11) 

 

3.4 Proposed Methods 

 In this section, based on the principles of Regularized Quantile regression and EMD 

introduced in previous sections, QR-R, QR-L and QR-ENET methods based on the EMD 

method are proposed to explain the effects of the decomposition components via EMD on 

the response variable and addressing multicollinearity as shown in Figure 1. The proposed 

method can be summarized as the following steps: 

 

3.4.1 Ridge Quantile Regression Based on EMD (EMD-QR-R) 
 

Step 1: The EMD method was used to decompose the original time series data 𝑥(𝑡)  

into several components named 𝐼𝑀𝐹𝑘  (𝑘 = 1,2, … . 𝐾), as well as a residual 

component r. 
 

𝑥(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡)

𝐾

𝑘=1

 (12) 

 

Step 2: All the decomposed components obtained from the predictor variable 𝑥(𝑡) are 

utilized to select the subset of components that exhibited the most impact (Masselot 

et al., 2018): 
 

𝑦(𝑡) = ∑ [∑ 𝐶𝑗𝑘𝛽𝑗𝑘 + 𝑟𝑗𝑘(𝑡)𝛽𝑗𝑘

𝐾

𝑘=1

] + 𝜀(𝑡)

𝑝

𝑗=1

 (13) 

 

Step 3: The check whether there is a multicollinearity problem between the decomposition 

components by utilizing Variance Inflation Factor (VIF). 
 

VIFj =
1

1 − Rj
2  (14) 

 

Step 4: The optimal tuning parameter value is determined, which gives the minimum MSE 

based on the 10-fold CV method. 
 

𝜆𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠=1,2,….𝑆

(𝑀𝑆𝐸𝜆𝑠
) (15) 

 

𝑀𝑆𝐸𝜆𝑠
=

1

10
∑ 𝑅𝑆𝑆𝜆𝑠

𝑑

10

𝑑=1
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Step 5: Apply the Ridge penalized quantile regression method:  
 

�̂�𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝛽0 − ∑ (∑ 𝐶𝑗𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑗𝑘 − 𝑟𝑗(𝑡)𝛽𝑗𝑘+1)

𝑝

𝑗=1

) + 𝜆 ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

 (16) 
 

QR with the Ridge (L2) penalty has been proposed as a solution to the multicollinearity. 

 

3.4.2 LASSO Quantile Regression Based on EMD (EMD-QR-L) 
 The first three steps are the same as in the EMD-QR-R method, and the remaining step 

are as follows: 
 

Step 4: The optimal tuning parameter value is determined, which gives the minimum MSE 

based on the 10-fold CV method. 
 

𝜆𝐿 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠=1,2,….𝑆

(𝑀𝑆𝐸𝜆𝑠
)  (17) 

 

𝑀𝑆𝐸𝜆𝑠
=

1

10
∑ 𝑅𝑆𝑆𝜆𝑠

𝑑

10

𝑑=1

 

 

Step 5: Apply the LASS0 penalized quantile regression method:  
 

�̂�𝜏 = 𝑎𝑟𝑔𝛽𝑚𝑖𝑛 ∑ 𝜌𝜏

𝑛

𝑖=1

(𝑦𝑖 − 𝛽0 − ∑ (∑ 𝐶𝑗𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑗𝑘 − 𝑟𝑗(𝑡)𝛽𝑗𝑘+1)

𝑝

𝑗=1

) 

+𝑛𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

 (18) 

 

 QR with the LASSO (L1) penalty has been proposed as a solution to variable selection. 

 

3.4.3 Elastic Net Quantile Regression Based on EMD (EMD-QR-ENET) 
 The first three steps are the same as in the EMD-QR-R method, and the remaining step 

are as follows: 
 

Step 4: The optimal tuning parameter value is determined, which gives the minimum MSE 

based on the 10-fold CV method. 
 

𝜆𝐸𝑛𝑒𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑠=1,2,….𝑆

(𝑀𝑆𝐸𝜆𝑠
)  (19) 

 

𝑀𝑆𝐸𝜆𝑠,𝛼 =
1

10
∑ 𝑅𝑆𝑆𝜆𝑠,𝛼

𝑑

10

𝑑=1

 

 

Step 5: Apply the Elastic Net penalized quantile regression method:  
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�̂�𝜏 = arg 𝑚𝑖𝑛 [∑ 𝜌𝜏 (𝑦𝑖 − 𝛽0 − (∑ (∑ 𝐶𝑗𝑘(𝑡)

𝐾

𝑘=1

𝛽𝑗𝑘 − 𝑟𝑗(𝑡)𝛽𝑗𝑘+1)

𝑝

𝑗=1

))

𝑛

𝑖=1

+ 𝜆 ∑[𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗
2]

𝑝

𝑗=1

] 

 

 

 

 

(20) 

 

Step 6: In this study, we will use the simulation and a real-world example to compare the 

performances of the prediction methods proposed with those of traditional 

methods, namely, QR-R, QR-L, and QR-ENET. 
 

 To compare the accuracy performances between the proposed methods and the existing 

methods, namely, R-QR, L-QR, and ENET-QR. Evaluation metrics are used as follows: 

the residual sum of squares (RSS), the prediction error (PE) the mean squared error (MSE), 

and the mean absolute error (MAE).To compare accuracy performances between the 

proposed methods with the existing methods, namely, R-QR, L-QR and ENET-QR. 

Evaluation metrics are used following: the residual sum of squares (RSS), prediction error 

(PE), the mean squared error (MSE) and Mean Absolute Error (MAE). 
 

𝑃𝐸 =
1

𝑛
∑ 𝜌𝜏(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

 (21) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (22) 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (23) 
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Figure 1: Flowchart of the Proposed 

 

4. NUMERICAL EXPERIMENTS 
 

 In this section, we evaluate the finite sample property of our proposed methods and 

compare it with other methods through simulation studies and empirical analysis of a  

real-world example to demonstrate that the performance of our proposal methods represent 

an effective variable-selection procedure and enhances prediction accuracy. 

 

4.1 Simulation Study 

 In this section, we perform a simulation study to investigate the finite-sample 

performance of penalized quantile regression under the Ridge, the LASSO, and the ENET 

penalty functions. The predictor variables (𝑥1, 𝑥2, 𝑥3) and response variables (𝑦(𝑡) were 

Time Series Data  

EMD 

∑ 𝒚(𝒕) 

Evaluation of  

the Performance 

Model 

𝒙𝟏(𝒕) 𝒙𝟐(𝒕) 𝒙𝒑(𝒕) 

  𝑰𝑴𝑭𝒑𝟏, 𝑰𝑴𝑭𝒑𝟐, 

  … 𝑰𝑴𝑭𝒑𝑲, 𝑹𝑬𝑺𝒑 
  𝑰𝑴𝑭𝟐𝟏, 𝑰𝑴𝑭𝟐𝟐, 
 … 𝑰𝑴𝑭𝟐𝑲, 𝑹𝑬𝑺𝟐 

  𝑰𝑴𝑭𝟏𝟏, 𝑰𝑴𝑭𝟏𝟐, 

  … 𝑰𝑴𝑭𝟏𝑲, 𝑹𝑬𝑺𝟏 

Penalized Quantile Regression 

Elastic Net Ridge  Lasso 

………… 

Comparison the proposed methods (EMD-QR-R, 

EMD-QR-L and EMD-QR-ENET) with existing 

methods (QR-R, QR-L and QR-ENET) 
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simulated from actual signals selected from the work of (Al-Jawarneh et al., 2021; Qin  

et al., 2016). 
 

 Here, two different scenarios are considered where we consider that types of random 

errors are 𝑁~(0,1) and 𝑋2~(2), for 𝜀. Throughout the simulations we generated, we 

assume the sample size is 250, and the time-domain between (0 ≤ 𝑡 ≤ 9), We repeated 

each experiment 500 times at three different quantiles, namely 𝜏 = (0.25, 0.5, 0.75).  
 

𝑦(𝑡) = sin(𝜋𝑡) + sin(2𝜋𝑡) + cos(6𝜋𝑡) + cos(13𝜋𝑡) + 𝜀 
 

𝑥1(𝑡) = sin(2𝜋𝑡) + cos(𝜋𝑡) + sin(5𝜋𝑡) + sin (9𝜋𝑡) + 𝜀 
 

𝑥2(𝑡) = 0.2𝑡 + sin(𝜋𝑡) + cos(6𝜋𝑡) + cos (9𝜋𝑡) + 𝜀 
 

𝑥3(𝑡) = sin(𝜋𝑡) + sin(8𝜋𝑡) + cos(7𝜋𝑡) + cos(13𝜋𝑡) + 𝜀 

 

4.2 Results and Discussion 
 We compared the suggested modeling process's prediction accuracy to three traditional 

approaches utilized in the literature: (1) ridge penalized quantile regression between  

the response variable 𝑦, and all the decomposed components of predictor variables (𝑥𝑗); 

(2) lasso penalized quantile regression between the response variable y and all the 

decomposed components of predictor variables (𝑥𝑗); (3) elastic net penalized quantile 

regression between the response variable y and all the decomposed components of 

predictor variables (𝑥𝑗). 

 

Table 1 

Variance Inflation Factors 

𝑪𝟏,𝟏 𝑪𝟏,𝟐 𝑪𝟏,𝟑 𝑪𝟏,𝟒 𝑪𝟏,𝟓 𝑪𝟏,𝟔 𝑪𝟏,𝟕 𝑹𝟏 𝑪𝟐,𝟏 𝑪𝟐,𝟐 𝑪𝟐,𝟑 𝑪𝟐,𝟒 𝑪𝟐,𝟓 

1.049 1.064 1.082 1.162 2.099 2.234 63.610 14.844 1.064 1.086 1.159 1.463 3.427 

𝑪𝟐,𝟔 𝑪𝟐,𝟕 𝑪𝟐,𝟖 𝑹𝟐 𝑪𝟑,𝟏 𝑪𝟑,𝟐 𝑪𝟑,𝟑 𝑪𝟑,𝟒 𝑪𝟑,𝟓 𝑪𝟑,𝟔 𝑪𝟑,𝟕 𝑪𝟑,𝟖 𝑹𝟑 

14.833 55.882 103.026 50.144 1.088 1.099 1.039 1.295 2.004 3.677 44.889 178.595 23.972 
 

 Table 1 shows the multicollinearity test among the number of decomposition 

components extracted by the EMD algorithm. We decomposed 𝑥1(𝑡) and 𝑥3(𝑡) to five IMF 

components and a residual component, 𝑥2(𝑡) to seven IMF components and a residual 

component, Table 1 presents the VIF values for the decomposition components. The result 

indicates that some of these values are greater than 10, indicating a high multicollinearity 

problem exists between the decomposition components. 
 

 Table 2 shows the optimal values of the tuning parameter 𝜆 that were chosen using a 

10-fold CV (cross-validation). In addition, Tables 3 and 4 summarize the simulation results 

of the prediction performance relying on lambda values that were chosen in Table 2 in 

terms of Bias, MASE, MAE, and MSE for the cases of 𝜀 ∼ 𝑁(0,1) and 𝜀 ∼ 𝜒2(2), 

respectively, to compare the results of the QR-R, QR-L, and QR-ENET models based on 

EMD with the QR-R, QR-L, and QR-ENET models without EMD with the quantile indices 

𝜏 = 0.25, 0.50 and 0.75. The superiority of the proposed methods is also obvious in the 

prediction accuracy at different quantiles, especially when 𝜃 = 0.5 in terms of the averages 

of Bias, MASE, MAE, and MSE. 
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Table 2 

Optimal Values of λ in Proposed Methods via 10-fold Cross Validation 

Quantile Method 
𝜺~𝑵(𝟎, 𝟏) 𝜺~𝑿𝟐(𝟐) 

𝝀𝒎𝒊𝒏 𝝀𝟏𝒔𝒆 𝝀𝒎𝒊𝒏 𝝀𝟏𝒔𝒆 

0.25 

EMD-QR-R 0.09226464 0.35545490 0.14819489 0.47563898 

EMD-QR-L 0.01626342 0.04393155 0.02121867 0.05878540 

EMD-QR-ENET 0.03769530 0.09440782 0.04687355 0.05053135 

0.50 

EMD-QR-R 0.12347958 0.38727731 0.14174847 0.49723369 

EMD-QR-L 0.01779694 0.05085077 0.02922003 0.05282554 

EMD-QR-ENET 0.06001606 0.04571545 0.04699365 0.26338103 

0.75 

EMD-QR-R 0.10659933 0.20269875 0.14094516 0.86923302 

EMD-QR-L 0.01941768 0.04319107 0.01188580 0.02924384 

EMD-QR-ENET 0.02572568 0.03944290 0.03715861 0.02063793 
 

 Table 3 shows the results of the simulation experiment for the case of 𝜀 ∼ 𝑁(0,1) We 
find that the EMD-QR-R, EMD-QR-L and EMD-QR-ENET are superior to the other 
models in terms of estimation, and predictive ability. In addition, the difference between  

𝜏 = 0.25, 𝜏 = 0.5, and 𝜏 = 0.75 is relatively large. Such as, the results of the Bias values 
show that the smallest value is achieved using the EMD-QR-ENET method, the value 

changes from 0.7248 when 𝜏 = 0.25 to 0.5067 by decreasing 30.09%, then changes to 

0.7682 by increasing 5.65% when 𝜏 = 0.50. Furthermore, in terms of the averages of  
PE and MAE, the smallest value of PE is 0.0061751 achieved by EMD-QR-ENET when 

𝜏 = 0.5, while the biggest value is 0.4779517 achieved by QR-R with 𝜏 = 0.75. For MAE 

the smallest value is 0.5654065 achieved by EMD-QR-ENET with 𝜏 = 0.5, while the 

biggest value is achieved by QR-R with 𝜏 = 0.25. 
 

Table 3 

Simulation Results for the Case of 𝜺~𝑵(𝟎, 𝟏) with different τ 

τ Method MSE Bias MAE PE Optimal λ 

0.25 

QR-R 1.4940271 0.50001 1.0004058 0.1767725 0.35674556 

QR-L 1.4937402 0.48301 1.0000753 0.1743084 0.05255001 

QR-ENET 1.4930349 0.48509 0.9999021 0.1743408 0.10947919 

EMD-QR-R 0.7431496 0.21558 0.6774484 0.1154234 0.10423921 

EMD-QR-L 0.7131301 0.20349 0.6665723 0.1121351 0.01672008 

EMD-QR-ENET 0.7152909 0.20519 0.6669050 0.1131898 0.03624545 

0.50 

QR-R 0.9784170 0.00489 0.7970440 0.0298182 0.343735237 

QR-L 0.9798689 0.00509 0.7978155 0.0303973 0.005068826 

QR-ENET 0.9795799 0.00506 0.7975363 0.0303197 0.010560053 

EMD-QR-R 0.5242612 0.00151 0.5787048 0.0071754 0.128049813 

EMD-QR-L 0.5008937 0.00154 0.5658945 0.0063031 0.023141965 

EMD-QR-ENET 0.5001667 0.00153 0.5654065 0.0061751 0.050104191 

0.75 

QR-R 1.3741551 0.4040219 0.9299064 0.4779517 0.65621619 

QR-L 1.3636166 0.3931201 0.9279268 0.4719328 0.02796614 

QR-ENET 1.3640482 0.3929475 0.9280903 0.4721575 0.04714104 

EMD-QR-R 0.7584165 0.2110771 0.7044213 0.3443763 0.10674075 

EMD-QR-L 0.7053932 0.1896935 0.6810476 0.3243694 0.01627920 

EMD-QR-ENET 0.7148415 0.1955307 0.6850912 0.3305906 0.03892253 



Penalized Quantile Regression and Empirical Mode Decomposition… 212 

 

 Table 4 presents the simulation results for the proposed methods and the other 

considered methods for the data generated from 𝜀~𝑋2(2). It can be observed that the 

performance of the proposed methods achieves the smallest MSAE, MAE, and PR 

compared with the QR-R, QR-L, and QR-ENET methods, which shows that the proposed 

model has the ability to achieve more prediction accuracy. From the results in Figures 4 

and 5, it is evident that the reported test errors (MSE and MAE) of the proposed methods 

are the lowest among the considered regularized methods in almost both simulation 

scenarios. 
 

Table 4 

Simulation Results for the Case of 𝜺~𝑿𝟐(𝟐) with Different 𝝉 

τ Method MSE Bias MAE PE Optimal λ 

0.25 

QR-R 1.504268 0.508294 1.0106202 0.1784608 0.329169 

QR-L 1.496153 0.493564 1.0085365 0.1760503 0.042175 

QR-ENET 1.494747 0.493854 1.0080611 0.1760542 0.085246 

EMD-QR-R 1.014441 0.288913 0.8098327 0.1342447 0.153227 

EMD-QR-L 1.006221 0.282986 0.8049735 0.1332406 0.020666 

EMD-QR-ENET 1.004010 0.28633 0.8049404 0.1340565 0.056242 

0.50 

QR-R 0.9910238 0.00571 0.7996400 -0.03482165 0.385199 

QR-L 0.9916905 0.005454 0.7997428 -0.03356119 0.039013 

QR-ENET 0.9914121 0.005596 0.7997226 -0.03390704 0.097459 

EMD-QR-R 0.7266575 0.002003 0.6889818 -0.00820746 0.190364 

EMD-QR-L 0.7053599 0.001654 0.6787889 -0.00459781 0.024484 

EMD-QR-ENET 0.7049594 0.001850 0.6784066 -0.00526482 0.064675 

0.75 

QR-R 1.3778080 0.398878 0.9312214 -0.4744644 0.518371 

QR-L 1.3702163 0.389343 0.9297602 -0.4682408 0.117851 

QR-ENET 1.3701583 0.389523 0.9295945 -0.4678270 0.245523 

EMD-QR-R 1.0166191 0.289679 0.8110795 -0.4024530 0.152722 

EMD-QR-L 0.9909606 0.278224 0.8029164 -0.3942394 0.017734 

EMD-QR-ENET 0.9938541 0.280586 0.8030988 -0.3960574 0.054957 

 

 From Figures 2 and 3, we see that the EMD-QR-L and EMD-QR-ENET methods  

can select the true significant decomposition components and parameter estimation 

simultaneously in the real problem, except for the EMD-QR-R method that selects  

all decomposition components in the final model at different quantiles. That is,  

the EMD-QR-R method cannot do decomposition component selection. The result  

from Figure 2 indicates that the EMD-QR-L and EMD-QR-ENET methods select  

approximately 16 and 18 non-zero coefficients, respectively, at all three levels of quantile 

(i.e. 0.25, 0.50, and 0.75). To sum up, the results of this study reveal that the proposed 

methods achieve better performance than traditional methods. The proposed methods have 

the lowest test error as compared to all competitors at all levels of quantiles because of 

their robust nature. 
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Figure 2: The Number of Non-Zero Coefficient with 𝜺~𝑵(𝟎, 𝟏) with different 𝝉 

 

 

  

 
 

Figure 3: The Number of Non-Zero Coefficient with 𝜺~𝑿𝟐(𝟐) with different τ 
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Figure 4: Boxplots for MSE and MAE for the case of 𝜺~𝑵(𝟎, 𝟏) with different τ 
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Figure 5. Boxplots for MSE and MAE for the case of 𝜺~𝑿𝟐(𝟐) with different τ 
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5. APPLICATION 
 

 In this section, we present an empirical analysis of a real-world example based on the 
four countries' daily exchange rates against the US dollar (USD) to evaluate the 
performance of the proposed methods. 
 

5.1 A Real Data Example  
 We use the data set used in (Al-Jawarneh et al., 2021) to illustrate the application of the 
proposed methods, the data set contains the close daily exchange rates of four countries 
against the USD. Those selected countries were Taiwan (TAW/USD) as the response 
variable, Malaysia (MYR/USD), Japan (JAP/USD), and China (CHN/USD) as predictor 
variables from Mar. 27, 2015 to Oct. 25, 2019 and consisted of 1,196 observations. These 
data can also be obtained from the Wall Street Journal database https://www.wsj.com.  
 

5.2 Results and Discussion for Daily Exchange Rates 
 Figure 6 shows the plot of the daily close exchange rates for the predictor variables 

MALAYSIA (𝑥1(𝑡)), JAPAN (𝑥2(𝑡)), and CHINA (𝑥3(𝑡)). When the TAIWAN is the 

response variable 𝑦(𝑡), the signals show both long-term trends and short-term fluctuations 
in overtime, as can be seen in (Figure 6) which shows that the signals are nonstationary 
and nonlinear. Therefore, it is better to apply penalized quantile regression based on  
EMD methods, namely, EMD-QR-R, EMD-QR-L and EMD-QR-ENET compared with 
penalized quantile regression methods. To assess the prediction ability of the selected 
model and parameters estimation, 70% of the observations are used as training data and 
the remaining 30% as test data. Table 5 presents the descriptive statistics of the variables 
in the model to characterize the nature of the variables considered. The following is an 
analytic presentation of these measurements for each model variable. 
 

  

 
Figure 6: The Daily Close Exchange Rates are Plotted Over Time 

https://www.wsj.com/
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Table 5 

Descriptive Statistics 

Variables Mean Standard Deviation Skewness Kurtosis 

TAW/USD (y) 29.92712 1.0213564 0.3347141 2.549761 

MYR/USD (x1) 4.170099 0.1939055 -0.5551624 3.439429 

JAP/USD(x2) 109.4827 5.4782274 0.4567056 2.908487 

CHN/USD (x3) 6.742283 0.2476597 -0.1838290 2.086378 
 

 Figure 7 shows the decomposition components via the sifting for the EMD algorithm 

of the original predictors. The MALAYSIA 𝑥1(𝑡) is decomposed into eight IMF 

components and a residual component, JAPAN 𝑥2(𝑡) is decomposed into eight MF 

components and a residual component, while CHINA 𝑥3(𝑡) is decomposed into eight IMF 

components and a residual component. 
 

   
   

Figure 7: EMD Decomposition of the Daily Close Exchange Rates 
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 Table 6 illustrates the Variance Inflation Factor (VIF), which measures the inflation of 

parameter estimates for all the decomposition components of the model's MYR, JAP, and 

CHN variables, which will be used to identify the factors causing the problem of 

multicollinearity. These indicators were calculated for the regression parameters of all the 

model's decomposition components. The multicollinearity of the decomposition 

components was calculated as in Table 6. 
 

 Table 6 shows that the VIF values for some of the decomposition components  

(𝐶1,8, 𝐶2,5, 𝐶2,6, 𝐶2,8, 𝑅2, 𝐶3,8 and 𝑅3) are greater than 10, indicating a high multicollinearity 

problem exists between the decomposition components of the MYR, JAP and CHN 

variables. 

 

Table 6 

Variance Inflation Factors (VIF) 

𝑪𝟏,𝟏 𝑪𝟏,𝟐 𝑪𝟏,𝟑 𝑪𝟏,𝟒 𝑪𝟏,𝟓 𝑪𝟏,𝟔 𝑪𝟏,𝟕 𝑪𝟏,𝟖 𝑹𝟏 𝑪𝟐,𝟏 𝑪𝟐,𝟐 𝑪𝟐,𝟑 𝑪𝟐,𝟒 𝑪𝟐,𝟓 

1.05 1.04 1.12 1.10 2.19 3.05 4.89 14.95 4.76 1.27 1.24 1.12 1.08 13.36 

𝑪𝟐,𝟔 𝑪𝟐,𝟕 𝑪𝟐,𝟖 𝑹𝟐 𝑪𝟑,𝟏 𝑪𝟑,𝟐 𝑪𝟑,𝟑 𝑪𝟑,𝟒 𝑪𝟑,𝟓 𝑪𝟑,𝟔 𝑪𝟑,𝟕 𝑪𝟑,𝟖 𝑹𝟑 

15.86 5.52 28.65 20.58 1.67 1.36 1.34 1.19 1.38 2.05 8.11 20.89 90.56 

 

Table 7 

Optimal Values of λ in Proposed Methods via 10-Fold Cross Validation 

 

 Table 7 presents the optimal values of the tuning parameter λ achieved via 10-fold 

cross-validation in proposed methods. Table 8 reports the comparison results of three 

proposed methods with traditional methods. Performance is evaluated via MSE, MAE, and 

PE. A lower Bias, MSE, MAE, and PE indicates a better performance. Due to the limited 

space, we only report the result of three levels of quantiles, i.e. 𝜏 = (0.25, 0.5, 0.75). 
 

 By comparison, we can see that the proposed methods achieve the smallest value of 

MSE, MAE, and PE among all of the other methods. For example, the smallest value of 

MSE of the QR-R, QR-L, QR-ENET, EMD-QR-R, EMD-QR-L and EMD-QR-ENET 

respectively are 1.0567778, 0.9185961, 1.0031082, 0.6618645, 0.5557124 and 0.4897215 

with 𝜏 = 0.5, while the biggest value are 2.1089951, 2.1664858, 2.1515059, 0.8186193, 

0.5945223 and 0.5456317 with 𝜏 = 0.25. The result illustrates the significant superiority 

of the proposed methods in prediction accuracy. We also provided a bar chart (see Figure 

8) that shows the MSE results for each method in our study. The chart indicates that 

penalized quantile regression with EMD achieves remarkably less prediction error than 

penalized quantile regression without EMD.  

τ 
EMD-QR-R EMD-QR-L EMD-QR-ENET 

𝝀𝒎𝒊𝒏 𝝀𝟏𝒔𝒆 𝝀𝒎𝒊𝒏 𝝀𝟏𝒔𝒆 𝝀𝒎𝒊𝒏 𝝀𝟏𝒔𝒆 

0.25 0.168877 0.179413 0.016888 0.021513 0.038381 0.042029 

0.50 0.179993 0.191223 0.017999 0.020939 0.040908 0.043459 

0.75 0.147613 0.166607 0.014761 0.016164 0.033549 0.040228 
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Figure 8: MASE Results of the Methods for Real Data with/without using EMD 

 

Table 8 

Performance Comparison of Methods using the Daily Close Exchange Rates 

τ Method MSE Bias MAE PE 

0.25 

QR-R 2.1089951 0.8062739 1.0599337 0.20156848 

QR-L 2.1664858 0.8025703 1.0733641 0.20064259 

QR-ENET 2.1515059 0.8031484 1.0698911 0.20065749 

EMD-QR-R 0.8186193 0.3855621 0.6930179 0.09639053 

EMD-QR-L 0.5945223 0.1379728 0.6223372 0.03449320 

EMD-QR-ENET 0.5456317 0.1456226 0.5823144 0.03640565 

0.50 

QR-R 1.0567778 0.0758499 0.7794459 0.03792494 

QR-L 0.9185961 -0.0154339 0.7180875 0.01258439 

QR-ENET 1.0031082 0.0562682 0.7550317 0.01359601 

EMD-QR-R 0.6618645 -0.0583486 0.5939205 0.02917431 

EMD-QR-L 0.5557124 0.005509380 0.5943449 0.00275469 

EMD-QR-ENET 0.4897215 0.006413746 0.5375484 0.0032068 

0.75 

QR-R 1.6858104 -0.7991616 1.1211380 0.5993712 

QR-L 1.3983563 -0.7248874 1.0182253 0.5436656 

QR-ENET 1.4338077 -0.7367931 1.0310333 0.5525948 

EMD-QR-R 0.7532370 -0.2651068 0.6555788 0.1988301 

EMD-QR-L 0.6427820 -0.1359814 0.6336818 0.1019861 

EMD-QR-ENET 0.4817885 -0.1546586 0.5412115 0.1159940 
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 The estimated coefficients of the decomposition components of the selected model 
from EMD-QR-R, EMD-QR-L and EMD-QR-ENET are presented in Table 9. We find 
that all proposed methods can reduce the number of decomposition components at all three 
levels of quantile (i.e. 0.25, 0.50 and 0.75), except for EMD-QR-R method. This method 
does not have the ability to do select the decomposition components, and thus, all the 
decomposition components are entered into the final model. While the numbers of non-
zero coefficients of EMD-QR-L and EMD-QR-ENET methods are different at each level 
of quantiles, such as, the EMD-QR-L method selects nineteen decomposition components 

when 𝜏 = 0.5, whereas the EMD-QR-L method selects eighteen decomposition 
components at the same level. Thus, the EMD-QR-L and EMD-QR-ENET methods are 
more accurate in selecting non-zero coefficients than other regression methods. 
 

Table 9 

Coefficient Estimation for the Decomposition Components for Proposed Methods 

Variables 
EMD-QR-R EMD-QR-L EMD-QR-ENET 

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 

𝑪𝟏,𝟏 0.0179 0.0220 0.0153 0.0276 0.0201 0.0183 0.0256 0.0196 0.0151 

𝑪𝟏,𝟐 0.0170 0.0271 0.0253 0.0331 0.0233 0.0301 0.0318 0.0245 0.0282 

𝑪𝟏,𝟑 0.0074 0.0121 0.0411 0.0366 0.0373 0.0435 0.0330 0.0412 0.0405 

𝑪𝟏,𝟒 -0.0234 0.0295 0.0417 0.0116 0.0126 0.0209 0.0128 0.0095 0.0223 

𝑪𝟏,𝟓 0.0401 -0.0027 0.0290 0.1043 0.1092 0.1123 0.0971 0.0967 0.0709 

𝑪𝟏,𝟔 0.0572 0.0205 0.0054 0.1756 0.1581 0.1365 0.1752 0.1505 0.1019 

𝑪𝟏,𝟕 -0.0164 0.0285 0.0360 0 0.0315 0.1635 0 0.0209 0.0632 

𝑪𝟏,𝟖 0.2151 0.2787 0.2555 0.7424 0.7426 0.7780 0.6800 0.6850 0.6369 

𝑹𝟏 -0.0849 -0.1262 -0.1347 0 0 0 0 0 0 

𝑪𝟐,𝟏 0.0065 0.0107 0.0036 0.0006 0 0 0.0024 0 0 

𝑪𝟐,𝟐 -0.0033 -0.0038 0.0031 0.0002 0 0.0060 0 0 0.0039 

𝑪𝟐,𝟑 0.0157 0.0087 -0.0109 0 0 0 0.0015 0 -0.0034 

𝑪𝟐,𝟒 0.0361 0.0244 0.0147 0.0017 0.0087 0.0244 0.0060 0.0111 0.0281 

𝑪𝟐,𝟓 0.1024 0.0539 0.0053 0.0728 0.0602 0.0100 0.0766 0.0500 0.0134 

𝑪𝟐,𝟔 0.0300 0.0379 0.0625 -0.0097 -0.0249 0.0148 -0.0167 -0.0321 0.0077 

𝑪𝟐,𝟕 -0.0089 -0.0643 -0.0550 -0.1974 -0.1823 -0.1080 -0.2035 -0.1977 -0.1897 

𝑪𝟐,𝟖 -0.0248 0.0201 0.0146 0 0 0 0 0 0 

𝑹𝟐 0.1652 0.2359 0.2344 0.6469 0.6440 0.6438 0.4348 0.4842 0.4625 

𝑪𝟑,𝟏 0.0054 0.0066 0.0094 0.0005 0.0036 0.0061 0 0.0046 0.0060 

𝑪𝟑,𝟐 0.0069 0.0079 0.0022 0.0041 0 0 0 0 0 

𝑪𝟑,𝟑 -0.0070 0.0006 0.0225 -0.0040 0 0.0072 -0.0022 0 0.0096 

𝑪𝟑,𝟒 -0.0078 0.0436 0.0290 0.0262 0.0239 0.0209 0.0230 0.0161 0.0332 

𝑪𝟑,𝟓 0.0129 0.0288 0.0751 0.0143 0.0363 0.0377 0.0131 0.0456 0.0629 

𝑪𝟑,𝟔 0.1330 0.1834 0.2317 0.2297 0.2060 0.1028 0.2242 0.2096 0.1753 

𝑪𝟑,𝟕 0.0544 0.0696 0.0437 -0.0742 -0.0441 -0.1168 -0.0962 -0.0429 -0.0084 

𝑪𝟑,𝟖 0.0876 0.0989 0.0875 0 0 0 0 0 0 

𝑹𝟑 -0.1914 -0.2601 -0.2546 0 0 0 -0.2249 -0.1697 -0.1347 
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6. CONCLUSION 
 

 In this paper, we propose a novel penalized quantile regression based on EMD for 

nonstationary and nonlinear predictor variables. It performs variable selection and robust 

parameter estimation simultaneously. In the proposed models, the selection of the 

decomposition components via the EMD method has been improved, which greatly affects 

the response variable. This paper aims to enhance the prediction accuracy of the model 

selection by selecting significant decomposition components in the final model, suggesting 

robust parameter estimation, and dealing with high multicollinearity among the 

decomposition components. 
 

 The results from numerical simulations and real applications for the daily close 

exchange rates illustrate that the proposed methods perform better than other quantile 

regression models at different quantiles. Penalized quantile regression methods with EMD 

perform better than those without EMD counterparts. The results also showed the superior 

performance of the proposed methods in estimation and variable selection when 

multicollinearity is present or absent and building a final model free from multicollinearity 

and are also resistant to outliers/or heavy-tailed distributions. Thus, overall, penalized 

quantile regression based on EMD has higher accuracy and is superior to penalized quantile 

regression methods. 
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