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ABSTRACT 
 

 In this paper, the transformed sine Dagum distribution is proposed using the Dagum 

distribution as a baseline distribution in the transformed sin-G family of distributions. 

The purpose of this paper is to propose and explore a modified version of the Dagum 

distribution, based on the transformed sin-G family of distributions. The density of the 

transformed sine Dagum distribution shows that it can adequately model datasets that are 

positively skewed, approximately symmetric and decreasing. The hazard rate plot shows 

that the proposed distribution can adequately model both monotonic and non-monotonic 

hazard rate datasets. Statistical properties such quantile function, moments, inverse 

moments, moments generating functions, mean and median deviation and order statistics 

are derived. The plots of the skewness and kurtosis show that the skewness is always 

positive and the kurtosis is increasing. Maximum likelihood estimation is used to 

estimate the parameters of the transformed sine Dagum distribution. Monte Carlo 

simulations are performed to ascertain the behavior of the estimators. The results show 

that the estimators are consistent. The proposed distribution is applied to two real life 

datasets. The results show that the proposed distribution provide a reasonable parametric 

fit to the datasets compared with the other competing distribution. 

 

KEYWORDS 
 

 Dagum distribution, transformed sin-G, monotonic hazard rate, non-monotonic  

hazard rate. 

 

1. INTRODUCTION 
 

 Probability distributions play a major role in various statistical analysis. Advancement 

in probability distribution theory in developing new families of distributions have given 

rise to the sin-G family of distributions which is a trigonometric family of continuous 

distributions. Trigonometric families are simple alternatives of deriving models without 

introducing new parameter(s). The unique features of the sin-G family inspired other 

trigonometric extension such as Cos-G family by Souza et al. (2019), CS-G family by 

Chesneau et al. (2019), NSin-G family by Mahmood et al. (2019) most of which are 

based on the sin-G family with no additional parameter(s) or transformation. The 

transformed sin-G (TS-G) family is an extension of the sin-G family proposed by Jamal 
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et al. (2021). Its cumulative distribution function (CDF) is derived using a simple one 

parameter polynomial trigonometric transformation. The TS-G family has many desirable 

characteristics, including being analytically straightforward, the non-transformed case, 

having continuous CDF properties so that values are within the unit interval, 

differentiable, and increasing, and having the ability to be either convex, concave, or 

none of the above for different parameter values. The polynomial trigonometric 

functions, flexibility, kurtosis, skewness, adaptable distribution tails, and a variety of 

hazard rate shapes make the TS-G family different from other distributions and provide it 

with a wide range of fitting abilities. The Transformed sin-G family of distributions by 

Jamal et al. (2021) has CDF given by 
 

𝐹(𝑥; 𝜆, 𝚽) = sin [
𝜋

2
𝐺(𝑥; 𝜱)] − 𝜆

𝜋

2
𝐺(𝑥; 𝜱) cos [

𝜋

2
𝐺(𝑥; 𝜱)] , 𝑥 ∈ ℝ, (1) 

 

where 𝜆 ∈ [0,1], 𝐺(𝑥; 𝜱) is the CDF of continuous distribution and 𝜱 is a 𝑘 × 1 vector 

of parameter(s). 
 

 The Dagum distribution was introduced by Dagum (Dagum, 1977). It is a continuous 

probability distribution defined over positive real numbers. This distribution arose from 

several variants of a new model on the size distribution of personal income and is  

mostly applied in economics. The Dagum distribution can be three-parameter 

specification (Type I Dagum distribution) or a four-parameter specification (Type II 

Dagum distribution). It was developed with the aim of getting a distribution that 

accommodates the heavy tails present in empirical income and wealth data as well as 

permitting interior mode. An important feature of the Dagum distribution is that its 

hazard rate function can be monotonically decreasing, bathtub and upside-down bathtub 

shaped (Domma, 2002). Although the Pareto distribution accommodates heavy tails, it 

does not permit interior mode. Also, the log-normal permits interior mode, but does not 

accommodate heavy tails. The Dagum distribution have Pareto, Fisk, log-logistic and 

Singh-Maddala distributions as special cases. 
 

 In recent time, the Dagum distribution has been studied from a reliability point of 

view and used to analyze survival data (Domma et al., 2011; Domma et al., 2013). 

Sakthivel and Dhivakar (2021) proposed and studied the transmuted sine-Dagum 

distribution using the transmuted sine-G family of distributions. Khadim et al. (2021) 

proposed the log-Dagum Weibull distribution on the basis of the T-X family technique. 

Domma and Condino (2013) proposed the five parameter beta-Dagum distribution. 

Oluyede and Ye (2014) presented the class weighted Dagum and related distributions. 

Also, other generalization of the Dagum distribution include the Log-Dagum distribution 

by Domma (2004), Transmuted Dagum by Elbatal and Aryal (2015), Gamma-Dagum by 

Rodrigues and Silva (2015), and Odd Log-Logistic Dagum by Domma et al. (2018). 
 

 The goal of this paper is to propose and explore a modified version of the Dagum 

distribution base on the TS-G family of distributions. Thus, the proposed distribution is 

known as Transformed sine Dagum distribution (TSDa). This distribution presents 

desirable features and hence is flexible. To the best of my knowledge the Dagum 

distribution has not been modified using the transformed sin-G family of distributions. 

Therefore, this is an attempt in modifying the Dagum distribution via the TS-G family of 

distributions. 
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 The rest of the paper is organized as follows: Section 2 presents the basics of the 

Transformed Sine Dagum distribution. The statistical properties of the distribution are 

presented in Section 3. In Section 4, the parameter estimation of the proposed distribution 

using maximum likelihood estimation is presented. The behaviour of the estimators of the 

parameters of the proposed distribution is ascertained in Section 5 using Monte Carlo 

simulations. In Section 6, the applications of the TSDa distribution are illustrated using 

two real life datasets and the conclusion is presented in Section 7. 

 

2. BASICS ON THE TSDa DISTRIBUTION 
 

 Taking inspiration from Section 1, a modified version of the three-parameter Dagum 

distribution known as Transformed Sine Dagum (TSDa) distribution is proposed.  

Consider the three-parameter Dagum as the baseline distribution with CDF and PDF as 

𝐺(𝑥; 𝛼, 𝛽, 𝛾) = (1 + 𝛼𝑥−𝛾)−𝛽 and 𝑔(𝑥; 𝛼, 𝛽, 𝛾) = 𝛼𝛽𝛾𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1) for 

𝛼, 𝛽, 𝛾 > 0 and 𝑥 > 0 respectively. Substituting the CDF and PDF of the Dagum 

distribution into equation (1), the TSDa distribution is obtained with CDF given by; 
 

𝐹(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] − 𝜆

𝜋

2
 (1 + 𝛼𝑥−𝛾)−𝛽

 

cos [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] , 𝑥 > 0, 𝛼, 𝛽, 𝛾 > 0, 0 ≤ 𝜆 ≤ 1,  (2) 

 

where 𝛽 and 𝛾 are shape parameters and 𝛼 is a scale parameter. 
 

 The related PDF is given by 
 

𝑓(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) =
𝜋𝛼𝛽𝛾

2
𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1) [𝜆

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽  

sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] + (1 − 𝜆) cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]] , 𝑥 > 0. (3) 

 

Lemma 1: The PDF of the TSDa distribution has a mixture representation of the form 
 

𝑓(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = 𝛼𝛽𝛾 ∑ Ψ𝑛(2𝑛 + 1)𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1+2𝑛𝛽),

∞

𝑛=0

 (4) 

 

where Ψ𝑛 = (−1)𝑛 (
𝜋

2
)

2𝑛+1

 (
1−𝜆(2𝑛+1)

(2𝑛+1)!
). 

 

Proof: Using the Taylor series expansion of the sine and cosine functions given by 

sin (𝑥) = ∑
(−1)𝑛

(2𝑛+1)!
𝑥2𝑛+1∞

𝑛=0  and cos (𝑥) = ∑
(−1)𝑛

(2𝑛)!
𝑥2𝑛∞

𝑛=0  respectively, gives 
 

sin [
𝜋

2
𝐺(𝑥; 𝜱)] = ∑

(−1)𝑛 (
𝜋
2

)
2𝑛+1

(2𝑛 + 1)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

 (5) 

and  

cos [
𝜋

2
𝐺(𝑥; 𝜱)] = ∑

(−1)𝑛 (
𝜋
2

)
2𝑛

(2𝑛)!
𝐺(𝑥; 𝜱)2𝑛.

∞

𝑛=0

  (6) 
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 Substituting equations (5) and (6) into equation (1), one will obtain 
 

𝐹(𝑥;  𝜆, 𝜱) = ∑
(−1)𝑛 (

𝜋
2

)
2𝑛+1

(2𝑛 + 1)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

− 𝜆
𝜋

2
𝐺(𝑥; 𝜱) ∑

(−1)𝑛 (
𝜋
2

)
2𝑛

(2𝑛)!
𝐺(𝑥; 𝜱)2𝑛

∞

𝑛=0

 

 

= ∑
(−1)𝑛 (

𝜋
2

)
2𝑛+1

(2𝑛 + 1)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

− 𝜆 ∑
(−1)𝑛 (

𝜋
2

)
2𝑛+1

(2𝑛)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

. 

 

 The fact that 2𝑛! = (2𝑛 + 1)!/2𝑛 + 1, implies that 
 

𝐹(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = ∑
(−1)𝑛 (

𝜋
2

)
2𝑛+1

(2𝑛 + 1)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

− 𝜆 ∑
(−1)𝑛(2𝑛 + 1) (

𝜋
2

)
2𝑛+1

(2𝑛 + 1)!
𝐺(𝑥; 𝜱)2𝑛+1

∞

𝑛=0

. 

 

 Letting Ψ𝑛 = (−1)𝑛 (
𝜋

2
)

2𝑛+1

 (
1−𝜆(2𝑛+1)

(2𝑛+1)!
), implies that  

 

𝐹(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = ∑ Ψ𝑛

∞

𝑛=0

𝐺(𝑥; 𝜱)2𝑛+1. (7) 

 

 Differentiating equation (7), one obtains; 
 

𝑓(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝑔(𝑥; 𝜱)𝐺(𝑥; 𝜱)2𝑛. (8) 

 

 Therefore, the mixture representation of the PDF of the TSDa is obtained by 

substituting the CDF and PDF of the Dagum distribution into equation (8). This is given 

by; 
 

𝑓(𝑥;  𝜆, 𝛼, 𝛽, 𝛾) = 𝛼𝛽𝛾 ∑ Ψ𝑛(2𝑛 + 1)𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1+2𝑛𝛽).

∞

𝑛=0

 (9) 

 

 The hazard rate function is given by 
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ℎ(𝑥; 𝜆, 𝛼, 𝛽, 𝛾) =

𝜋𝛼𝛽𝛾𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1)

                            [
𝜆

𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽 sin [
𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]

+(1 − 𝜆) cos [
𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]
]

2 [
1 − sin [

𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]                            

     −𝜆
𝜋
2

 (1 + 𝛼𝑥−𝛾)−𝛽 cos [
𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]
]

, 𝑥 > 0. 

 (10) 
 

 From equation (2), the following remarks are made: 

 

Remark 1: When 𝛼 = 1, the TSDa distribution becomes Transformed Sine Burr III 

(TSBIII) distribution with CDF given by 
 

𝐹(𝑥;  𝜆, 𝛽, 𝛾) = sin [
𝜋

2
(1 + 𝑥−𝛾)−𝛽] − 𝜆

𝜋

2
 (1 + 𝑥−𝛾)−𝛽 cos [

𝜋

2
(1 + 𝑥−𝛾)−𝛽],  

𝑥 > 0, 𝛽, 𝛾 > 0, 0 ≤ 𝜆 ≤ 1.  
 

Remark 2: When 𝛾 = 1, the TSDa distribution becomes Transformed Sine log-logistic 

(TSLL) distribution with CDF given by 
 

𝐹(𝑥;  𝜆, 𝛼, 𝛽) = sin [
𝜋

2
(1 + 𝛼𝑥)−𝛽] − 𝜆

𝜋

2
 (1 + 𝛼𝑥)−𝛽 cos [

𝜋

2
(1 + 𝛼𝑥)−𝛽], 

 𝑥 > 0, 𝛼, 𝛽, > 0, 0 ≤ 𝜆 ≤ 1.  
 

 Figure 1 displays the density plot of the TSDa distribution. For various parameter 

combinations, it is seen that its density can be decreasing, right skewed and 

approximately symmetric. There is evident of heavy-tailed behavior with various kurtosis 

values. This implies that the TSDa distribution can adequately model data set whose 

density exhibit any of the characteristics mentioned. 

 

 
Figure 1: Plots of the Density of the TSDa Distribution 

 

 As shown in Figure 2, the hazard rate function of the TSDa distribution can be 

increasing, decreasing, bathtub, upside-down-bathtub, modified upside-down-bathtub 

among others. This implies the TSDa distribution can adequately model both monotonic 

and non-monotonic failure rate data. 
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Figure 2: Plots of the Hazard Rate Function of the TSDa Distribution 

 

3. STATISTICAL PROPERTIES 
 

 In this section, the statistical properties of the TSDa distribution are derived. 

 

3.1 Quantile Function 

 Quantile functions are vital in describing the distribution of a random variable. It 

helps in generating random samples which are useful in simulations. It can also be used 

to compute measures of shape such as skewness and kurtosis. 
 

 The quantile function of the TSDa distribution for 𝑢 ∈ (0, 1) is given by 
 

sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] − 𝜆

𝜋

2
 (1 + 𝛼𝑥−𝛾)−𝛽 cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] − 𝑢 = 0. (11) 

 

 The first quartile, the median, and the upper quartile are obtained by substituting  

𝑢 = 0.25, 0.5, and 0.75, respectively into equation (11). 

 

3.2 Moments 

 The moments of a distribution are important in estimating measures of variation like 

the variance, standard deviation, coefficient of variation, mean deviation, median 

deviation and measures of shapes such as kurtosis, skewness amongst others. 

 

Proposition 1: The 𝑚𝑡ℎ non-central moment of the TSDa distribution is given by 
 

𝜇𝑚
′ = 𝛼𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 (1 +
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝛾 > 𝑚. (12) 

 

Proof: By definition, the 𝑚𝑡ℎ non-central moment is given by 
 

𝜇𝑚
′ = ∫ 𝑥𝑚

∞

0

𝑓(𝑥)𝑑𝑥. 

 

 This implies that, 
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𝜇𝑚
′ = 𝛼𝛽𝛾 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1) ∫ 𝑥𝑚
∞

0

𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1+2𝑛𝛽)𝑑𝑥. 

 

 Let 𝑦 = (1 + 𝛼𝑥−𝛾)−1, then if 𝑥 → 0, 𝑦 → 0 and if 𝑥 → ∞, 𝑦 → 1. Also,  

𝑑𝑥 =
𝑑𝑦

𝛼𝛾(1+𝛼𝑥−𝛾)−2𝑥−(𝛾+1) and 𝑥 = 𝛼
1

𝛾𝑦
1

𝛾(1 − 𝑦)−1/𝛾. 
 

 After some algebra, manipulations, and making use of the beta function;  

𝐵(𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 − 𝑦)𝑏−11

0
𝑑𝑦, one obtains 

 

𝜇𝑚
′ = 𝛼𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 (1 +
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝛾 > 𝑚.  

 

Remark 3: By substituting 𝑚 = 1 into equation (12), one obtains the mean of the TSDa 

distribution given by 
 

𝜇1
′ = 𝛼1/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 (1 +
1

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

1

𝛾
) , 𝛾 > 1. (13) 

 

 The values for the first four moments, standard deviation (SD), coefficient of  

variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK) of  

the TSDa distribution for selected values of the parameters are shown in Table 1.  

The values of the first four moments are obtained by using numerical integration. The 

values of SD, CV, CS and CK are computed using the equations; 𝑆𝐷 = √𝜇2
′ − (𝜇1

′ )2,  

𝐶𝑉 = √𝜇2
′ − (𝜇1

′ )2/𝜇1
′ , 𝐶𝑆 = 𝜇3

′ − 3𝜇1
′ 𝜇2

′ + 2(𝜇1
′ )3/[𝜇2

′ − (𝜇1
′ )2]3/2 , and 𝐶𝐾 = 𝜇4

′ −

4𝜇1
′ 𝜇3

′ + 6(𝜇1
′ )2𝜇2

′ − 3(𝜇1
′ )4/[𝜇2

′ − (𝜇1
′ )2]2  respectively. 

 

Table 1 

First Four Moments, SD, CS, CK and CV of the TSDa Distribution  

for Some Parameter Values 

(𝜶, 𝜷, 𝜸, 𝝀) 𝝁𝟏
′  𝝁𝟐

′  𝝁𝟑
′  𝝁𝟒

′  SD CS CK CV 

(0.1,2.3,4.5,0.5) 0.867 0.871 0.111 2.655 0.345 3.627 72.726 0.398 

(1.2,0.1,5.1,0.1) 0.251 0.146 0.128 0.172 0.288 21.771 6.571 1.474 

(1.4,0.1,5.1,0.82) 0.606 0.558 0.683 1.230 0.437 1.362 10.973 0.721 

(2.5,0.2,6.4,0.3) 0.663 0.593 0.646 0.852 0.392 2.249 5.231 0.591 

(1.3,0.2,7.2,0.9) 0.877 0.867 0.951 1.167 0.313 6.789 5.974 0.361 

 

 Figures 3 and 4 show the mean, variance, skewness and kurtosis plots of the TSDa 

distribution for 𝛽 = 0.13 , 𝜆 = 0.25 and a range of values for α and γ respectively. From 

the plots, the mean and variance are increasing. It can also be seen that the skewness is 

positive, an indication that the TSDa is right skewed and the kurtosis is increasing; 

meaning TSDa distribution is leptokurtic. 
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Figure 3: Mean (a) and Variance (b) Plots of the TSDa Distribution 

 

 
Figure 4: Skewness (a) and Kurtosis (b) Plots of the TSDa Distribution 

 

3.3 Incomplete Moment 

 The incomplete moment of a distribution is vital in estimating the mean deviation, 

median deviation, and measures of inequalities like Bonferroni and Lorenz curves. 

 

Proposition 2: The 𝑚𝑡ℎ incomplete moment of the TSDa distribution is given by 
 

𝑀𝑚(𝑥) = 𝛼𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 ((1 + 𝛼𝑥−𝛾)−1; 1 +
𝑚

𝛾

− (𝛽 − 1 + 2𝑛𝛽), 1 −
𝑚

𝛾
) , 𝑚 < 𝛾, 

 

 

(14) 

 

where 𝐵(. ; . , . )is an incomplete beta function and 𝑚 = 1, 2, … 
 

Proof: Using the identity; 𝐵(𝑠; 𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 − 𝑦)𝑏−1𝑠

0
𝑑𝑦 and the concept in proving 

the moment, the incomplete moment of the TSDa distribution is given 
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𝑀𝑚(𝑥) = 𝛼𝛽𝛾 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1) ∫ 𝑥𝑚
(1+𝛼𝑥−𝛾)−1

0

𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1+2𝑛𝛽)𝑑𝑥. 

 (15) 
 

 On solving equation (15), one obtains 
 

𝑀𝑚(𝑥) = 𝛼
𝑚
𝛾 𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 

((1 + 𝛼𝑥−𝛾)−1; 1 +
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝑚 < 𝛾.  

 

3.4 Inverted Moments 
 The inverse moments can be applied in many practical applications. For example, 

they appear in Stein estimation and Bayesian post-stratification (Wooff, 1985; Pittenger, 

1990), evaluating risks of estimators and powers of test statistics (Marciniak and 

Wesolowski, 1999; Fujioka, 2001), expected relaxation times of complex systems 

(Jurlewicz and Weron, 2002), insurance and financial mathematics (Ramsay, 1993).  

 

Proposition 3: The 𝑚𝑡ℎ inverted moment of the TSDa distribution is given by 
 

𝜇𝑚
∗ = 𝛼−𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 (1 −
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝛾 > 𝑚, 

 (16) 
 

where 𝑚 = 1, 2, …. 
 

Proof: By definition, the 𝑚𝑡ℎ inverted moment of a random variable 𝑋 is given by 
 

𝜇𝑚
∗ = ∫ 𝑥−𝑚

∞

0

𝑓(𝑥)𝑑𝑥. 

 

That is, 
 

𝜇𝑚
∗ = 𝛼−𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1) ∫ 𝑥−𝑚
∞

0

𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1+2𝑛𝛽)𝑑𝑥. 

 

 Using the concept in obtaining the moments and the identity 𝐵(𝑎, 𝑏) = ∫ 𝑦𝑎−1(1 −
1

0

𝑦)𝑏−1 𝑑𝑦, 
 

𝜇𝑚
∗ = 𝛼−𝑚/𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 (1 −
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝛾 > 𝑚.  

 

3.5 Moment Generating Function 

 The moment generating function (MGF) helps in determining the moments of a 

random variable. 
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Proposition 4: The MGF of the TSDa distribution is given by 

𝑀𝑋(𝑡) = 𝛼𝑚/𝛾𝛽 ∑
Ψ𝑛(2𝑛 + 1)𝑡𝑚

𝑚!

∞

𝑛=0

𝐵 (1 +
𝑚

𝛾
− (𝛽 − 1 + 2𝑛𝛽), 1 −

𝑚

𝛾
) , 𝛾 > 𝑚. 

 (17) 
 

Proof: By definition, the MGF is given as; 
 

𝑀𝑋(𝑡) = 𝔼(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥.
∞

0

 

 

 Using Taylor series expansion, one obtains 
 

𝑀𝑋(𝑡) = 𝔼 [ ∑
𝑡𝑚𝑋𝑚

𝑚!

∞

𝑚=0

] = ∑
𝑡𝑚

𝑚!

∞

𝑚=0

𝜇𝑚
′ . (18) 

 

 Substituting equation (12) into equation (18) completes the proof. 

 

3.6 Mean and Median Deviations 

 The totality of the deviations from the mean and median can be used to estimate the 

variation in a population with some certainty. If the random variable 𝑋 follows the TSDa 

distribution, then the mean and median deviations are given by the following 

propositions. 

 

Proposition 7: The expected value of the absolute deviation of a random variable 𝑋 

having the TSDa distribution from its mean is given by 
 

𝜅1(𝑥) = 2𝜇𝐹(𝜇) − 2𝛼
1
𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 ((1 + 𝛼𝑥−𝛾)−1; 1 +
1

𝛾

− (𝛽 − 1 + 2𝑛𝛽), 1 −
1

𝛾
) , 𝛾 > 1, 

 

 
 

(19) 

 

where 𝜇 = 𝜇1
′  is the mean of 𝑋. 

 

Proof: By definition, 
 

𝜅1(𝑥)  = ∫ |𝑥 − 𝜇|
∞

0

𝑓(𝑥)𝑑𝑥 

= 2𝜇𝐹(𝜇) − 2 ∫ 𝑥
𝜇

0

𝑓(𝑥)𝑑𝑥 

𝜅1(𝑥) = 2𝜇𝐹(𝜇) − 2𝛼1/𝛾 𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 ((1 + 𝛼𝑥−𝛾)−1; 1 +
1

𝛾

− (𝛽 − 1 + 2𝑛𝛽), 1 −
1

𝛾
) , 𝛾 > 1,  

 

where ∫ 𝑥
𝜇

0
𝑓(𝑥)𝑑𝑥 is simplified using the first incomplete moment. 
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Proposition 8: The expected value of the absolute deviation of a random variable 𝑋 

following the TSDa distribution from its median is given by 
 

𝜅2(𝑥)  = 𝜇 − 2 ∫ 𝑥
𝜇

0

𝑓(𝑥)𝑑𝑥 

 

𝜅2(𝑥) = 𝑢 − 2𝛼
1
𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 ((1 + 𝛼𝑀−𝛾)−1; 1 +
1

𝛾

− (𝛽 − 1 + 2𝑛𝛽), 1 −
1

𝛾
) , 𝛾 > 1,  

 

 
 

(20) 

 

where 𝑀 is the median of 𝑋. 
 

Proof: By definition, 
 

𝜅2(𝑥) = ∫ |𝑥 − 𝑀|
∞

0

𝑓(𝑥)𝑑𝑥 

= 𝜇 − 2 ∫ 𝑥
𝑀

0

𝑓(𝑥)𝑑𝑥 

𝜅2(𝑥) = 𝜇 − 2𝛼
1
𝛾𝛽 ∑ Ψ𝑛

∞

𝑛=0

(2𝑛 + 1)𝐵 ((1 + 𝛼𝑀−𝛾)−1; 1 +
1

𝛾

− (𝛽 − 1 + 2𝑛𝛽), 1 −
1

𝛾
) , 𝛾 > 1, 

 

where ∫ 𝑥
𝑀

0
𝑓(𝑥)𝑑𝑥 is simplified using the first incomplete moment. 

 

3.7 Order Statistics 

 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a sample of size 𝑛 and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ 𝑋𝑛:𝑛 denote the order 

statistics of the sample. The PDF of the 𝑖𝑡ℎ order statistics 𝑓𝑖:𝑛(𝑥) is defined as 
 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖𝑓(𝑥). (21) 

 

 Using binomial series expansion,  
 

[1 − 𝐹(𝑥)]𝑛−𝑖 = ∑(−1)𝑟 (
𝑛 − 𝑖

𝑟
) [𝐹(𝑥)]𝑟

𝑛−𝑖

𝑟=0

. (22) 

 

 That is, equation (21) becomes 
 

𝑓𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑓(𝑥) ∑(−1)𝑟 (

𝑛 − 𝑖

𝑟
) [𝐹(𝑥)]𝑟+𝑖−1

𝑛−𝑖

𝑟=0

. (23) 

 

 Substituting the CDF and PDF of the TSDa distribution into equation (23), the 𝑖𝑡ℎ  

order statistics of the TSDa distribution is given by 
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𝑓𝑖:𝑛(𝑥) =

𝐴 × [
𝜆

𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽 sin [
𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]

+(1 − 𝜆) cos [
𝜋
2

(1 + 𝛼𝑥−𝛾)−𝛽]
]

2(𝑖 − 1)! (𝑛 − 𝑖)!
 

× ∑(−1)𝑟 (
𝑛 − 𝑖

𝑟
) [

sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]                                         

−𝜆
𝜋

2
 (1 + 𝛼𝑥−𝛾)−𝛽 cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]

]

𝑟+𝑖−1
𝑛−𝑖

𝑟=0

 

 (24) 
 

where 𝐴 = 𝜋𝛼𝛽𝛾𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1)  
 

 The PDF of the first-order statistics is defined as 
 

𝑓1:𝑛(𝑥) = 𝑛[1 − 𝐹(𝑥)]𝑛−1𝑓(𝑥). (25) 
 

 Letting [1 − 𝐹(𝑥)]𝑛−1 = ∑ (𝑛−1
𝑘

)𝑛−1
𝑘=0 [𝐹(𝑥)]𝑘 , equation (25) can be re-written as 

 

𝑓1:𝑛(𝑥) = 𝑛𝑓(𝑥) ∑ (
𝑛 − 1

𝑘
)

𝑛−1

𝑘=0

[𝐹(𝑥)]𝑘. (26) 

 

 From equation (26), the PDF of the first-order statistics of the TSDa distribution is 

given by 
 

𝑓1:𝑛(𝑥) =
𝑛𝜋𝛼𝛽𝛾

2
𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1) 

[𝜆
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽 sin [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] + (1 − 𝜆) cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]] 

[sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] − 𝜆

𝜋

2
 (1 + 𝛼𝑥−𝛾)−𝛽 cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]]

𝑘

 (27) 

 

 Also, the PDF of the 𝑛𝑡ℎ  order statistics is defined as 
 

𝑓𝑛:𝑛(𝑥) = 𝑛[𝐹(𝑥)]𝑛−1𝑓(𝑥). (28) 
 

 Therefore, employing equation (28) the PDF of the  𝑛𝑡ℎ  order statistics as 
 

𝑓𝑛:𝑛(𝑥) = 𝑛 [sin [
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] − 𝜆

𝜋

2
 (1 + 𝛼𝑥−𝛾)−𝛽 cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]]

𝑛−1

 

×
𝜋𝛼𝛽𝛾

2
𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1) 

[𝜆
𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽 sin [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽] + (1 − 𝜆) cos [

𝜋

2
(1 + 𝛼𝑥−𝛾)−𝛽]]. 

 (29) 

 

4. PARAMETER ESTIMATION 
 

 In this section, the unknown parameters of the TSDa distribution are estimated using 

the maximum likelihood estimation (MLE) technique. 
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4.1 Maximum Likelihood Estimation 

 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 𝑛 random sample from the TSDa distribution and 𝜌 =
(𝛼, 𝛽, 𝛾, 𝜆)′, then the log-likelihood function, ℓ = ℓ(𝜌), is given by 
 

ℓ = 𝑛 log (
𝜋𝛼𝛽𝛾𝜆

2
) − (𝛾 + 1) ∑ log(𝑥𝑖)

𝑛

𝑖=1

− (𝛽 + 1) ∑ log(1 + 𝛼𝑥𝑖
−𝛾

)

𝑛

𝑖=1

+ ∑ log [𝜆
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] sin [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

𝑛

𝑖=1

 

+(1 − 𝜆) cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]. (30) 

 

 The log-likelihood function in equation (28) is differentiated with respect to each 

parameter to obtain the score function, 𝐿(𝜌) = (
𝜕ℓ

𝜕𝛼
,

𝜕ℓ

𝜕𝛽
,

𝜕ℓ

𝜕𝛾
,

𝜕ℓ

𝜕𝜆
)

𝑇

. The elements of the 

score function are as follows: 
 

𝜕ℓ

𝜕𝛼
=

𝑛

𝛼
− ∑

1 + 𝛽

𝛼 + 𝑥𝑖
𝛾

𝑛

𝑖=1

− (2 ∑(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝑛

𝑖=1

(
1

2
𝑥𝑖

−𝛾
(1

+ 𝛼𝑥𝑖
−𝛾

)
−(𝛽+1)

𝛽 (−2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

) cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2 (1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] − 𝜋𝜆 sin [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

−
1

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
(−2𝑥𝑖

−𝛾
(1 + 𝛼𝑥𝑖

−𝛾
)

𝛽−1
𝛽 cos [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+
𝜋2

2
𝑥𝑖

−𝛾
(1 + 𝛼𝑥𝑖

−𝛾
)

−(𝛽+1)
𝛽𝜆 cos [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2𝑥𝑖
−𝛾

(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽−1

𝛽𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

−
𝜋𝑥𝑖

−𝛾
𝛽 sin [

𝜋
2

(1 + 𝛼𝑥𝑖
−𝛾

)
−𝛽

]

1 + 𝛼𝑥𝑖
−𝛾 +

𝜋𝑥𝑖
−𝛾

𝛽𝜆 sin [
𝜋
2

(1 + 𝛼𝑥𝑖
−𝛾

)
−𝛽

]

1 + 𝛼𝑥𝑖
−𝛾 )) )

/ (−2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

− 𝜋 sin [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]),                                                                   (31) 
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𝜕ℓ

𝜕𝛽
=

𝑛

𝛽
− ∑ log (𝑥𝑖

−𝛾
(𝑥𝑖

𝛾
+ 𝛼))

𝑛

𝑖=1

− (2 ∑(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝑛

𝑖=1

(
1

2
𝑥𝑖

−𝛾
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
log(1

+ 𝛼𝑥𝑖
−𝛾

) (−2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

) cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] − 𝜋𝜆 sin [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

−
1

2
(1

+ 𝛼𝑥𝑖
−𝛾

)
−𝛽

(−2𝑥𝑖
−𝛾

(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽−1

cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] log(1

+ 𝛼𝑥𝑖
−𝛾

) +
𝜋2

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
𝜆 cos [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] log(1 + 𝛼𝑥𝑖

−𝛾
)

+ 2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] log(1 + 𝛼𝑥𝑖

−𝛾
)

− 𝜋 log(1 + 𝛼𝑥𝑖
−𝛾

) sin [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 𝜋𝜆 log(1 + 𝛼𝑥𝑖
−𝛾

) sin [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
])) ) 

/ (−2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] − 𝜋 sin [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]),   

 

 (32) 
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𝜕ℓ

𝜕𝛾
=

𝑛

𝛾
− ∑ log(𝑥𝑖) − ∑

𝑥𝑖
𝛾

[log(𝑥𝑖) − 𝑥𝑖
−𝛾

(𝑥𝑖
𝛾

+ 𝛼 log(𝑥𝑖)]

𝛼 + 𝑥𝑖
𝛾

𝑛

𝑖=1

𝑛

𝑖=1

− (2 ∑(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝑛

𝑖=1

(−
1

2
𝛼𝑥𝑖

−𝛾
(1

+ 𝛼𝑥𝑖
−𝛾

)
−(𝛽+1)

𝛽 log(𝑥𝑖) (−2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

) cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

+ 2(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽

𝜆 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] − 𝜋𝜆 sin [

𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
]

−
1

2
(1

+ 𝛼𝑥𝑖
−𝛾

)
−𝛽

(2𝛼𝑥𝑖
−𝛾

(1 + 𝛼𝑥𝑖
−𝛾

)
𝛽−1

𝛽 cos [
𝜋

2
(1 + 𝛼𝑥𝑖

−𝛾
)

−𝛽
] log(𝑥𝑖)

−
𝜋2

2
𝑥𝑖

−𝛾
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and  
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= ∑
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2
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)
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] 

𝑛

𝑖=1

 (34) 

 

 

 

5. MONTE CARLO SIMULATION 
 

 In this section, the simulation results are presented in examining the properties of the 

maximum likelihood estimators for the parameters of the TSDa distribution. Four 

different combinations of the parameter values of this distribution are specified and the 
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quantile function is used in generating four different random samples of size, 𝑛 = 70, 

100, 200, 300. The simulations are replicated for 𝑁 = 1000 times. The properties of the 

estimators are investigated by computing average bias (AB) and root mean square error 

(RMSE) for each of the parameter. The simulation steps are as follows: 

i. Specify the values of the parameters and the sample size 𝑛. 

ii.  Generate random samples of size 𝑛 = 70, 100, 200, 300 from the TSDa 

distribution using its quantile. 

iii. Find the maximum likelihood estimates for parameters. 

iv. Repeat steps ii-iii for 1000 times. 

v. Calculate the average bias (AB) and root mean square error (RMSE) for the 

parameters of the distributions. 
 

 Table 2 shows the simulation results for the TSDa distribution. It can be observed that 

as the sample size increase, the AB and RMSE for the estimators of each parameter 

decreases. This shows that the estimators are consistent. Therefore, the MLEs and their 

asymptotic results can be adopted in estimating the model parameters. 

 

Table 2 

Simulation Results for the Parameters of the TSDa Distribution 

N 
Parameter value AB RMSE 

𝜶 𝜷 𝜸 𝝀 𝜶 𝜷 𝜸 𝝀 𝜶 𝜷 𝜸 𝝀 

70 1.2 0.13 1.52 0.25 0.636 0.037 0.343 0.163 0.473 0.003 0.151 0.049 
100 1.2 0.13 1.52 0.25 0.631 0.033 0.330 0.143 0.468 0.002 0.141 0.038 
200 1.2 0.13 1.52 0.25 0.573 0.026 0.266 0.117 0.396 0.001 0.099 0.023 
300 1.2 0.13 1.52 0.25 0.572 0.022 0.239 0.105 0.396 0.001 0.081 0.019 

70 4.81 0.151 1.811 0.28 3.010 0.043 0.338 0.190 9.227 0.004 0.163 0.055 
100 4.81 0.151 1.811 0.28 2.967 0.037 0.322 0.175 8.935 0.002 0.141 0.046 
200 4.81 0.151 1.811 0.28 2.910 0.028 0.291 0.158 8.543 0.001 0.110 0.035 
300 4.81 0.151 1.811 0.28 2.885 0.026 0.283 0.155 8.375 0.001 0.099 0.032 

70 1.06 0.17 1.1 0.22 0.655 0.057 0.343 0.181 0.515 0.005 0.187 0.060 
100 1.06 0.17 1.1 0.22 0.621 0.048 0.301 0.160 0.474 0.003 0.150 0.047 
200 1.06 0.17 1.1 0.22 0.580 0.038 0.231 0.139 0.423 0.002 0.090 0.033 
300 1.06 0.17 1.1 0.22 0.554 0.031 0.181 0.129 0.391 0.002 0.056 0.027 

70 3.104 0.236 1.824 0.5 1.242 0.063 0.244 0.140 1.637 0.085 0.088 0.029 
100 3.104 0.236 1.824 0.5 1.215 0.053 0.221 0.132 1.551 0.006 0.071 0.027 
200 3.104 0.236 1.824 0.5 1.165 0.039 0.196 0.111 1.390 0.003 0.051 0.020 
300 3.104 0.236 1.824 0.5 1.150 0.033 0.186 0.101 1.342 0.002 0.044 0.016 

 

6. APPLICATIONS 
 

 This section illustrates the usefulness and flexibility of the TSDa distribution using 

real datasets. The performance of the TSDa distribution is compared with other loss 

distributions. The performance of the distributions about providing proper parametric fit 

to the dataset is compared using the AIC, BIC, Cram´er-von Misses (W*), Anderson-

Darling (A∗) and Kolmogorov Smirnov (K-S) statistics. The distribution with the least of 
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these measures provide a reasonable fit to the dataset. The fit for the TSDa distribution is 

compared with other distributions, including the 3-parameter Dagum, 2-parameter 

Weibull, Transmuted sine Dagum (TSD), Burr III (BIII), sine Burr XII (SBXII) and Sine 

Inverse Lomax Frechet (SILF) distributions. The density functions of the Dagum, TSD, 

BIII, Weibull, SBXII and SILF are: 
 

𝑔(𝑥) = 𝛼𝛽𝛾𝑥−(𝛾+1)(1 + 𝛼𝑥−𝛾)−(𝛽+1), 𝑥 > 0, 𝛽 > 0, 𝛼 > 0, 𝛾 > 0, (35) 
 

𝑔(𝑥) =
𝜋

2
𝜎𝜃𝛽𝑥−(𝜃+1)(1 + 𝜎𝑥−𝜃)

−(𝛽+1)
cos [

𝜋

2
(1 + 𝜎𝑥−𝜃)

−𝛽
] 

{(1 + 𝜆) − 2𝜆 cos [
𝜋

2
(1 + 𝜎𝑥−𝜃)

−𝛽
]}, 

𝑥 > 0, 𝛽 > 0, 𝜎 > 0, 𝜃 > 0, −1 ≤ 𝜆 ≤ 1, 

 

 

 

(36) 
 

𝑔(𝑥) = 𝑐𝑘𝑥−(𝑐+1)(1 + 𝑥−𝑐)−(𝑘+1), 𝑥 > 0, 𝑐 > 0, 𝑘 > 0, (37) 
 

𝑔(𝑥) = 𝛼𝛽𝑥𝛼−1𝑒−𝛽𝑥𝛼
, 𝑥 ≥ 0, 𝛼 > 0, 𝛽 > 0, (38) 

 

𝑔(𝑥) =
𝜋𝑐𝑘𝑥𝑐−1

2(1 + 𝑥𝑐)𝑘+1
cos [

𝜋

2
(1 −

1

(1 + 𝑥𝑐)𝑘
)] , 𝑥 > 0, 𝑐 > 0, 𝑘 > 0 (39) 

and  

𝑔(𝑥) =
𝜋𝛼𝛿𝜇𝛿𝑥−(𝛿+1)

2
𝑒−𝛼(

𝜇
𝜎

)
𝛿

cos [
𝜋
2

𝑒−𝛼(
𝜇
𝜎)

𝛿

] , 𝑥 > 0, 𝑐 > 0, 𝑘 > 0. (40) 

 

6.1 Traffic Data 

 The first dataset represents the length of intervals between the times at which vehicles 

pass a point on a road. The data set is given as; 
 

2.50, 2.60, 2.60, 2.70, 2.80, 2.80, 2.90, 3.00, 3.00, 3.10, 3.20, 3.40, 3.70, 3.90, 

3.90, 3.90, 4.60, 4.70, 5.00, 5.60, 5.70, 6.00, 6.00, 6.10, 6.60, 6.90, 6.90, 7.30, 

7.60, 7.90, 8.00, 8.30, 8.80, 8.80, 9.30, 9.40, 9.50, 10.1, 11.0, 11.3, 11.9, 11.9, 

12.3, 12.9, 12.9, 13.0, 13.8, 14.5, 14.9, 15.3, 15.4, 15.9, 16.2, 17.6, 20.1, 20.3, 

20.6, 21.4, 22.8, 23.7, 23.7, 24.7 , 29.7, 30.6, 31.0, 34.1, 34.7, 36.8, 40.1, 40.2, 

41.3, 42.0, 44.8, 49.8, 51.7, 55.7, 56.5, 58.1, 70.5, 72.6, 87.1, 88.6, 91.7, 119.8.  

This data was also studied by Lemonte et al. (2013). 
 

 The descriptive statistics of the traffic dataset is given in Table 3. The statistics shows 

that the length of interval data is positively skewed and leptokurtic. The skewness  

and leptokurtic nature of the data is further confirmed by the box-plot and histogram in 

Figure 5. 

 

Table 3 

Descriptive Statistics of Traffic Dataset 

No. of Obs. Mean Std. dev. Skewness Kurtosis Min. Max. 

84 21.602 23.97 1.915 6.581 2.500 119.8 

 

 The total time on test (TTT) transformed plot of the length of intervals between the 

times at which vehicles pass a point on a road presented in Figure 6 shows that, the 

failure rate function of the data set is bathtub shaped. 
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Figure 5: Box Plot and Histogram of the Traffic Dataset 

 

 
Figure 6: TTT-Transform Plot for Traffic Dataset 

 

 Table 4 shows the maximum likelihood estimates for the parameters of the fitted 

distributions with their corresponding standard errors in brackets and p-values. The 

parameters of the TSDa, BIII, Weibull and SILF are significant at the 5% level. The 

parameters of SBXII are significant at 10%. The parameters of TSD are significant at  

the 10% level with the exception of 𝜃 which is significant at 5%. Also, the parameters of 

the Dagum distribution are significant at 10% with the exception of α which is significant 

at 5%. 
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Table 4 

Maximum Likelihood Estimates of the Parameters, Standard Errors  

and p-values of Traffic Dataset 

Model 𝜶̂ 𝜷̂ 𝜸̂ 𝝀̂ 𝝈̂ 𝜽̂ 𝒄̂ 𝒌̂ 

TSDa 

0.327 29.861 1.217 0.558 
    

(0.097) (5.711) (0.114) (0.143) 
    

0.002 0.004 0.000 0.000 
    

Dagum 

1.130 22.202 0.469 
     

(0.101) (33.107) (0.759) 
     

0.000 0.088 0.064 
     

TSD 
 

22.019 
 

-0.029 0.372 0.815 
  

 
(14.218) 

 
(0.399) (0.263) (0.074) 

  

 
0.069 

 
0.091 0.084 0.000 

  

BIII 
      

1.159 11.428 

      
(0.092) (2.046) 

      
0.000 0.000 

Weibull 

0.997 0.047 
      

(0.081) (0.014) 
      

0.000 0.001 
      

SBXIII 
      

7.443 0.030 

      
(13.718) (0.056) 

      
0.065 0.081 

SILF 

 
𝝁̂ 𝜹̂ 

     
3.486 2.690 0.789 

     
(0.180) (0.184) (0.064) 

     
0.000 0.000 0.000 

     
 

 The model selection and goodness-of-fit statistics for the length of intervals between 

the times at which vehicles pass a point on a road are presented in Table 5. Among the 

distributions, the TSDa has the lowest AIC, BIC, W*, A*, K-S statistics values hence 

provides the best fit to the data set among the candidate distributions. 

 

Table 5 

Information Criteria and Goodness-of-Fit of Traffic Dataset 

Model −𝟐𝒍 AIC BIC W* A* K-S p-value 

TSDa 671.144 675.144 680.867 0.067 0.621 0.072 0.780 

Dagum 672.417 678.417 688.709 0.099 0.826 0.073 0.737 

TSD 671.314 679.314 689.038 0.083 0.745 0.296 0.008 

BIII 672.552 676.552 681.414 0.095 0.805 0.075 0.756 

Weibull 684.230 688.230 693.092 0.241 1.544 0.110 0.261 

SBXII 744.587 748.587 753.449 0.076 0.665 0.289 0.006 

SILF 675.792 676.792 684.085 0.068 0.621 0.074 0.745 
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 Figure 7 shows the plot of the empirical CDF and the CDFs of the tentative 

distributions for the length of intervals between the times at which vehicles pass a point 

on a road. It can be seen that the TSDa provides a better to the data than the competitive 

distribution. 
 

 
Figure 7: CDF (a) and Empirical and fitted Density (b) Plots of Traffic Dataset 

 

6.2 Breaking Stress of Carbon Fibres 

 The second dataset consists of 100 uncensored data on breaking stress of carbon fibres 

(in Gba). This data was also studied by Khadim et al. (2021). The data set is given as; 

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 

1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.8, 1.84, 1.84, 1.87, 1.89, 

1.92, 2, 2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 

2.5, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 

2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 3.15, 

3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 

3.6, 3.65, 3.68, 3.68, 3.68, 3.7, 3.75, 4.2, 4.38, 4.42, 4.7, 4.9, 4.91, 5.08, 5.56. 
 

 Figure 8 presents the box-plot and histogram of the carbon fibre data set. It can be 

observed that, the data set is positively skewed and leptokurtic in nature. 
 

 
Figure 8: Box Plot and Histogram of the Carbon Fibre Dataset 
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 The positively skewness and leptokurtic nature of the data is further confirmed by 

descriptive statistics of the breaking stress of carbon fibres dataset given in Table 6 

(skewness greater than 0 and kurtosis greater than 3). 

 

Table 6 

Descriptive Statistics of Carbon Fibre Dataset 

No. of Obs. Mean Std. dev. Skewness Kurtosis Min. Max. 

100 2.621 1.014 0.368 3.105 0.390 5.560 

 

 The TTT transformed plot of the 100 uncensored data on breaking stress of carbon 

fibres (in Gba) presented in Figure 9 shows that the hazard function of the data set is 

increasing. 
 

 
Figure 9: TTT-Transform Plot for Carbon Fibre Dataset 

 

 Table 7 shows the maximum likelihood estimates for the parameters of the fitted 

distributions with their corresponding standard errors in brackets and p-values. The 

parameters of the BIII, Weibull, TSDa, SBXII and SILF are significant at the 5% level. 

All the parameters of Dagum distribution are significant at the 5% significant level with 

the exception of γ which is significant at 10%. The parameters of the TSD distribution are 

significant at 10% with the exception of θ, which is significant at the 5% level. 
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Table 7 

Maximum Likelihood Estimates of the Parameters, Standard Errors  

and p-value of Carbon Fibre Dataset 

Model 𝜶̂ 𝜷̂ 𝜸̂ 𝝀̂ 𝝈̂ 𝜽̂ 𝒄̂ 𝒌̂ 

TSDa 80.980 0.629 4.616 0.599 
    

 
(23.500) (0.154) (0.433) (0.159) 

    

 
0.003 0.000 0.000 0.000 

    
Dagum 5.010 0.609 214.557 

     

 
(0.514) (0.118) (160.770) 

     

 
0.000 0.000 0.073 

     
TSD 

 
0.739 

 
-0.376 78.349 3.719 

  

  
(0.227) 

 
(0.463) (70.572) (0.515) 

  

  
0.066 

 
0.085 0.072 0.004 

  
BIII 

      
2.319 5.221 

       
(0.150) (0.598) 

       
0.000 0.000 

Weibull 2.792 0.049 
      

 
(0.214) (0.014) 

      

 
0.000 0.000 

      
SBXII 

      
5.822 0.109 

       
(1.261) (0.025) 

       
0.003 0.001 

  
𝜇̂ 𝛿̂ 

     
SILF 3.891 0.982 1.463 

     

 
(0.010) (0.060) (0.093) 

     

 
0.000 0.000 0.000 

     
 

 Table 8 presents the information criteria and goodness-of-fit statistics for the 100 

uncensored data on breaking stress of carbon fibres (in Gba). Also, the TSDa has the 

lowest AIC, BIC, W*, A*, K-S statistics values hence provides the best fit to the data 

among the candidate distributions. 
 

Table 8 

Information Criteria and Goodness-of-fit of Carbon Fibre Dataset 

Model −𝟐𝒍 AIC BIC W* A* K-S p-value 

TSDa 283.059 287.059 292.269 0.062 0.416 0.060 0.858 

Dagum 286.169 292.169 299.984 0.136 0.692 0.087 0.442 

TSD 283.593 291.593 302.014 0.537 3.009 0.944 0.002 

BIII 321.946 325.946 331.157 0.569 3.173 0.140 0.041 

Weibull 287.094 295.094 305.515 0.146 0.745 0.086 0.457 

SBXII 369.997 373.997 379.207 0.800 4.497 0.259 0.002 

SILF 323.159 329.159 336.975 0.530 2.993 0.136 0.050 
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 The empirical CDF and the CDFs of the tentative distributions for the 100 uncensored 

data on breaking stress of carbon fibres (in Gba) is presented in Figure 10. It can be seen 

that, the TSDa provides a better to the data than the competitive distribution. 

 

 
Figure 10: CDF (a) and Empirical and Fitted Density  

(b) Plots of Carbon Fibre Dataset 

 

7. CONCLUSION 
 

 Using the Dagum distribution as a baseline distribution in the transformed Sin-G 

family of distribution, the transformed sine Dagum (TSDa) distribution is proposed and 

studied. The statistical properties of the proposed distribution are derived and inferences 

made. The density plots of the TSDa distribution can be decreasing, right skewed and 

approximately symmetric. The hazard rate function can be increasing, decreasing, 

bathtub, upside-down-bathtub, modified upside-down-bathtub among others. This implies 

that the TSDa distribution can adequately model both monotonic and non-monotonic 

failure rate data. The skewness and kurtosis plots show that the skewness is positive, an 

indication that the TSDa is right skewed and the kurtosis is increasing; meaning TSDa 

distribution is leptokurtic. The estimators of the parameters of the TSDa distribution are 

developed using the maximum likelihood estimation. Monte Carlo simulation is 

performed on the parameters of the new distribution and the results shows that the 

parameters are consistent. The new distribution proposed is applied to data on the length 

of intervals between the times at which vehicles pass a point on a road and 100 

uncensored data on breaking stress of carbon fibres (in Gba). Both applications shows 

that the TSDa distribution provides a better fit than the 3-parameter Dagum, 2-parameter 

Weibull, Transmuted sine Dagum (TSD), Burr III (BIII), sine Burr XII (SBXII) and Sine 

Inverse Lomax Frechet distributions. It is hope that the proposed distribution will gain 

attention in medical, economic, social sciences, engineering and other related field. 
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