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ABSTRACT 
 

 For the creation of mathematical models, parameter estimation is crucial in many 

different domains. Therefore, this paper suggests a new estimation technique related to 

Meta-heuristic (M-H) algorithms and specifically Particular Swarm Optimization which 

will be mixed with Maximum Likelihood Estimation (PSOMLE) to estimate the 

parameters as well as the survival function of Inverse Kumaraswamy Distribution. For 

determine the effectiveness of the suggested estimator (PSOMLE), a simulation study was 

considered and make a comparison between the considered estimator with the maximum 

likelihood (MLE) Based on Mean Squared Error. The findings showed that the suggested 

estimator (PSOMLE) provides accurate and satisfactory estimates for the survival 

function. Since it has less Mean Squared Error than Maximum Likelihood Estimation. 
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1. INTRODUCTION 
 

 Survival analysis has important applications in the fields of engineering, medicine, 

economics, epidemiology, biology, public health, and physics. Also, the Survival 

function is one of the most continually utilized approaches in statistics of medical [1-3]. 

Recently, numerous statisticians have been interested to Estimate survival functions. The 

research in survival analysis increased greatly over the Life testing problems to apply 

inverse distribution. The researchers have been interested in applying the inverse 

distributions in Life testing problems [4-6]. When it was first introduced in 1980 [8]. 

Abdul Fatah et al. [7] provided the Inverse Kumaraswamy Distribution (IKD), it was 

supported in various applications, including those involving test results, individual 

heights, air temperature, and a wide range of other data [9-13]. 
 

 However, the nonlinearity of the IKD produces a hard estimation of its parameters 

and creates a challenging and complicated statistical analysis of parameter estimates. As 
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well as, sometimes the traditional methods fail to estimate the parameters of a model [14-

16]. Meta Heuristics Algorithm good choice to give a near optimal solution in real time  

[17-19]. Numerous benefits of using meta-heuristic algorithms include their reliably 

effectively, and robustly simple implementation. In 2023, Batah and other researchers 

constructed  new systems of the version of X – Exponential distribution [21-25]. 

Therefore, it will be used to estimate the parameters of Inverse Kumaraswamy 

Distribution based for survival functions by adopting Particular Swarm Optimization 

(PSO) as well as maximum likelihood estimator. Since, PSO was the best option for 

many practitioners in of physical, medical, sciences, statistics, and engineering fields.  
 

 The construction of this paper will be as: the material of Inverse Kumaraswamy 

Distribution is clarified in Section 2. Sections 3 and 4 offers the Maximum Likelihood 

method (MLE), Particular Swarm Optimization (PSO) and explain the proposed mixed 

estimation method (PSOMLE), respectively. Section 5 presents the Simulation study and 

numerical results of the comparison the proposed method and MLE. In addition, a 

conclusion is provided in Section 6. 

 

2. INVERS KUMARASWAMY DISTRIBUTION (IKD) 
 

 Abd Al-Fattah et al. [11] suggested to derive the two parameters invers 

Kumaraswamy distribution IKD (𝜃, 𝛾) using the transformation 
 

𝑍 =
1

𝑇
 ;  𝑇~𝐾𝐷 (𝜃, 𝛾) 

 

when comparing the IKum Distribution with other common distributions, IKD has a long 

right tail. Hence, it will produce optimistic predictions of rare events occurring in the 

right tail of the distribution. Also, the IKD gives a good fit to many data in the literature 

[4], [6]. 
 

 The probability density function (PDF) of r.v. 𝑍 which is distributed as IKD is, 
 

𝐹(𝑧; 𝜃, 𝛾) = 𝜃𝛾(𝑧)−(𝜃+1)(1 − (𝑧)−𝜃)
𝛾−1

 , 𝑧 > 1 ;  𝜃, 𝛾 > 0. (1) 
 

where, θ, and γ are shape parameters. 
 

 The Cumulative Distribution Function (CDF) of 𝑍 has the form as below:  
 

𝐹(𝑧; 𝜃, 𝛾) = (1 − (𝑧)−𝜃)
𝛾

 , 𝑧 > 1 ;  𝜃, 𝛾 > 0. (2) 
 

 The Survival and hazard functions of 𝑍 given as: 
 

𝑆(𝑧; 𝜃, 𝛾) = 1 − 𝐹(𝑧 − 1; 𝜃, 𝛾) = 1 − (1 − (𝑧)−𝜃)
𝛾

, 𝑧 > 1 ; 𝜃, 𝛾 > 0. (3) 
 

 The hazard functions of 𝑍 given as: 
 

ℎ(𝑧; 𝜃, 𝛾) =
𝑓(𝑧; 𝜃, 𝛾)

𝑆(𝑧; 𝜃, 𝛾)
 =

𝜃𝛾(𝑧)−(𝜃+1)(1 − (𝑧)−𝜃)
𝛾−1

1 − (1 − (𝑧)−𝜃)𝛾
, 𝑧 > 1 ; 𝜃, 𝛾 > 0. (4) 

 

 The following Figures of specific probability functions of IKD for some arbitrary 

parameters are listed below. 
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Figure 1: PDF curve of IKD when 𝛉 = 𝟓 

 

 

 

Figure 2: CDF curve of IKD when 𝛉 = 𝟓 
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Figure 3: Survival curve of IKD when 𝛉 = 𝟓 

 

 

 

 

Figure 4: Hazard curve of IKD when 𝛉 = 𝟓 
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3. MAXIMUM LIKELIHOOD ESTIMATION 
 

 Let z1, z2, … , zn be a random sample distributed as IKD (θ, γ) when θ and γ are 

unknown, and the likelihood function was given as bellow 
 

𝑙 = 𝐿(𝑧1, 𝑧2, … , 𝑧𝑛; 𝜃, 𝛾) = ∏ 𝑓(𝑧𝑖)

𝑛

𝑖=1

= ∏ 𝜃𝛾(𝑧𝑖)−(𝜃+1)

𝑛

𝑖=1

(1 − (𝑧𝑖)
−𝜃)

𝛾−1
  

=  𝜃𝑛𝛾𝑛 ∏(𝑧𝑖)
−(𝜃+1)

𝑛

𝑖=1

. ∏(1 − (𝑧𝑖)
−𝜃)

𝛾−1
𝑛

𝑖=1

 (5) 

 

 Take normal logarithm (ln) to both sides and then the partial derivative will be made 

depend w.r.t. θ and γ, respectively as follows;  
 

𝑙𝑛 𝑙 = 𝑛 𝑙𝑛 𝜃 + 𝑛 𝑙𝑛 𝛾 − (𝜃 + 1) ∑ 𝑙𝑛(𝑧𝑖)

𝑛

𝑖=1

+ (𝛾 − 1) ∑ 𝑙𝑛(1 − (𝑧𝑖)
−𝜃)

𝑛

𝑖=1

 

 

𝜕 𝑙𝑛 𝑙

𝜕𝛾
=

𝑛

𝛾
+ ∑ 𝑙𝑛(1 − (𝑧𝑖)

−𝜃) = 0

𝑛

𝑖=1

 

 

 The MLE method for the unknown shape parameters γ is given by; 
 

𝛾 =
−𝑛

∑ 𝑙𝑛(1 − (𝑧𝑖)
−𝛾0)𝑛

𝑖=1

. (6) 

 

𝜕 𝑙𝑛 𝑙

𝜕𝜃
=

𝑛

𝛾
− ∑ 𝑙𝑛(𝑧𝑖)

𝑛

𝑖=1

+ (𝛾 − 1) ∑
𝑙𝑛(𝑧𝑖)

((𝑧𝑖)𝜃 − 1)

𝑛

𝑖=1

= 0 

 

𝑛

𝜃
= ∑ 𝑙𝑛(𝑧𝑖)

𝑛

𝑖=1

− (𝛾 − 1) ∑
𝑙𝑛(𝑧𝑖)

((𝑧𝑖)𝜃 − 1)

𝑛

𝑖=1

 

 

 As a result, we obtained  
 

𝜃̂ =  
𝑛

∑ 𝑙𝑛(𝑧𝑖)
𝑛
𝑖=1 − (𝛾 − 1) ∑

𝑙𝑛(𝑧𝑖)
((𝑧𝑖)𝜃0 − 1)

𝑛
𝑖=1

. 
(7) 

 

where θ0 is an initial value for θ. The initial value can be obtained by use median method 

as bellow: 
 

F(𝑧; 𝜃, 𝛾) = 0.5 ; 𝜃, 𝛾 > 0 
 

(1 − (𝑧)−𝛼)𝛽 = 0.5 
 

1 − (𝑧)−𝛼 = 0.5
1
𝛾 

 

𝑧−𝜃 = 1 − 0.5
1
𝛾 
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𝑍 = (1 − 0.5
1
𝛾)

−1
𝜃

 

 

𝑍𝑚𝑒𝑑𝑖𝑎𝑛 = (1 − 0.5
1
𝛾)

−1
𝜃

 

 

 By equating the population median (𝑍𝑚𝑒𝑑𝑖𝑎𝑛) with sample median (𝑧𝑚𝑒𝑑𝑖𝑎𝑛) we get: 

 

𝑍𝑚𝑒𝑑𝑖𝑎𝑛 = 𝑧𝑚𝑒𝑑𝑖𝑎𝑛 
 

(1 − 0.5
1
𝛾)

−1
𝜃

= 𝑧𝑚𝑒𝑑𝑖𝑎𝑛 

 

(1 − 0.5
1
𝛾)

−1
𝜃

= 𝑧𝑚𝑒𝑑𝑖𝑎𝑛 

 

1 − 0.5
1
𝛾 = (𝑧𝑚𝑒𝑑𝑖𝑎𝑛)−𝜃 

 

𝑙𝑛 (1 − 0.5
1
𝛾) = 𝑙𝑛(𝑥𝑚𝑒𝑑𝑖𝑎𝑛 + 1)−𝛼 

 

𝑙𝑛 (1 − 0.5
1
𝛾) = 𝜃 𝑙𝑛(𝑧𝑚𝑒𝑑𝑖𝑎𝑛)−1 

 

𝜃0 =
𝑙𝑛 (1 − 0.5

1
𝛾)

𝑙𝑛(𝑧𝑚𝑒𝑑𝑖𝑎𝑛)−1
 

 

 Substitute equations (6) and (7) in equation (5), then the MLE estimator of survival 

analysis (S) as below: 
 

𝑆̂𝑀𝐿𝐸(𝑧) = 1 − (1 − (𝑧)−𝜃̂)
𝛾̂

, 𝑧 > 1 ; 𝜃̂, 𝛾 > 0 (8) 

 

4. PRACTICAL SWARM OPTIMIZATION MIXED WITH MAXIMUM 

LIKELIHOOD ESTIMATION (PSOMLE) METHOD 
 

 In 1995, Eberhart et al. introduced particle swarm optimization (PSO) algorithm at 

first time traveling birds to find food was the idea of the PSO algorithm [20]. A particle 

containing position and speed represents the member of the population of an algorithm. 

According to its own experience and the collective experience of the population, each 

particle changes its position and speed as it moves through multidimensional space. 

Based on the following equations, position and speed are updated: 
 

𝑉𝑖𝑗(𝑡 + 1) = 𝑉𝑖𝑗(𝑡) + 𝐶1𝑅1 (𝑃𝑖𝑗(𝑡)𝑍𝑖𝑗(𝑡)) + 𝐶2𝑅2 (𝑃𝑔𝑗(𝑡)𝑍𝑖𝑗(𝑡)) (9) 
 

𝑍𝑖𝑗(𝑡 + 1) = 𝑍𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1)  (10) 
 

where 𝑗 = 1,2, … , 𝑛 , 𝑖 = 1, 2, … , 𝑁, 𝑛, 𝑁 are dimension of search space and number of 

particles respectively, and A⊂ 𝑅𝑛; 𝑅1 and 𝑅2 are random variables distributed uniform 

distribution [0,1], 𝑡 denotes the iteration counter, 𝐶1, 𝐶2 are weighting factors. A set  
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𝑆 = {𝑍1, 𝑍2, … . , 𝑍𝑁} to be optimized, it was defined as probable solutions of an objective 

function. The position with the best fitness was represented by 𝑃𝑖𝑗(𝑡) for the ith particle 

of search space in the jth dimension. While, the best position (𝑃𝑔𝑗(𝑡)) was discovered by 

the all particles. 𝑍𝑖 = (𝑍𝑖1, 𝑍𝑖2, … … , 𝑍𝑖𝑛)𝑇 ∈ 𝐴 represent the position of ith particle. In 

addition, assumed that each particle moves within the search space iteratively. 𝑉𝑖 called 

velocity when 𝑉𝑖 = (𝑉𝑖1, 𝑉𝑖2, … , 𝑉𝑖𝑛)𝑇 . 
 

 Possibly, they adjusting their position by using a proper position shift. In this 

scenario, the survival function of the invers Kumaraswamy distribution was estimated 

using PSOMLE and was dependent on its parameters. The likelihood function was 

maximized using particle swarm optimization as the objective function (fitness function). 
 

𝑓𝑃𝑆𝑂𝑀𝐿𝐸  =  𝜃𝑛𝛾𝑛 ∏(𝑧𝑖)−(𝜃+1)

𝑛

𝑖=1

. ∏(1 − (𝑧𝑖)−𝜃)
𝛾−1

𝑛

𝑖=1

 

 

The PSOMLE Procedure can be summarized as follows:  
 

Step 1: Generate 𝑛 solutions for χ when χ was represented the vector for all parameters 

required such as 𝜒 = [𝜃 , 𝛾] and, and the maximum number of iteration 𝐾. 
 

Step 2: Randomly generate each particle's location and velocity. 
 

Step 3: As fitness function for PSO used 
 

𝑓𝑃𝑆𝑂𝑀𝐿𝐸  =  𝜃𝑛𝛾𝑛 ∏(𝑧𝑖)−(𝜃+1)

𝑛

𝑖=1

. ∏(1 − (𝑧𝑖)−𝜃)
𝛾−1

𝑛

𝑖=1

 

 

Step 4: Update 𝑝 best, if the value of a new objective function is better than the 

previous one. After that, 𝑔 best will be updated. 
 

Step 5: For each particle update the velocity and position depending on Equations (9) 

and (10) respectively. 
 

Step 6: Stop if any predefined criterion or the maximum number of iterations is met; 

otherwise, go to step 3 and repeat it. Then collect survival function  
 

𝑆̂𝑃𝑆𝑂𝑀𝐿𝐸(𝑧) = 1 − (1 − (𝑧)−𝜃̂)
𝛾̂

, 𝑧 > 0 ; 𝜃̂, 𝛾 > 0. (11) 

 

5. SIMULATION STUDY 
 

 To investigate the efficacy of the proposed technique to estimate the parameters of  

IKD (𝜃, 𝛾), a simulation study was used in this section. Replicas 1000 times for each 

simulation. Various sample sizes (20, 40, 60, 90) are used to investigate the effect of the 

proposed approach. The simulation's steps, which are listed below, explain the statistical 

results using the Mean Squared Errors (MSE) criteria. 
 

Step 1: The 𝑓(𝑧; 𝜃, 𝛾) for inverse Kumaraswamy distribution in equation (2) was 

used for transforming it to a random sample as u1, u2, … , un, follows uniform 

distribution (0,1) as follows: 
 

𝐹(𝑧𝑖) = (1 − (𝑧𝑖)−𝜃)
𝛾
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𝑢𝑖 = (1 − (𝑧𝑖)
−𝜃)

𝛾
 𝑧𝑖 = [1 − (𝑢𝑖)

1
𝛾]

−
1
𝜃

 

 

Step 2: Initialize all the parameters of PSO, then used the equation (2) as fitness 

function for PSO algorithm. 
 

Step 3: Reminisce the S in the equation (3). 
 

Step 4: Utilizing equation (8) to compute 𝑆̂ based on MLE. 
 

Step 5: Compute 𝑆̂ from the calculate the best solution for (𝑓) based on PSOMLE. 
 

Step 6: MSE will be calculated as Based on 𝐿 = 1000 trials as follows; 
 

𝑀𝑆𝐸 =
1

𝐿
∑(𝑆̂𝑖 −  𝑆)

2
𝐿

𝑖=1

. 

 

6. RESULTS AND DISCUSSION 
 

 The best outcome of the proposed estimation and MLE approaches to estimate the 

Survival function of Invers Kumaraswamy distribution is determined in this section using 

the simulation results. Four sample size (20, 40, 60, 90) were used. Then, the simulation 

results for PSOMLE and MLE are shown in Tables 1-4 depend MSE of Survival function. 

The set parameters of (𝜃, 𝛾) = (1,5), (2,0.5), (1.5,2), (0.5,0.3) were considered. These 

tables showed that the particle swarm optimization mixed with MLE (PSOMLE) provided 

less Mean Square Error. This implies that the PSOMLE method better than MLE. 

 

Table 1 

MSE Values Depend of 𝑺̂, 𝜸̂, 𝜽̂ when 𝜽= 1 , 𝜸 = 5 

𝜃 = 1, 

𝛾 = 5 

Samples 

Size 
Method 𝜸̂ 𝜽̂ 𝑺̂ 𝑩𝒆𝒔t 

𝑛 = 20 

PSOMLE 4.602051 0.97993 2.74E-07 PSOMLE 

MLE 4.375643 0.946432 1.40E-06 PSOMLE 

𝑛 = 40 

PSOMLE 4.143561 1.097026 4.65E-05 PSOMLE 

MLE 3.441129 1.093784 0.00113 PSOMLE 

𝑛 = 60 

PSOMLE 4.985154 0.97586 4.77E-06 PSOMLE 

MLE 3.355934 0.98436 0.328813 PSOMLE 

𝑛 = 90 

PSOMLE 4.504176 0.946194 0.000156 PSOMLE 

MLE 3.328085 0.95217 0.002444 PSOMLE 
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Table 2 

MSE Values Depend of 𝑺̂, 𝜸̂, 𝜽̂ when 𝜽= 0.5 , 𝜸 = 2 

𝜃 =0.5, 

𝛾 = 2 

Samples 

size 
Method 𝛄̂ 𝛉̂ 𝐒̂ 𝐁𝐞𝐬t 

𝑛 = 20 

PSOMLE 1.605329 0.503023 0.000422 PSOMLE 

MLE 1.605094 0.503047 0.000423 PSOMLE 

𝑛 = 40 

PSOMLE 1.657425 0.630249 4.65E-05 PSOMLE 

MLE 1.432191 0.639723 0.000654 PSOMLE 

𝑛 = 60 

PSOMLE 1.994062 0.470369 4.77E-06 PSOMLE 

MLE 1.272473 0.296214 0.011301 PSOMLE 

𝑛 = 90 

PSOMLE 1.80167 0.435432 0.000156 PSOMLE 

MLE 1.765826 0.434967 0.000208 PSOMLE 

 

Table 3 

MSE Values Depend of 𝑺̂, 𝜸̂, 𝜽̂ when 𝜽 = 2 , 𝜸 = 1.5 

𝜃 = 2, 

𝛾 = 1.5 

Samples 

size 
Method 𝛄̂ 𝛉̂ 𝐒̂ 𝐁𝐞𝐬t 

𝑛 = 20 

PSOMLE 1.634843 1.607287 2.22E-08 PSOMLE 

MLE 1.55993 1.617361 8.98E-06 PSOMLE 

𝑛 = 40 

PSOMLE 1.353494 3.053625 6.11E-05 PSOMLE 

MLE 1.366412 3.206306 0.000109 PSOMLE 

𝑛 = 60 

PSOMLE 1.739796 2.025129 6.21E-05 PSOMLE 

MLE 0.62301 0.514148 0.078925 PSOMLE 

𝑛 = 90 

PSOMLE 1.677681 2.034502 4.94E-06 PSOMLE 

MLE 0.646246 0.597056 0.029704 PSOMLE 
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Table 4 

MSE Values Depend of 𝑺̂, 𝜸̂, 𝜽̂ when 𝜽= 0.3, 𝜸 = 0.5 

𝜃 = 0.3 

𝛾 =  0.5 

Samples 

size 
Method 𝛄̂ 𝛉̂ 𝐒̂ 𝐁𝐞𝐬t 

𝑛 = 20 

PSOMLE 4.647871 0.310957 0.002458 PSOMLE 

MLE 5.513636 0.318303 0.045241 PSOMLE 

𝑛 = 40 

PSOMLE 3.040542 0.300991 8.80E-05 PSOMLE 

MLE 2.780146 0.301625 0.000304 PSOMLE 

𝑛 = 60 

PSOMLE 2.891885 0.29718 2.05E-05 PSOMLE 

MLE 2.843847 0.042401 0.42777 PSOMLE 

𝑛 = 90 

PSOMLE 3.764535 0.311841 1.86E-05 PSOMLE 

MLE 4.731225 0.320741 9.23E-03 PSOMLE 

 

7. CONCLUSIONS 
 

 This study proposed a new method by combining the PSO Algorithm and the MLE 

method for estimating the survival function of the Invers Kumaraswamy distribution. The 

effectiveness of the new method in comparison to a classical method (MLE) was 

investigated using a simulation study. As a result, it was clear that PSOMLE produced 

results that were superior to those of MLE in terms of Mean Square Error (MSE). 

Additionally, many optimization algorithms have different strengths and weaknesses can 

be used for this purpose. Therefore, we recommend the researcher to compare the 

methodology described above with any other classical estimating approach.  
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