
© 2024 Pakistan Journal of Statistics 137 

Pak. J. Statist. 

2024 Vol. 40(1), 137-150 

 

TO APPROXIMATE DISTRIBUTIONS OF SOLUTIONS OF  

STOCHASTIC DIFFERENTIAL EQUATIONS 

 

Aladdin Shamilov 

Azerbaijan National Academy of Sciences 

Institute of Mathematics and Mechanics, Azerbaijan 

Email: aladdin.shamilov@imm.az 

 

ABSTRACT 
 

 Generalized Entropy Optimization Methods (GEOM’s) are developed in over really 

investigations which allow to obtain in particularly distributions in the form Max-Max Ent, 

Min-Max Ent, Max-Minx Ent, and Min Minx Ent distributions so-called as Generalized 

Entropy Optimization distributions (GEOD’s). 
 

  In the present study we have represented applications of mentioned methods in the 

theory of fundamental statistical distributions and the Stochastic Differential Equation 

Modelling. 
 

 Classical statistical methods can be also applied to obtain pdf and distributions of 

solutions of SDE at fixed time. However, there are random variables distributions of which 

cannot be expressed through classical theoretical distributions. Consequently, it is 

necessary to use GEOD’s is more broadly and sufficiently.  
 

 Note that investigations to pdf of solutions of SDE are contained also by fact that 

mentioned pdf’s can be considered as solutions of Kolmogorov Equation. 
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1. INTRODUCTION 
 

 Generalized Entropy Optimization Methods (GEOM’s) are represented and developed 

in [Shamilov (2006b), Shamilov (2006a), Shamilov (2007), Shamilov (2010) and Shamilov 

(2015)]. Their applications in several areas given in [Shamilov et al. (2008), Shamilov, 

Senturk and Yilmaz (2016) and Shamilov and Ince (2016)], GEOM’s consist of following. 
 

 By starting from given fixed statistical distribution (discrete or continues) and entropy 

optimization measure 𝐿 the special functional U on characterizing moment functions set 𝐾 

is defined. This functional allows to obtain distribution closest and distribution forest from 

the given fixed distribution. Mentioned distributions (GEOD’s). For example, if 𝐿 = 𝐻 is 

Shanon entropy measure then functional 𝑈 = 𝐻𝑚𝑎𝑥 . If 𝐿 = 𝐷 is Kullback – Leibler entropy 

measure then mentioned functional 𝑉 = 𝐷𝑚𝑖𝑛 . GEOD’s are Max Ent, Min Max Ent, Max 

Minx Ent, Min Minx Ent distributions. 
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 Entropy optimization distributions MaxEnt distributions especially as Generalized 

Entropy Optimization distribution successfully describe distribution random variables 

(Kapur and Kesavan, 1992). Consequently, applications of GEOD’s in modeling 

distributions of solutions of SDE also acquire significance.  
 

 For example, error distribution established as outcomes of apparatus measuring 

distance via radio waves cannot representable as classical theoretical distributions 

(Ventsel, 1969). 
 

 Modeling Physical systems by ordinary differential equations ignores stochastic  

effects (Shamilov, 2012). 
 

 During the past few decades, because of wide change applications of SDEs have 

become quite popular models in a variety of areas such as financial mathematics, actuarial 

sciences, physics, biology, geology, mechanics, astronomy and other fields of science and 

engineering [Allen (2007) and Öz (2013)]. In the literature, there are many interesting 

applications and models of stochastic differential equations in [Allen (1999), Allen (2010), 

Allen et al. (2007), Capasso and Bakstein (2005), Chernov et al. (2003), Evans (2015), 

Hayes and Allen (2005), Kloeden and Platen (1995), Korn and Korn (2001), Kunze (2012), 

Mikosch (1998) and Ross (1999)]. Methods the computational solution of SDEs are based 

on similar techniques for ordinary differential equations, but generalized to provide support 

for stochastic dynamics (Allen et al., 2007). 
 

 The present paper is organized as follows. In section 1 it is given basing of GEOM’s to 

applications in approximately solution distributions of SDE. Section 2, rates to Generalities 

Entropy Optimization Methods for discreet and continues random variables. In section 3 it 

is given a brief explanation of SDE and Euler – Maruyama approximate solving SDE. In 

section 4, a goodness of fit criteria for SDE model is given. In section 5, distributions of 

approximate solution of SDE are represented. In section 6 GEOM to obtain approximate 

probability density function is given. In section 7 it is represented a method to obtain SDE 

model available to given statistical data. In section 8 are given stages to obtain approximate 

GEOM distribution for solution of SDE. In section 9 it is given Conclusion. 

 

2. GENERALIZED ENTROPY OPTIMIZATION METHODS (GEOM’s) 
 

 Entropy Optimization Problem (EOP) (Kapur and Kesavan, 1992) and Generalized 

Entropy optimization problem (GEOP) (Shamilov, 2006a), can be formulated in following 

form.  
 

 EOP: Let 𝑓(0)(𝑥) be given probability density function of random Variable 𝑋, 𝐿 be an 

entropy optimization measure and 𝑔(𝑥) be given moment vector function generating 𝑚 

moment constraints. It is required to obtain the distribution function 𝑓(𝑥) corresponded to 

𝑔(𝑥) given extremum valve to 𝐿.  
 

 GEOP: Let 𝑓(0)(𝑥) be an entropy optimization measure and 𝐾 be a set of given moment 

vector functions. It is required to choice moment vector functions 𝑔(1),  𝑔(2) from 𝐾 such 

that 𝑔(1)(𝑥) generates distribution 𝑓(2)(𝑥) closest to 𝑓(0)(𝑥), 𝑔(2) generates distribution 

𝑓(2)(𝑥) farest from 𝑓(0)(𝑥) which respect to entropy optimization measure 𝐿. If 𝐿 is taken 

as Shanon entropy measure 𝐻, then 𝑓(1)(𝑥) is called Min Max Ent distribution and 𝑓(2)(𝑥) 
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is called Max Ent distribution. If 𝐿 is taken as Kullback – Leibler measure 𝐷, then 𝑓(1)(𝑥) 

is called Min Max Ent distribution and 𝑓(2)(𝑥) is called Max Min Ent distribution. The 

method of solving GEOP is called GEOM. 
 

2.1 Definition of Max-Ent Functional 

 The problem of maximizing max Ent measure 
 

𝐻 = −∑𝑝𝑖𝑙𝑛𝑝𝑖

𝑛

𝑖=1

, (2.1) 

 

subject to constraints 
 

∑𝑝𝑖

𝑛

𝑖=1

 𝑔𝑖(𝑥𝑖) = 𝜇𝑗 𝑗 = 0, 1, . . . ,𝑚, 𝑔𝑖(𝑥) ≡ 1. (2.2) 

 

where 𝜇0 = 1, 𝑔0(𝑥) ≡ 1, 𝑔1(𝑥), . . . , 𝑔𝑚(𝑥) linearly independent random variables  

𝑝𝑖 > 0, 𝑖 = 1, 2, … , 𝑛,𝑚 + 1 < 𝑛, is entropy optimization problem. 
 

 Then 
 

𝐻𝑚𝑎𝑥 = −∑𝑒−∑ 𝑗(𝑥2)
𝑚
𝑗=0

𝑛

𝑖=1

[−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚

𝑗=0

] =∑ 𝑗𝜇𝑗 .

𝑚

𝑗=0

 (2.4) 

 

 If the distribution 𝑝(0) = (𝑝1
(0)
, … , 𝑝𝑛

(0)
 ) is given then it is possible to find  

𝜇 = (1, 𝜇1, … , 𝜇𝑚) for the each moment vector function 𝑔(𝑥) = (1, 𝑔1(𝑥), … , 𝑔𝑚(𝑥)). 
𝐻𝑚𝑎𝑥 can be considered as functional dependent on moment vector function 𝑔(𝑥). This 

functional is called Max Ent functional if (2.4) take into account in (2.2) then  
 

∑𝑒−
0−∑ 𝑗g𝑗(𝑥𝑖)

𝑚
𝑗=1 = 1

𝑛

𝑖=1

 

∑g𝑗(𝑥𝑖)𝑒
−0−∑ 𝑗g𝑗(𝑥𝑖)

𝑚
𝑗=1 = μ𝑗

𝑛

𝑖=1

𝑗 = 1, 2, … ,𝑚 }
  
 

  
 

 (2.5) 

 

where 0, 1, … , 𝑚 are Lagrange multiplievs. 
 

 From (2.5) follows that 
 


0 = 𝑙𝑛∑𝑒−∑ 𝑗g𝑗(𝑥𝑖)

𝑚
𝑗=1

𝑛

𝑖=1

 

 

f𝑗(1, … , 𝑚) ≡∑g𝑗(𝑥𝑖)
 𝑒−∑ 𝑗g𝑗(𝑥𝑖)

𝑛
𝑖=1

 ∑ 𝑒𝑛
𝑖=1

−∑ 𝑗g𝑗(𝑥𝑖)
𝑚
𝑗=1

= μ𝑗

𝑛

𝑖=1

 

𝑗 = 1, 2, … ,𝑚 

(2.6) 

 



To Approximate Distributions of Solutions of Stochastic Differential Equations 140 

 In (2.2) 1, 𝑔1(𝑥), … , 𝑔𝑚(𝑥) are linearly in depended characterizing moment functions. 

𝜇0, 𝜇1, … , 𝜇𝑚 obtained when 𝑝1, … , 𝑝𝑛 can be considered as frequencies of the given 

statistical data. 𝐻𝑚𝑎𝑥 as functional is defined on the set 𝐾 of moment functions. In 

applications 𝐾 may be considered the set of finite number of elements. 
 

 𝑔1(𝑥), … , 𝑔𝑚(𝑥) characterizing moment functions assumed as random variables being 

linearly independent. According to definition of linearly independency the inequality 
 

𝐸{|𝑎, 𝑔1 +⋯+ 𝑎𝑚𝑔𝑚|
2} > 0 (2.7) 

 

for each 𝑎 = [𝑎1, … , 𝑎𝑚] ≠ 0 is satisfied. 
 

 If equality 
 

𝑎1𝑔1(𝑥) + ⋯+ 𝑎𝑚𝑔𝑚(𝑥) = 0 
 

for at least one 𝑎 = [𝑎1, … , 𝑎𝑚] ≠ 0 is satisfied then 𝑔1(𝑥), … , 𝑔𝑚(𝑥) are said linearly 

depended. 
 

 From (2.7) follows that 
 

𝐸{|𝑎, 𝑔1 +⋯+ 𝑎𝑚𝑔𝑚|
2} = 𝑎𝑇𝑅𝑎, 

𝑅 = {𝑅𝑖𝑗}, 𝑅𝑖𝑗 = 𝐸{𝑔𝑖𝑔𝑗} 

𝑎𝑇𝑅𝑎 = 0 
 

only when 𝑎 = 0. 
 

 Consequently if 𝑔1(𝑥), … , 𝑔𝑚(𝑥) are linearly independent then 
 

𝑎1𝑔1(𝑥) + ⋯+ 𝑎𝑚𝑔𝑚(𝑥) = 0 
 

because 𝑅 is positive defined matrix. 
 

 It is proved that system (2.6) has unique solution with respect to 1, 2, … , 𝑚.  
 

 For (2.6) it is proved that 
 

𝐷(𝑓1, … , 𝑓𝑚)

𝐷(1, … , 𝑚)
≠ 0 

 

since this is determinant of variance – covariance matrix of linearly independent random 

variables 𝑔1(𝑥), … , 𝑔𝑚(𝑥). Consequently 𝑖, … , 𝑚 can be obtained from (2.6) according 

to existence of implicit function theorem. Mentioned solution can be find for example 

Newton method (Shamilov, 2006b). 

 

2.2 Definition of MinxEnt Functional 

 The problem of minimizing MinxEnt measure  
 

D(𝑝; 𝑞) = ∑𝑝𝑖 ln
𝑝𝑖
𝑞𝑖

𝑛

𝑖=0

 (2.2.1) 

 

subject to constraints (2.2), gives MinxEnt distribution. 
 

 This problem has solution 
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𝑝𝑖 = 𝑞𝑖𝑒
−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚
𝑗=0  𝑖 = 1, 2, … , 𝑛 (2.2.2) 

 

where 𝑗, 𝑗 = 1, 2, … ,𝑚 are Lagrange multipliers  
 

𝐷𝑚𝑖𝑛 = ∑ 𝑞𝑖
𝑛
𝑖=0 𝑒−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚
𝑗=0  [−∑ 𝑗𝑔𝑖(𝑥𝑖)

𝑚

𝑗=0
] =  −∑ 𝑗𝜇𝑗

𝑚

𝑗=0
.  (2.2.3) 

 

 According to constraints (2.2) 
 

∑𝑞𝑖

𝑛

𝑖=0

𝑒−𝜆0−∑ 𝑗𝑔𝑗(𝑥𝑖)
𝑚
𝑗=1  = 1

∑𝑔𝑗(𝑥𝑖)𝑞𝑖

𝑛

𝑖=0

𝑒−𝜆0−∑ 𝑗𝑔𝑗(𝑥𝑖)
𝑚
𝑗=1 = 𝜇𝑗  

}
 
 

 
 

 (2.2.4) 

 

 From this equations 
 

𝜆0 = ln 𝑞𝑖 𝑒
−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚
𝑗=1  

 

∑ 𝑔𝑗(𝑥𝑖)𝑞𝑖
𝑛

𝑖=1

𝑒
−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚
𝑗=1

ln 𝑞𝑖𝑒
−∑ 𝑗𝑔𝑗(𝑥𝑖)

𝑚
𝑗=1

= 𝜇𝑗; 𝑗 = 1,… ,𝑚 (2.2.5) 

 

 From (2.2.5) it is possible to find 1, … , 𝑚 from (2.2.5). Mentioned solution can be 

obtained by Newton Method as (2.6) in other words from (2.2.5) be expressed by 

μ1, … , μ𝑚. Mentioned staitments realisied analogues statements using on definition of Hmax 

functional (2.4). It is possible use (2.2.5) for D𝑚𝑖𝑛 (2.2.3). 

 

2.3 Geod’s with Finite Number of Moment Functions 

 Let 1, 𝑔1(𝑥), … , 𝑔𝑟(𝑥) are linearly independent moment functions and 1, μ1, … , μ𝑚 are 

moment valves established by statistical data.  
 

 Let us 𝐾 = {𝑔1(𝑥), … , 𝑔𝑟(𝑥)}, 𝐾
(𝑟,𝑚) is set off all 𝑚 combinations of elements of 𝐾. 

Eech combination taken from 𝐾(𝑟,𝑚) and the given statistical data according to (2.2) 

represents moment constraints for functionals 𝐻𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛. Consequenty mentioned values 

allow to define MinMaxEnt, MaxMaxEnt for 𝐻𝑚𝑎𝑥 and MinMinEnt, MinMinxEnt for 

functional 𝐷𝑚𝑖𝑛 .  
 

 The number of elements of set 𝐾(𝑟,𝑚)is equel to ( 𝑟
𝑚
) = 𝑙 . For this risen minimum and 

maximum values of functionals 𝐻𝑚𝑎𝑥, 𝐷𝑚𝑖𝑛 can be established, so if 𝐿 = 𝐻, 𝑈 = 𝐻𝑚𝑎𝑥 . 
 

min
1≤𝑗≤𝑙

𝑈(𝑔(𝑗)) = 𝑈(𝑔̃) max
1≤𝑗≤𝑙

𝑈(𝑔(𝑗)) = 𝑈(𝑔̃̃)  

 

 Moment vector function 𝑔̃ defines MinMaxEnt distribution and 𝑔̃̃ defines MaxmaxEnt 

distributions 
 

 If 𝐿 = 𝐷(𝑝, 𝑞), then 𝑉 = 𝐷𝑚𝑖𝑛  
 

min
1≤𝑗≤𝑙

𝑉(𝑔(𝑗)) = 𝑉(𝑔̃), max
1≤𝑗≤𝑙

𝑉(𝑔(𝑗)) = 𝑉(𝑔̃̃) 
 

then vector function 𝑔̃ defines MinMinxEnt distribution and 𝑔̃̃ defins MaxMinxEnt 

distribution. 
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Remark:  
 GEOD’S with finite number y moment constraints for discrete random variables can 

be obtained for continuous variables random variables/ If Set 𝐾 consist of 𝑟 = 𝑟 = 6 

number characterizing moment functions if is necessary to consider all cases 𝑚 = 1,… ,6. 

Because goodness - fit dependents not only on number of characterizing functions 

dependents also on class of each function. 
 

 It is known that fundamental classical distributions can be established as Entropy 

optimization distributions by virtue of corresponding characterizing moment functions. 

Consequently, in order to make set 𝐾 participated in formulation of GEOM it is necessary 

to take into account mentioned characterizing moment functions equality with other know 

characterizing moment functions (Kapur and Kesavan, 1992). 

 

2.4 Generalized Entropy Optimization Distributions  

for Continuous Variate Random Variables 

 Let 𝑓(0)(𝑥) be given probability density function the problem of maximizing 

continuous variate MaxEnt measure 
 

𝐻 = −∫𝑓(𝑥) ln 𝑔(𝑥) 𝑑𝑥

𝑏

𝑎

 (2.4.1) 

 

subject to constraints 
 

∫𝑓(𝑥)𝑔𝑗(𝑥)𝑑𝑥 = 𝜇𝑗

𝑏

𝑎

 ;  𝑗 = 0, … ,𝑚 (2.4.2) 

 

𝑔0(𝑥) = 1, 𝜇0 = 1 
 

has solution  
 

𝑓(𝑥) = 𝑒−∑ 𝑗𝑔𝑗(𝑥)
𝑚
𝑗=0  𝑗 = 0,1, … ,𝑚  (2.4.3) 

 

where 𝑗 , 𝑗 = 0,1, … ,𝑚 are Lagrange multipliers consequently  
 

𝐻𝑚𝑎𝑥 = −∫𝑒−∑ 𝑗𝑔𝑗(𝑥)
𝑚
𝑗=0

𝑏

𝑎

(−∑𝜆𝑗𝑔𝑗(𝑥)

𝑚

𝑗=0

)𝑑𝑥 =∑𝜆𝑗𝜇𝑗

𝑚

𝑗=0

. (2.4.4) 

 

 If the pdf 𝑓0(𝑥) is given, then one can obtain moment value (1, 𝜇1, … , 𝜇𝑚) for each 

moment vector function 𝑔(𝑥) = (1, 𝑔1(𝑥), … , 𝑔𝑚(𝑥)) and 𝐻𝑚𝑎𝑥 can be considered as a 

functional dependent on moment functions 𝑔1(𝑥), … , 𝑔𝑚(𝑥). 
 

 Let us 𝐾 = {𝑔1(𝑥), … , 𝑔𝑟(𝑥)}, 𝐾
(𝑟,𝑚) is set of all 𝑚 combinations of elements of 𝐾. 

Each combination taken from 𝐾(𝑟,𝑚)  and the given statistical data according to (2.4.2) 

represent moment constraints for functional (2.4.1) 𝐿 (𝐻 or 𝐷). The number of 

corresponding values L are finite. Consequently, mentioned values allow to define 

MinMaxEnt, MaxMaxEnt distributions. 
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 So if 𝐿 = 𝐻, 𝑈 = 𝐻𝑚𝑎𝑥   
 

min
1≤𝑗≤𝑙

𝑈(𝑔(𝑗)) = 𝑈(𝑔̃) max
1≤𝑗≤𝑙

𝑈(𝑔(𝑗)) = 𝑈(𝑔̃̃) 

 

moment vector function 𝑔̃ defines MinMaxEnt, and 𝑔̃̃ defines MaxMaxEnt distributions if  
 

𝐿 = 𝐷(𝑝; 𝑞) =  ∫𝑃(𝑥) ln
𝑃(𝑥)

𝑞(𝑥)
𝑑𝑥

𝑏

𝑎

 (2.4.6) 

 

and constraints are (2.4.2) if 𝑉 = 𝐷𝑚𝑖𝑛 then  
 

 min
1≤𝑗≤𝑙

𝑉(𝑔(𝑗)) = 𝑉(𝑔̃(1)), max
1≤𝑗≤𝑙

𝑉(𝑔(𝑗)) = 𝑉(𝑔̃̃(2))  
 

𝑔̃(1) defines MinMinxEnt, 𝑔̃̃(2) defines MaxMinxEnt distributions. 

 

3. STOCHASTIC DIFFERENTIAL EQUATION (SDE)  

MODELS IN STATISTICS 
 

 Many Stochastic Differential Equation Models can be developed by using procedures 

analogies procedures using to develop ordinary differential equations models. Moreover, 

there are many stochastic differential equations models developed in corresponded 

scientific areas. Mentioned stochastic differential equation models can be used in 

applications. 
 

 A typical one-dimensional stochastic differential equation has the form  
 

𝑋(𝑡, 𝜔) = 𝑋(0, 𝜔) + ∫𝑓(𝑠, 𝑋(𝑠, 𝜔)

𝑡

0

𝑑𝑠 + ∫𝑔(𝑠, 𝑋(𝑠, 𝜔)

𝑡

0

𝑑𝑊(𝑠) (3.1) 

 

and differential form 
 

𝑑𝑋(𝑡) = 𝑓(𝑡, 𝑋)𝑑𝑡 + 𝑔(𝑡, 𝑋)𝑑𝑊(𝑡) (3.2) 
 

for 0 ≤ 𝑡 ≤ 𝑇 where 𝑋(0, 𝜔)𝜖𝐻𝑅𝑉, 𝑋(𝑡, 𝜔) is a stochastic process not a deterministic 

function.   
 

 𝑊(𝑡, 0) = 𝑊(𝑡) is a Winer process or Brownian motion and since it is no differentiable 

𝑊(𝑡), 𝑡 ≥ 0 is a continuous stochastic process with stationary independent increments 

such that 𝑊(0) = 0, ∫ 𝑑𝑊(𝑠) = 𝑊(𝑑) −𝑊(𝑠)~𝑁(0, 𝑑 − 𝑠)
𝑑

𝑐
 for 0 ≤ 𝑐 ≤ 𝑑. 

 

 The function 𝑓 is often called the drift coefficient, of the stochastic differential equation 

while 𝑔 is referred to as the diffusion coefficient. It is assumed that the functions 𝑓 and 𝑔 

are non-anticipating and satisfy the following conditions (𝑐1) and (𝑐2) for some constant 

𝑘 ≥ 0 of existenc and uniqueness theorem of solution of SDE (Allen, 2007). 
 

 Condition (𝑐1): |𝑓(𝑡, 𝑥) − 𝑓(𝑠, 𝑦)|2 ≤ 𝑘(𝑡 − 𝑠) + (𝑥 − 𝑦)2, 𝑠 ≥ 0, 𝑇 ≥ 𝑡, 𝑥, 𝑦𝜖𝑅 

 Condition (𝑐2): |𝑓(𝑡, 𝑥)|2 ≤ 𝑘(1 + |𝑥|2), 0 ≤ 𝑡 ≤ 𝑇, 𝑥𝜖𝑅. 
 

 There are many approximate methods to solving SDE. One of mentioned methods is 

Euler – Maruyama (EM) method. This method is represented in following form. 
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3.1 Euler – Maruyama Method 

 Suppose that stochastic process is observed at times 𝑡0, 𝑡1, … , 𝑡𝑁−1, where 𝑡𝑖 = 𝑖∆𝑡 for 

a constant ∆𝑡 > 0. 
 

 Let 𝑥0, 𝑥1, … , 𝑥𝑁−1 denote 𝑁 observations 𝑥(𝑡𝑡) = 𝑥𝑖, 𝑖 = 0,… , 𝑁 − 1 of the stochastic 

process and the SDE (3.1) for the process is given.  

 

 In the future investigations, it is required to approximate solve SDE (3.1) using  

Euler – Maruyama (EM) method. 

 

3.2 Forward Euler – Maruyama Method 

 This method allows to obtain approximate trajectory according to observation 𝑥𝑖 on 

interval [𝑡𝑖, 𝑇] by formula 
 

𝑋𝑖 = 𝑋(𝑡𝑖, 𝜔) = 𝑋(𝑡𝑖−1, 𝜔) + 𝑓(𝑡𝑖−1 + 𝑖∆𝑡, 𝑋(𝑡𝑖−1, 𝜔))∆𝑡

+ +𝑔(𝑡𝑖−1 + 𝑖∆𝑡, 𝑋(𝑡𝑖−1, 𝜔))√∆𝑡
(0,1), 

(3.2.1) 

 

where 𝑡0 = 0, 𝑡𝜖[0, 𝑇], 𝑡𝑖 = 𝑖∆𝑡, 𝑖 = 1,… , 𝐾 − 1, ∆𝑡 =
𝑇

𝐾
, 𝐾 is number of steps using 

Euler-Maruyama method. 

 

3.3 Backward Euler – Maruyama Method 

 As showed above trajectory according to 𝑥𝑖 is not obtained on interval [0, 𝑡𝑖]. This 

range can be removed by backward Euler – Maruyama method in the following form  
 

𝑋(𝑡𝑖−1) = 𝑋(𝑡𝑖) − 𝑓(𝑡𝑖; 𝑋(𝑡𝑖 − 𝑖∆𝑡))∆𝑡

− −𝑔(𝑡𝑖; 𝑋(𝑡𝑖 − 𝑖∆𝑡))√∆𝑡(𝑡𝑖 − 𝑖∆𝑡), 
(3.2.2) 

 

where 𝑡0 = 0, 𝑡𝜖[0, 𝑇], 𝑡𝑖 = 𝑖∆𝑡, 𝑖 = 𝑙, 𝑙 − 1,… ∆𝑡 =
𝑇

𝐾
.  

 

 By taking into account above expressed, we have stated that forward and backward EM 

methods allow to obtain at least 𝑁 trajectories according to 𝑁 observations 𝑥0, 𝑥1, … , 𝑥𝑁−1 

of stochastic process represented by SDE (3.2). 
 

 It should be noted that each of mentioned trajectories derives 𝑁 number approximate 

values of random variables 𝑋(𝑡) wich is solution of SDE (3.2) at time 𝑡𝑖 
 

𝑋̂(𝑡𝑖) = (𝑥1
(𝑖)
, 𝑥2

(𝑖)
, … , 𝑥𝑘

(𝑖)
), 𝑖 = 0, 1, 2, … , 𝑘; 𝑘 = 𝑁, 2𝑁,… , 𝑡𝑖 = 𝑖𝑡 ,𝑡 = 𝑇/𝐾. 

 

Note 3.1.1. 

 By using forward and back ward EM methods, it is possible to obtain 𝑁 trajectories 

according to 𝑁 observation 𝑥0, 𝑥1, … , 𝑥𝑁−1 of stochastic process appropriated to SDE 

model (3.2).  
 

 In order to obtain pdf of random variable 𝑋(𝑡𝑖) the number of valves can be increased 

by simulations in order words by using vales 𝐾 = 2𝑁, 3𝑁,… 
 

 Many other problems are considered in [Evans (2015), Hayes and Allen (2005), 

Kloeden and Platen (1995), Korn and Korn (2001), Kunze (2012), Mikosch (1998), Ross 
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(1999), Vajargah and Asghari (2014), Kempthorne et al. (2013), Higham (2001) and Bak, 

Nielsen and Madsen (1999)]. 

 

4. A COODNES – OF – FIT TEST FOR AN SDE MODEL 
 

 A simple goodness – of-fit test in this section is described. To test if there is a lack – of 

– fit between the stochastic differential equation model and the data (Allen, 2007). 
 

 Assume that {𝑋(𝑡), 𝑡 > 0} the process is observed at time points 𝑡𝑖 = 1,2, … , 𝑁. Let 

𝑥1, 𝑥2, … , 𝑥𝑁 denote the observations. For each 𝑡𝑖 , 𝑖 = 1,2, … , 𝑁 simulations are performed 

to obtain 𝑀 trajectories from time 𝑡 − 1 untiel 𝑡 starting at 𝑥𝑡−1. It is known that Euler – 

Maruyama (EM) method with 𝑅 steps to approcsimaity solving SDE (3.2) can be 

represented by formula 
 

  𝑋𝑗+1,1
(𝑚)

= 𝑋𝑗,𝑖
(𝑚)

+ 𝑓 (𝑡𝑖−1 + 𝑗
∆𝑡

𝐾
, 𝑋𝑗,𝑖

(𝑚)
)
∆𝑡

𝐾
+ 𝑔 (𝑡𝑖−1 + 𝑗

∆𝑡

𝐾
, 𝑋𝑗,𝑖

(𝑚)
)√

∆𝑡

𝐾

𝑗,𝑖

(𝑚)
, 

 (3.4.1) 
 

where 𝑗 = 0,1, … , 𝐾 − 1, 𝑚 = 1,2, … ,𝑀; 𝑡𝑖 = 𝑖∆𝑡, 𝑖 = 0,1, … , 𝐾 − 1  

𝑋0,𝑖
(𝑚)

= 𝑋𝑖−1,  𝑗,𝑖
(𝑚)
~𝑁(0,1) for each 𝑖, 𝑗 and 𝑚. 

 

 Moreover 𝑋𝑗,𝑖
(𝑚)

 and 
𝑗,𝑖

(𝑚)
 are calculated at point (𝑡𝑖−1 + 𝑗

∆𝑡

𝐾
,) where  is an 

elementary outcome  𝜖 ,  is the set of elementary outcomes. 
 

 Notices that in formula (3.4.1) for Winer process 𝑊(𝑡𝑖), it used the following relations  
 

𝑊(𝑡𝑖+1) −𝑊(𝑡𝑖)~𝑁(0, 𝑡𝑖+1 − 𝑡𝑖) = 𝑁 (0,
∆𝑡

𝐾
)  and 𝑁 (0,

∆𝑡

𝐾
) ≡ √

∆𝑡

𝐾
(0,1) 

 

where  is random variable with normal distribution having “0” mean and “𝑗” variance. 

Indeed, let (0,1)~𝑋,𝑁 (0,
∆𝑡

𝐾
)~𝑌,√

∆𝑡

𝐾
= 𝛼 and 𝑌 = 𝛼𝑥. Then distribution function 𝐹(𝑦) 

of random variable 𝑌 can be defined in the following form 
 

𝐹(𝑦) = 𝑃(𝑌 < 𝑦) = 𝑃 (𝑥 <
𝑦

𝛼
) = ∫

1

√2𝜋

𝑦

−∞

𝑒̅
𝑥2

2 𝑑𝑥. 

 

 Substituting 
𝑦

𝛼
= 𝑥, , 𝑑𝛼 =

𝑑𝑦

𝛼
  

 

𝐹(𝑦) = ∫
1

√2𝜋

𝑥

−∞

𝑒
−
𝑦2

2𝛼2
𝑑𝑦

𝛼
= ∫

1

𝛼√2𝜋

𝑥

−∞

𝑒
−
𝑦2

2𝛼2𝑑𝑦 = 𝑁(0, 𝛼2), 

 

consequently, 𝑁(0, 𝛼2) = 𝛼𝑁(0,1). 
 

 Here after the rank 𝑉𝑡 of valve 𝑥𝑡 as compared to the endpoints 𝑀 simulated trajectories 

is calculated. With 𝑅𝑡 being the stochastic vaviable covvesponding to the observation 𝑉𝑡 it 
hold under 𝐻0, that 
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𝑃(𝑅𝑡 = 𝑞) = 𝑃𝑡𝑞 =
1

𝑀 + 1
; 𝑞 = 1, 2, … ,𝑀 + 1; 𝑡 = 2,3, … , 𝑁 

 

 In general, the dependence of 𝑃𝑡𝑞  on 𝑡 and 𝑞 is of interest. However, for every  

𝑡 = 2,3, … , 𝑁 only one observation of 𝑅𝑡 is available and therefore we most assume that 

the probability is independent of time; i.e.: 𝑃𝑡𝑞 = 𝑃𝑞 . Under this assumption  
 

𝑃𝑞 =
𝑁−1(𝑎)

𝑁 − 1
;  𝑞 = 1, 2, … ,𝑀 + 1 

 

with 𝑁−1(𝑎) = ∑ 𝐼(𝑅𝑡 = 𝑞);  𝑞 = 1, 2, … ,𝑀 + 1𝑁
𝑡=2  

 

where 𝐼(𝑅𝑡 = 𝑞) = 1 if 𝑅𝑡 = 𝑞 and “0” otherwise, under 𝐻0, it is clear that 
 

𝐸(𝑃𝑞) = 𝐸 [
𝑁−1(𝑎)

𝑁 − 1
] =

1

𝑀 + 1
 

 

 The Pearson test statistics for the hypotheses that 𝑃𝑞 =
1

𝑀+1
 ; 𝑞 = 1,2, … ,𝑀 + 1 

 

𝒳2 =∑
(𝑁−1(𝑞)

𝑁 − 1
𝑀 + 1

)
2

𝑁 − 1
𝑀 + 1

𝑀+1

𝑞=1
, 

 

witch under 𝐻0, as asymptotically is distributed as 𝒳2(𝑀). The approximation fails when 

the frequencies expected under 𝐻0 are small in (Allen, 2007). Many researchers have  

used the role that no expected frequencies should be less than 5. Therefore, in this case 
𝑁−1

𝑀+1
≥ 5, yielding an upper bound of 

𝑁−𝐶

5
 on 𝑀. In practices the number of simulated 

trajectories will be well below that bound if for instance 𝑁 = 500 the rule requires that no 

more than 98 inter observation trajectories are simulated for each 𝑡 = 2,… , 𝑁 (Bak, 

Nielsen and Madsen, 1999).  

 

5. DISTRIBUTIONS OF APPROXIMATE SOLUTION  

OF STOCHASTIC DIFFERENTIAL EQUATION 
 

Let  

𝑋̂(𝑡𝑖) = (𝑥1
(𝑖), 𝑥2

(𝑖), … , 𝑥𝑘
(𝑖)), 𝑖 = 0, 1, 2, … , 𝐾; 𝐾 = 𝑁, 2𝑁,…,  

 

𝑡𝑖 = 𝑖𝑡,𝑡 =
𝑇

𝐾
 , (5.1) 

 

where 𝐾 is used number of steps approximating Euler – Maruyama method, 𝑁 is  

number of values of given statistical data. Values 𝑥1
(𝑖), 𝑥2

(𝑖), … , 𝑥𝑘
(𝑖)

 𝑖 = 0, 1, 2, … , 𝐾; 

𝐾 = 𝑁, 2𝑁,… of random variable 𝑋̂(𝑡𝑖) are evaluated by starting given statistical data and 

Euler – Maruyama approximation method. Values of random variables 𝑋̂(𝑡𝑖) are obtained 

as EM approximations according to located at straight line 𝑡 = 𝑡𝑗, 𝑗 = 0,1, … , 𝐾; 𝐾 =

𝑁, 2𝑁,… successive modal points of sample path. Consequently points (𝑡𝑖 , 𝑥𝑗
(𝑖)), 𝑗 =

0,1, … , 𝑘;  𝐾 = 𝑁, 2𝑁,… Can be considered as nodal points of some approximate 

trajectories of SDE (3.2). 
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 It is known that the mean square error in EM method satisfies inequality (Allen, 2007): 
 

𝐸|𝑋(𝑡𝑖) − 𝑋̂(𝑡𝑖)|
2
< 𝑐̂𝑡, (5.2) 

 

where 𝑋(𝑡𝑖) is random variable as solution of SDE (3.2),  
 

𝑐̂ =
1

2
(1 + 𝑐)𝑒(1+4𝑘)𝑇 , 𝑐 = 2𝑘(𝑇 + 1)(1 + 𝑀),  

 

𝑀 = 3(𝐸|𝑋(0)|2 + 𝐾𝑇2 + 𝐾𝑇)𝑒3𝐾(𝑇+𝑇
2) 

 

𝐾 is represented number in (𝑐1), 𝐹(𝑐2) conditions. According to Lyapunov inequality from 

(5.2) follows 
 

𝐸|𝑋(𝑡𝑖) − 𝑋̂(𝑡𝑖)| ≤ 𝐸(|𝑋(𝑡𝑖) − 𝑋̂(𝑡𝑖)|
2
)
1
2 < 𝑐̂𝑡 (5.3) 

 

 From (5.3), it is seen that {𝑋̂(𝑡𝑖)} strongly converges to 𝑋(𝑡𝑖), when 𝑡 → 0.  

 

6. GEOM TO OBTAIN APPROCSIMATE PDF  

FOR SOLUTION OF SDE 
 

 Classical method of statistics can be applied to establish pdf of solution 𝑋̂(𝑡𝑖) of SDE. 

Howerer there are random variables pdf of which cannot be expressed through classical 

statistical distributions (Ventsel, 1969). Consequentli it is necessary to use GEOM’S to 

obtain pdf of 𝑋(𝑡𝑖). Since set of GEOD’S is more broadly and sufficiently. It should be 

noted that if 𝑋(𝑡, 𝜔) is solution of SDE (3.2) then pdf of 𝑋(𝑡, 𝜔) is solution of Kolmogorov 

– Fokker- Plank equation (Allen, 2007). Consequently, by starting statistical data 

approximate Euler – Maruyama method with GEOM of obtaining pdf allows to obtain 

approximate solution 𝜑(𝑡, 𝑥) of Kolmogorov equation 
 

 Let us consider  
 

𝑋̂(𝑡𝑖) = (𝑥1
(𝑖)
, 𝑥2

(𝑖)
, … , 𝑥𝑘

(𝑖)
), 𝑖 = 0, 1, 2, … , 𝐾; 𝐾 = 𝑁, 2𝑁,… , 𝑡𝑖 = 𝑖𝑡 ,𝑡 = 𝑇/𝐾, 

 (5.1) 
 

where 𝑋̂(𝑡𝑖) is established by Euler – Maruyama method (3.1) by starting from statistical 

data 𝑥0, 𝑥1, … , 𝑥𝑁−1 at times 𝑡0, 𝑡1, … , 𝑡𝑁−1. 
 

𝑥1
(0)
= 𝑥0, 𝑥2

(0)
= 𝑥1, … , 𝑥𝑁

(0)
= 𝑥𝑁−1 , or 𝑥𝑙

(0)
= 𝑥𝑙−1, 𝑙 = 1, 2, … , 𝑁. 

 

 As it is state in section 5 points (𝑡𝑖, 𝑥𝑗
(𝑖)), 𝑗 = 0, 1, 2, … , 𝐾; 𝐾 = 𝑁, 2𝑁,…, can be 

considered as nodal points of approximate trajectories of SDE (3.2). Consequently points 

(𝑡𝑖 , 𝑥𝑗
(𝑖)), 𝑗 = 0, 1, 2, … , 𝐾 are values of random variable 𝑋(𝑡𝑖) of approximate solution of 

SDE (3.2).  

 

7. STOCHASTIC DIFFERENTIAL EQUATION MODEL  

AVAILABLE TO STATISTICAL DATA 
 

 Many stochastic Differential Equations models can be developed by using procedures 

analogical procedures using to develop ordinary differential models (Allen, 2007). 

Moreover, there are many stochastic differential equations developed in corresponded 
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statistical areas. Mentioned stochastic differential models can be used in order to obtain 

SDE model available to statistical data. These problems can be solved by using goodness-

of-fit test described in section 4. 
 

 If there is goodness-of-fit between statistical data and a stochastic differential equation 

model, then stochastic differential equation model describes the statistical data. 

 

8. APPLICATION STAGES 
 

1. By using goodness-of-fit test establish stochastic differential equation model 

available to given statistical data.  

2. By using Euler – Maruyama method or other method obtain random variable 𝑋̂(𝑡𝑖) 
(5.1). 

3. By using GEOM’S obtain pdf or distribution at fixed time of approximate solution 

of SDE (3.1), (3.2).  

 

9. CONCLUSION 
 

 In the present study many necessary aspects of GEOM’S and SDE are represented. It 

is showed that GEOM’S are important models to obtain distributions of approximate 

solution of SDE. Moreover, application stages of approximate solving SDE and obtaining 

distributions of solution of SDE are given. 
 

 In order to consider applications of GEOM’S in statistical modeling we have 

formulated and investigated several aspects illustrated in literature. 
 

 Approximate solutions of SDE established by using Euler-Maruyama method or other 

methods are represented by GEOD’s. 
 

 There are considered MaxEnt, MinxEnt functionals defined on the set of characterizing 

moment functions. Mentioned functionals allow to define GEOM’s: MaxMaxEnt, 

MinMaxEnt, MaxMinxEnt and MinMinxEnt distributions. 
 

 The use GEOD’S in this problem fakes into account that these distributions are broadly 

and sufficiently with respect to other distributions. 
 

 Moreover, EOD’s especially as GEOD’S successfully describe distributions of random 

variables (Shamilov et al., 2008). Consequently, applications of GEOD’S in modeling 

distributions of approximate solution of SDE acquire significance.  
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