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ABSTRACT 
 

 This paper introduces Right Truncated Inverse Generalized Rayleigh distribution 

(RTIGRD) with two parameters λ and θ with some of its properties as; (Survival-Function, 

Probability Density Function, Hazard-Function, Cumulative Distribution Function, R-Th 

Moment, Mean, Variance, Median, Moment Generating Function, and Mode. In addition, 

we propose a new hybrid algorithm (Artificial Bee Colony Algorithm with Firefly 

Algorithm (ABC_FA)) to estimate Survival functions based on the parameters (λ, θ) of 

(RTIGRD). Simulation is utilized to compare the proposed algorithm with traditional 

methods (Maximum Likelihood Estimator and moment method) and standard algorithms 

(Artificial Bee Colony Algorithm and Firefly Algorithm). The results show proposed 

approach (ABC_FA) provides a 100% accurate estimate of the survival function for the 

cases selected in this research, as it has a less mean square error than other estimation 

methods.  
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1. INTRODUCTION 
 

 A Truncated Distribution is a conditional distribution on a specific range that restricted 

the full range. Also, it arise in large of fields, such as epidemiology, survival analysis, 

economics, and astronomy [1]. When a distribution is truncated, the domain of the resulting 

random variable is constrained based on the truncation points of interest, changing the 

distribution’s shape in order to produce finer results. Consequently, many researchers are 

drawn to analyze such truncated data utilizing truncated versions of the standard statistical 

distributions in Survival Analysis. In recent years, statisticians have been interested in 

estimating survival functions [2-7] and Estimating survival by using Truncated 

Distribution [8]. They proposes the method of moments to compute the moment expression 

for two and three parameters, and truncated at (right, left and doubly) utilizing Weibull 

distributions. In [9] calculated an estimate for the value of the parameter in the truncated 
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Gamma probability distribution. Also, in [10] proposed skew-Cauchy and truncated skew-

Cauchy at probability for modeling the exchange rate between the US Dollar from 1800 to 

2003 and the UK Pound Sterling and results showed the truncated skew-Cauchy is a better 

probability as a function to model the dataset in skew-Cauchy. On the other hand, Rayleigh 

distribution is utilized as life time models and has applications including reliability theory, 

survival analysis, and especially in communication engineers [11], furthermore, the Right 

Truncated Inverse Generalized Rayleigh Distribution will be utilized to estimating its 

parameters by utilizing the Survival function. However, the problem of unknown 

parameters is estimated in the Truncated or statistical Distributions which are utilize to 

study certain phenomena in one of the important problems facing constantly those who are 

interested in applied statistics. The non-linearity of any model makes the estimation of the 

statistical analysis and the parameters are more difficult. In addition, classical methods fail 

to estimate the parameters of the distribution. The Meta heuristic and hybrid Meta heuristic 

algorithms are used to find solutions to these problems. For many reasons, not the least of 

which is that it is easy to put into practice while still being dependable, robust, and effective 

[12]. So, this study aimed to introduce a hybrid algorithms to estimate the parameters of 

Right Truncated Inverse Generalized Rayleigh Distribution based on Survival functions. 
 

 After this section, the paper is structured as follows: Section 2 describes the Right 

Truncated Inverse Generalized Rayleigh distribution. Section 3 presents some properties 

of Right Truncated Inverse Generalized Rayleigh distribution. Section 4 and section 5 

introduce Maximum Likelihood Estimation and Moment Estimation Method, receptively. 

Section 6 describes the Hybrid Meta heuristic Algorithm, Simulation study, Numerical 

results and discussion are presented in Section 7 and Section 8. Section 9 conclusions and 

Section 10 Recommendation. 

 

2. TRUNCATED INVERSE GENERALIZED RAYLEIGH DISTRIBUTION 
 

 The Rayleigh distribution is a good model for life-experimentation studies; it was 

derived from the Weibull distribution, which has only two parameters [13]; 
 

𝑓(𝑥) =
2𝑋

𝜆
  𝑒−

𝑥2

𝜆 . (1) 

 

𝐹(𝑥) = 1 − 𝑒−
𝑥2

𝜆 . (2) 
 

 Mudholkar and Srivastava [14] suggested a new method for generalization different 

distribution dependent on c.d.f, which we will be used to Generalized Rayleigh Distribution 

as follows: 
 

𝐺(𝑥) = [𝐹(𝑥)]𝜃 .  

= ([1 − 𝑒−
𝑥2

𝜆 ]
𝜃

) . 

 

(3) 

 

𝑔(𝑥) = ([1 − 𝑒−
𝑥2

𝜆 ]

𝜃−1

) 
2𝑥 𝜃

𝜆
 𝑒−

𝑥2

𝜆  . (4) 

 

 The Generalized Raleigh Distribution illustrated by the random variable 

transformation. If 𝑇 are the random variable (rv) and it has Generalized Raleigh 
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Distribution, then rv 𝑋 = (
1

𝑇
) has an inverse Generalized Raleigh Distribution (IGRD). 

Suppose rv 𝑇 is following inverse Generalized Rayleigh distribution at two parameters 

θ and λ. Then p.d.f, c.d.f function of Inverse Generalized Rayleigh Distribution are given 

for the equations (3) and (4), respectively by [15] 
 

𝑔(𝑡) = [1 − 𝑒
−
1
𝜆𝑡2]

𝜃−1 2𝜃

𝜆𝑡3
 𝑒
−
1
𝜆𝑡2 . 

 

𝐺(𝑡) = 1 − [1 − 𝑒
−
1
𝜆𝑡2]

𝜃

. (5) 

 

 When 0 < 𝑡 < ∞ and 𝑔(𝑡) = 0 o.w. 
 

 Hence for truncation for the Inverse Generalized Rayleigh Distribution, Right-Side 

Truncation for the Inverse Generalized Rayleigh Distribution to called Right  

Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) on [0,1] by using 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
𝑔(𝑡)

𝐺(1)
, When 𝑡 = 1 in equation (5) 𝐺(1) = (1 − [1 − 𝑒−

1

𝜆]
𝜃

)  

 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
𝑔(𝑡)

𝐺(1)
 

 

 Then, The p.d.f of RTIGRD is 
 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =  

2𝜃
𝜆𝑡3

 [1 − 𝑒
−
1
𝜆𝑡2]

𝜃−1

 𝑒
−
1
𝜆𝑡2

1 − [1 − 𝑒−
1
𝜆]
𝜃

,   0 ≤ 𝑡 ≤ 1. 

 

 The c.d.f of RTIGRD is 
 

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) = ∫
[1 − 𝑒

−
1
𝜆𝑡2]

𝜃−1
2𝜃
𝜆𝑡3

 𝑒
−
1
𝜆𝑡2

1 − [1 − 𝑒−
1
𝜆]
𝜃

𝑡

0

 𝑑𝑡 

 

 Therefore,  

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
1 − [1 − 𝑒

−
1
𝜆𝑡2]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
. 

 

 The Survival Function of RTIGRD is  
 

𝑆𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) = 1 − 𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) 

= 1 −
1 − [1 − 𝑒

−
1
𝜆𝑡2]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
= 
1 − [1 − 𝑒−

1
𝜆]
𝜃

− 1 + [1 − 𝑒
−
1
𝜆𝑡2]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
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𝑆𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
[1 − 𝑒

−
1
𝜆𝑡2]

𝜃

− [1 − 𝑒−
1
𝜆]
𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃

. (6) 

 

where, 0 < t < 1;  t: value of random variable, 𝜃 and λ: Shape parameter, Scale parameter 

θ, λ > 0, respectively. 

 

3. SOME PROPERTIES OF RIGHT TRUNCATED INVERSE  

GENERALIZED RAYLEIGH DISTRIBUTION 
 

 In this section, some properties gave for RTIGRD. However, some properties are 

complicated to be solved. Therefore, we made some simplification for the p.d.f. by using 

Binomial theorem and Tyler series 
 

(𝑎 ∓ 𝑥)𝑛 =∑(
𝑛

𝑗
) (∓𝑥)𝑗𝑎𝑛−𝑗

𝑛

𝑗=0

[1 − 𝑒
−
1
𝜆𝑡2]

𝜃−1

= ∑(
𝜃 − 1

𝑗
) (−𝑒

−
1
𝜆𝑡2)𝑗  

𝜃−1

𝑗=0

  

 

 Thus,  
 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
∑ (

𝜃 − 1
𝑗

) (−1)𝑗 𝑒
−

𝑗
𝜆𝑡2  

2𝜃
𝜆𝑡3

 𝑒
−
1
𝜆𝑡2𝜃−1

𝑗=0

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
∑ (

𝜃 − 1
𝑗

) (−1)𝑗  
2𝜃
𝜆𝑡3

 𝑒
−
𝑗+1
𝜆𝑡2𝜃−1

𝑗=0

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

 Let 
 

𝑒
−
𝑗+1
𝜆𝑡2 =∑

(−1)𝑘

𝑘!
 
(𝑗 + 1)𝑘

(𝜆𝑡2)𝑘

∞

𝑘=0

 

 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =

∑ (
𝜃 − 1
𝑗

) (−1)𝑗  
2𝜃
𝜆𝑡3

𝜃−1
𝑗=0  ∑

(−1)𝑘

𝑘!
 
(𝑗 + 1)𝑘

(𝜆𝑡2)𝑘
∞
𝑘=0

1 − [1 − 𝑒−
1
𝜆]
𝜃

  

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
(𝑗 + 1)𝑘

(𝜆)𝑘 𝑡2𝑘
 
2𝜃
𝜆𝑡3

𝜃−1
𝑗=0  ∞

𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 𝑡2𝑘+3
𝜃−1
𝑗=0  ∞

𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃
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𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3𝜃−1

𝑗=0  ∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

, 0 ≤ 𝑡 ≤ 1 

 

3.1 R-Th Moment 
 

 The R-Th moment can be derived as follow: 
 

𝐸(𝑡𝑟) = ∫ 𝑡𝑟 𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) 𝑑𝑡 
1

0

  

= ∫ 𝑡𝑟
∑ ∑

(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

1

0

 𝑑𝑡 

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
𝜃−1
𝑗=0

∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

∫ 𝑡𝑟−2𝑘−3𝑑𝑡
1

0

 

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
𝜃−1
𝑗=0  ∞

𝑘=0

1 − [1 − 𝑒−
1
𝜆]
𝜃

 
𝑡𝑟−2𝑘−2

𝑟 − 2𝑘 − 2
|0
1 

 

𝐸(𝑡𝑟) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃 (𝑗 + 1)𝑘

(𝜆)𝑘+1 (𝑟 − 2𝑘 − 2)
 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

  

 

 When 𝑟 = 1, the mean of RTIGRD equal to  
 

𝜇 = 𝐸(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃 (𝑗 + 1)𝑘

(𝜆)𝑘+1 (1 − 2𝑘 − 2)
𝜃−1
𝑗=0  ∞

𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

𝜇 = 𝐸(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
 (𝑗 + 1)𝑘  2𝜃

(𝜆)𝑘+1 (−2𝑘 − 1)
𝜃−1
𝑗=0

∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

 When 𝑟 = 2, we will get 𝐸(𝑡2) 
 

𝐸(𝑡2) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−2𝑘)
𝜃−1
𝑗=0

∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃
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𝐸(𝑡2) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

 When 𝑟 = 3 
 

𝐸(𝑡3) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (1 − 2𝑘)
 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

 When 𝑟 = 4 
 

𝐸(𝑡4) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (2 − 2𝑘)
 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

3.2 Variance 
 

 The Variance (Var) of RTIGRD can be found as follows: 
 

𝜎2 = 𝑉𝑎𝑟(𝑡) = 𝐸(𝑡2) − [𝐸(𝑡)]2 
 

𝑉𝑎𝑟(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

−

[
 
 
 
 ∑ ∑

(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−2𝑘 − 1)
𝜃−1
𝑗=0  ∞

𝑘=0  

(1 − [1 − 𝑒−
1
𝜆]
𝜃

)
]
 
 
 
 
2

  

 

=
[
 
 
 
 [1 − [1 − 𝑒−

1
𝜆]
𝜃

] ∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
𝜃−1
𝑗=0  ∞

𝑘=0  

− [∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−2𝑘 − 1)
𝜃−1
𝑗=0

∞
𝑘=0 ]

2

 
]
 
 
 
 

[1 − [1 − 𝑒−
1
𝜆]
𝜃

]

2

 

 

 

3.3 Moment Generating Function 
 

𝑀𝑡(ŧ) = 𝐸(𝑒ŧ𝑡) = ∫ 𝑒ŧ𝑡  𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) 𝑑𝑡 
1

0
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𝑀𝑡(ŧ) = ∫ 𝑒ŧ𝑡
∑ ∑

(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
 𝑡−2𝑘−3 𝜃−1

𝑗=0
∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

1

0

 𝑑𝑡 

= ∫ 𝑒ŧ𝑡  𝑡−2𝑘−3𝑑𝑡
1

0
  

 

 Use,  
 

𝑒ŧ𝑡 = ∑
(ŧ𝑡)𝑛

𝑛!
 

∞

𝑛=0

 

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (
𝜃 − 1
𝑗

) 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1
𝜃−1
𝑗=0

∞
𝑘=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

∫ ∑
(ŧ𝑡)𝑛

𝑛!

∞

𝑛=0

 𝑡−2𝑘−3 𝑑𝑡
1

0

 

 

=

∑ ∑ ∑
(−1)𝑘+𝑗  (ŧ)𝑛 

𝑘!  𝑛!
 (
𝜃 − 1
𝑗

)
2𝜃 (𝑗 + 1)𝑘

(𝜆)𝑘+1 
𝜃−1
𝑗=0  ∞

𝑘=0  ∞
𝑛=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 ∫  𝑡𝑛−2𝑘−3 𝑑𝑡
1

0

 

 

=

∑ ∑ ∑
(−1)𝑘+𝑗  (ŧ)𝑛 

𝑘!  𝑛!
 (
𝜃 − 1
𝑗

)
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 
𝜃−1
𝑗=0  ∞

𝑘=0  ∞
𝑛=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 𝑡𝑛−2𝑘−2

𝑛 − 2𝑘 − 2
|0
1  

 

𝑀𝑡(ŧ) =

 ∑ ∑ ∑
(−1)𝑘+𝑗  (ŧ)𝑛 

𝑘!  𝑛!
 (
𝜃 − 1
𝑗

)
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (𝑛 − 2𝑘 − 2)
𝜃−1
𝑗=0  ∞

𝑘=0
∞
𝑛=0  

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

3.4 Median  

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
1

2
 ⟹ 

1 − [1 − 𝑒
−
1
𝜆𝑡2]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
=
1

2
 , 

 

𝑡𝑀𝑒𝑑𝑖𝑎𝑛 =

√
  
  
  
  
  
  
 1

𝜆 𝑙𝑛  

[
 
 
 
 

1 −

[
 
 
 1 + [1 − 𝑒−

1
𝜆]
𝜃

2

]
 
 
 

1
𝜃

]
 
 
 
 
−1

 

. 
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3.5 Mode 
 

𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
[1 − 𝑒

−
1
𝜆𝑡2]

𝜃−1
2𝜃
𝜆𝑡3

 𝑒
−
1
𝜆𝑡2

1 − [1 − 𝑒−
1
𝜆]
𝜃

, 0 ≤ 𝑡 ≤ 1, 

 

𝑡𝑀𝑜𝑑𝑒 = √2∑
𝑗 + 1

3𝜆

𝜃−1

𝑗=0

. 

 

4. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 
 

 Let 𝑡1, 𝑡2, … , 𝑡𝑛 to be the random samples (rs) with size (n) from p.d.f 𝑓(𝑡; 𝜆, 𝜃) with 

parameters (λ, θ), the likelihood function 𝐿(𝜆, 𝜃) is the joint p.d.f of the (rs) is computed 

as: 
 

𝐿 (𝑡, 𝑡2 , … . . , 𝑡𝑛, 𝜆, 𝜃) =  ∏𝑓𝑅𝑇𝐼𝐺𝑅𝐷(𝑡𝑖)

𝑛

𝑖=1

= ∏

(1 − 𝑒
−

1

𝜆𝑡𝑖
2
)

𝜃−1

2𝜃
𝜆𝑡𝑖

3  𝑒
−

1

𝜆𝑡𝑖
2

1 − (1 − 𝑒−
1
𝜆)

𝜃

𝑛

𝑖=1

 

= 2𝑛
𝜃𝑛

𝜆𝑛
∏

(

  
 
(1 − 𝑒

−
1

𝜆𝑡𝑖
2
)

𝜃−1

1
𝑡𝑖
3  𝑒

−
1

𝜆𝑡𝑖
2

1 − (1 − 𝑒−
1
𝜆)

𝜃

)

  
 

𝑛

𝑖=1

 

 

 Taking the natural logarithm to the two sides to get: 
 

𝐿𝑛𝐿 = 𝐿𝑛 (2𝑛
𝜃𝑛

𝜆𝑛
) +∑𝑙𝑛 

(

  
 
(1 − 𝑒

−
1

𝜆𝑡𝑖
2
)

𝜃−1

1
𝑡𝑖
3  𝑒

−
1

𝜆𝑡𝑖
2

1 − (1 − 𝑒−
1
𝜆)

𝜃

)

  
 
 

𝑛

𝑖=1

 

 

𝐿𝑛𝐿 = 𝑛𝐿𝑛(2) + 𝑛𝐿𝑛(𝜃) − 𝑛𝐿𝑛(𝜆) −∑𝐿𝑛(𝑡𝑖
3)

𝑛

𝑖=1

+∑𝐿𝑛 (𝑒
−

1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

+∑𝐿𝑛((1 − 𝑒
−

1

𝜆𝑡𝑖
2
)

𝜃−1

)

𝑛

𝑖=1

− 𝑙𝑛 (1 − (1 − 𝑒−
1
𝜆)

𝜃

)

𝑛
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𝐿𝑛𝐿 = 𝑛𝐿𝑛(2) + 𝑛𝐿𝑛(𝜃) − 𝑛𝐿𝑛(𝜆) − 3∑𝐿𝑛(𝑡𝑖)

𝑛

𝑖=1

+∑(
−1

𝜆𝑡𝑖
2)

𝑛

𝑖=1

+ (𝜃 − 1)∑𝐿𝑛 (1 − 𝑒
−

1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

− (1 − (1 − 𝑒−
1
𝜆)

𝜃

)  

 

 

(7) 

 

for equation (7) partial derivative with respect to the unknown parameters (λ, θ): 
 

𝜕 𝐿𝑛 𝐿 

𝜕𝜆
=
−𝑛

𝜆
+∑( 

1

𝜆2 𝑡𝑖
2 )

𝑛

𝑖=1

+ (𝜃 − 1)∑

(

 
 
−1
𝜆2 𝑡𝑖

2  𝑒
−

1

𝜆𝑡𝑖
2
 

(1 − 𝑒
−

1

𝜆𝑡𝑖
2
)
)

 
 

𝑛

𝑖=1

 

−

(

 
 𝜃 (1 − 𝑒

−
1
𝜆)

𝜃−1
1
𝜆2
 𝑒−

1
𝜆

1 − (1 − 𝑒−
1
𝜆)

𝜃

)

 
 

 

 

−𝑛

𝜆
+∑( 

1

𝜆2 𝑡𝑖
2 ) + (𝜃 − 1)∑

(

 
 
−1
𝜆2 𝑡𝑖

2  𝑒
−

1

𝜆𝑡𝑖
2
 

(1 − 𝑒
−

1

𝜆𝑡𝑖
2
)
)

 
 

𝑛

𝑖=1

𝑛

𝑖=1

 

−

(

 
 𝜃 (1 − 𝑒−

1
𝜆)

𝜃−1
1
𝜆2
 𝑒−

1
𝜆

1 − (1 − 𝑒−
1
𝜆)

𝜃

)

 
 
= 0 

 

 

 

 

(8) 

 

𝜕 𝐿𝑛 𝐿 

𝜕𝜃
=
𝑛

𝜃
+∑(1 − 𝑒

−
1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

 

 

𝑛

𝜃
+∑(1 − 𝑒

−
1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

= 0 (9) 

 

 However, the two non-linear equations are complicated; the Newton-Raphson method 

was utilized to estimates λ and θ.  
 

 So, the estimated survival function �̂�𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) by MLE will be: 
 

�̂� 𝑀𝐿𝐸
𝑅𝑇𝐼𝐺𝑅𝐷

(𝑡) =

(1 − 𝑒
−

1

�̂�𝑀𝐿𝐸 𝑡
2)

�̂�𝑀𝐿𝐸

− (1 − 𝑒
−

1

�̂�𝑀𝐿𝐸)

�̂�𝑀𝐿𝐸

1 − (1 − 𝑒
−

1

�̂�𝑀𝐿𝐸)

�̂�𝑀𝐿𝐸
 (10) 
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 Know, the objective function of FA and ABC algorithm depends on minimize the log 

likelihood function as objective function (fitness function). 
 

𝐹𝑀𝐿𝐸  = 𝑛𝐿𝑛(2) + 𝑛𝐿𝑛(𝜃) − 𝑛𝐿𝑛(𝜆) − 3∑𝐿𝑛(𝑡𝑖)

𝑛

𝑖=1

+∑(
−1

𝜆𝑡𝑖
2)

𝑛

𝑖=1

 

+(𝜃 − 1)∑𝐿𝑛 (1 − 𝑒
−

1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

− 𝑛𝑙𝑛 (1 − (1 − 𝑒−
1
𝜆)

𝜃

) 

 

 

(11) 

  

5. MOMENTS ESTIMATION METHOD (MOM): 
 

 The MOM will be utilizes to estimating the parameters λ, and θ for Right Truncated 

Inverse Generalized Rayleigh Distribution on [0,1]. MOM is found by equating the sample 

moments to the corresponding population moment [16] 
 

𝐸(𝑡𝑘) =
1

𝑛
∑𝑡𝑖

𝑘

𝑛

𝑖=1

, where 𝑘 = 1, 2, …  

 

 The first and second moment of population and sample for λ, and θ of RTIGRD is given 

depending on the general form of tr moment respectively as follows: 
 

𝐸(𝑡𝑟) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (𝑟 − 2𝑘 − 2)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

  

 

 When 𝑟 = 1 
 

𝐸(𝑡) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (1 − 2𝑘 − 2)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

 Hence, when, 𝑀1 = 𝐸(𝑡)  
 

𝑡̅ =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (1 − 2𝑘 − 2)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃
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𝑡̅ −

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
2𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (1 − 2𝑘 − 2)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

= 0 
(12) 

 

when 𝑟 = 2 then,  
 

𝐸(𝑡2) =

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

the second moment of samples and population are:  
 

𝑀2 =
1

𝑛
∑𝑡𝑖

2

𝑛

𝑖=1

 , 𝑀2 = 𝐸(𝑡2) 

 

1

𝑛
∑𝑡𝑖

2

𝑛

𝑖=1

=

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

 

 

1

𝑛
∑𝑡𝑖

2

𝑛

𝑖=1

−

∑ ∑
(−1)𝑘+𝑗

𝑘!
 (𝜃−1

𝑗
)

𝜃−1

𝑗=0

∞

𝑘=0

 
𝜃(𝑗 + 1)𝑘

(𝜆)𝑘+1 (−𝑘)
 

1 − [1 − 𝑒−
1
𝜆]
𝜃

= 0. 
(13) 

 

 The two non-linear equations are difficult to solve, the Newton-Raphson was utilized 

to estimate λ and θ.  
 

 So, the estimated survival function �̂�𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) by MOM will be: 
 

�̂� 𝑀𝑂𝑀
𝑅𝑇𝐼𝐺𝑅𝐷

(𝑡) =

(1 − 𝑒
−

1

�̂�𝑀𝑂𝑀 𝑡
2)

�̂�𝑀𝑂𝑀

− (1 − 𝑒
−

1

�̂�𝑀𝑂𝑀)

�̂�𝑀𝑂𝑀

1 − (1 − 𝑒
−

1

�̂�𝑀𝑂𝑀)

�̂�𝑀𝑂𝑀
. (14) 
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6. HYBRID ABC-FA ALGORITHM  
 

 Meta heuristics algorithms like the GA [17], PSO [18], SA [19] and ant colony 

algorithm [20] showed good performance for optimization problems of estimation 

parameters [21-24]. However, the hybrid meta heuristics results in robust solution methods 

[25] For an efficiency presented by (speed and quality) of the estimated algorithm, we must 

consider two major components in modern meta heuristics, namely diversification and 

intensification then balance between them. 
 

 We will combine two Meta-Heuristics Bee Colony algorithms according to recent 

assumptions and advanced modeling methods [26, 27] and firefly algorithm in [28, 29] to 

estimate the parameter, so the algorithm converges slowly, with solutions jumping around 

optimal ones. Diversification is powerful. 

 

Artificial Bee Colony Algorithm with Firefly Algorithm (ABC_FA) 
 

Steps of ABC_FA as follows: 
 

Step 1: Generate values of parameters ABC and FA (𝛼: randomization parameter,  𝛽0: 
firefly attractiveness, ℕ: population size, 𝛾: media absorption coefficient and 

maximum number of generation. 
 

Step 2: Generate randomly solution set 𝑥𝑖.  
 

Step 3: Evaluates the objective function (𝑓) by minimize the log-likelihood of all 

solutions (𝑋𝑖) in population. 
 

𝑓 = 𝑛𝐿𝑛(2) + 𝑛𝐿𝑛(𝜃) − 𝑛𝐿𝑛(𝜆) − 3∑𝐿𝑛(𝑡𝑖)

𝑛

𝑖=1

+∑(
−1

𝜆𝑡𝑖
2)

𝑛

𝑖=1

+ (𝜃 − 1)∑𝐿𝑛 (1 − 𝑒
−

1

𝜆𝑡𝑖
2
)

𝑛

𝑖=1

− 𝑛𝑙𝑛 (1 − (1 − 𝑒−
1
𝜆)

𝜃

) . 

 

Step 4: Save the best solution in the population. 
 

Step 5: Generates new 𝑈𝑖, from oldest solutions, by using equation 𝑈𝑖𝑗 = 𝑥𝑖𝑗 +

𝛽0𝑒
−𝛾 𝑟𝑖𝑗

2

 ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) + 𝛼 ( 𝑟  and −
1

2
 ), Where 𝑈 is a new solution near Pi, 𝑗 ∈ 

{1,2, … ,𝐷}, 𝑘 ∈{1,2,…, ℕ}, ∅𝑖𝑗 ∈ [−1,1]. 
 

Step 6: Save the best solution between candidate and current solutions.  
 

Step 7: Computes the probability (𝑝𝑖) for 𝑋𝑖 by utilizing the equation 𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
ℕ
𝑛=1

 

which equation computes 𝑓𝑖𝑡𝑖; 𝑓𝑖𝑡𝑖 =

{
 
 

 
 

1

1+√∑ 𝑓𝑖
ℕ
𝑛=1

 , 𝑖𝑓 𝑓𝑖 ≥ 0

1 + √|1 + √∑ 𝑓𝑖
ℕ
𝑛=1 | , 𝑖𝑓 𝑓𝑖 < 0

 

 

Step 8: Generates new solution 𝑈𝑖(𝑛𝑒𝑤) based on 𝑝𝑖 . (Onlookers bees) 

Where 𝑈𝑖(𝑛𝑒𝑤) =  𝑥𝑖𝑗 + 𝛽0𝑒
−𝛾 𝑟𝑖𝑗

2

 ∅𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) + 𝛼 (𝑟  and −
1

2
 )  
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𝑟𝑖𝑗 =∥ 𝑥𝑖𝑗 − 𝑥𝑘𝑗 ∥= √∑(𝑥𝑖𝑗 − 𝑥𝑘𝑗)
2

𝑑

𝑘=1

 , 𝛾 = 0.01 , 𝛽0 = 1 

 

Step 9: Evaluating the fitness function of all Ui(new) in the population. 
 

Step 10: If there is a solution that has been given up on, replace it with 𝑋𝑖. (Scout bee) 
 

Step 11: Keep population’s best solution. 

 

7. SIMULATION STUDY  
 

 The Simulation study refers to the artificial method that may be utilized to solve the 

complicated problems for simulating purely in statistical problem [30].Replicate the 

simulation 1000 times. Various sample sizes are tested: 15, 30, 60, 90, 120, 160 and 200 

for examining the effect of sample sizes.  
 

 The following steps of the simulation will be; 
 

Step 1: Initialize all the parameters of FA, ABC, ABC_FA. 
 

Step 2: Initialize random samples as (u1, u2, … , un), which are follows the uniform 

distribution (0, 1), than transforms it into random samples by applying the Right 

Truncated Inverse Generalized Rayleigh Distribution using c. d. f. where shows as 

follows: 

𝐹𝑅𝑇𝐼𝐺𝑅𝐷(𝑡) =
1 − [1 − 𝑒

−
1
𝜆𝑡2]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
, 𝑢𝑖  =

1 − [1 − 𝑒
−

1

𝜆𝑡𝑖
2
]

𝜃

1 − [1 − 𝑒−
1
𝜆]
𝜃
 ,  

 

𝑡𝑖 =
1

√𝜆 𝑙𝑛 𝑙𝑛 ( 1 − (1 − 𝑢𝑖  (1 − (1 − 𝑒−
1
𝜆)

𝜃

))

1
𝜃

)

−1

 

 

 

Lets 𝑋𝑖  is a vector utilizes for all parameters such as 𝑋𝑖 = [λ , θ]. 
 

Step 3: Calculate the 𝑆 from equations (6). 
 

Step 4: Calculate �̂� depending on MLE and MOM utilizing the equations (10), (14), 

respectively. 
 

Step 5: Calculate the best solution of (�̂�) from FA, ABC, ABC_FA methods. 
 

Step 6: MSE is calculated as follows for 𝐿 = 1000 iterations: 

𝑀𝑆𝐸 =
1

𝐿
∑((�̂�𝑖 −  𝑆)

2
)

𝐿

𝑖=1

. 
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8. NUMERICAL RESULTS  
 

 To determine the best method for the proposed hybrid algorithm (ABC-FA) with 

standard algorithms (ABC, FA) and classical methods (MLE, MOM) by estimating 

Survival function based on the scale and shape parameters (𝜆, 𝜃) of RTIGRD, Seven 

sample sets (15, 30, 60, 90, 120, 160, 200) were used. Then, the simulation results for all 

methods (ABC, MLE, FA, MOM, ABC_FA) as shown in Tables 1 to 3 depend on Survival 

analyses and MSE. In Table 1, the two parameters for this model (𝜆1, 𝜃1) = (2,1), the 

parameters (𝜆2, 𝜃2) = (3,2) in Table 2, and the two parameters (λ3,θ3) = (1,1) in  

Table 3. Tables 1-3 showed that the Hybrid (ABC_FA) algorithms provided less Mean 

Square Error than standard algorithms and classical methods for the Survival function. This 

implies that the (ABC_FA) method was the best of the other estimators. Then come the 

standard algorithms and then the traditional methods. Additionally, we notice in Table 1 

when the two parameters are different i.e. the (shape parameter) is less than the (Scale 

parameter) (first case) the ABC algorithm showed that it has less MSE when 𝑛 = 30, 90, 

120, 160, 200, but in the case of 𝑛 = 15, 60, it was shown that FA possesses Less MSE, so 

it is better than ABC, then MLE, then MOM in this paper. While in Table 2, we notice that 

the best algorithm comes after the ABC_FA algorithm. The ABC algorithm showed that it 

has less MSE then FA, then MLE and then MOM, in all the different samples that were 

taken in this paper, While in Table 3, when the parameters of shape and Scale are equal 

and their value is equal to 1, we note that the standard algorithms (ABC, FA) provided 

reasonably suitable solutions, as they have a MSE is less than classical methods (MLE, 

MOM). 
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Table 1: MSE Values of ŝ when 𝛌𝟏 = 𝟐 𝐚𝐧𝐝 𝛉𝟏 = 𝟏 

n 𝐒𝐑𝐓𝐈𝐆𝐑𝐃 MSE (MLE) MSE (MOM) MSE (FA) MSE (ABC) MSE (ABC-FA) Best 

15 0.69536823 0.000279428 0.0003502758 0.0000033965 0.0000484441 0.0000016402 ABC-FA 

30 0.20364897 0.000032544 0.0000389562 0.0000242187 0.0000167972 0.00001116591 ABC-FA 

60 0.71328565 0.000010345 0.0003598742 0.000004126 0.0000078178 0.00000000897 ABC-FA 

90 0.97661764 0.000014824 0.000140916 0.000209093 0.000004434 0.00000054673 ABC-FA 

120 0.93607551 0.000004147 0.000271967 0.000031009 0.000008273 0.0000040863 ABC-FA 

160 0.84751029 0.000027631 0.000378042 0.0000182925 0.0000103616 0.00000002866 ABC-FA 

200 0.52514897 0.000019746 0.000231699 0.000006818 0.0000029052 0.0000014012 ABC-FA 
 

Table 2: MSE Values of ŝ when 𝛌𝟐 = 𝟑 𝐚𝐧𝐝 𝛉𝟐 = 𝟐 

n 𝐒𝐑𝐓𝐈𝐆𝐑𝐃 MSE (MLE) MSE (MOM) MSE (FA) MSE (ABC) MSE (ABC-FA) Best 

15 0.53549829 0.000022734 0.000250536 0.0000656504 0.0000150243 0.00000340529 ABC-FA 

30 0.55905762 0.000236549 0.000268477 0.0000900801 0.0000042203 0.00000001841 ABC-FA 

60 0.56906055 0.000025471 0.0002455957 0.000037199 0.0000042911 0.00000259583 ABC-FA 

90 0.43882727 0.000022511 0.0001774321 0.0000814238 0.0000014214 0.00000064302 ABC-FA 

120 0.62688707 0.000010996 0.0003176245 0.000065546 0.0000059413 0.00000400296 ABC-FA 

160 0.87010244 0.000025286 0.0003401512 0.000016753 0.000009915 0.0000026157 ABC-FA 

200 0.90374701 0.000005384 0.000226576 0.000025907 0.0000089267 0.00000351602 ABC-FA 
 

Table 3: MSE Values of ŝ when 𝛌𝟑 = 𝟏 𝐚𝐧𝐝 𝛉𝟑 = 𝟏 

n 𝐒𝐑𝐓𝐈𝐆𝐑𝐃 MSE (MLE) MSE (MOM) MSE (FA) MSE (ABC) MSE (ABC-FA) Best 

15 0.03760081 0.000001406 0.0000014111 0.0000498446 0.0000013982 0.00000045506 ABC-FA 

30 0.09199902 0.000008404 0.000008445 0.0000250173 0.0000084159 0.00000837323 ABC-FA 

60 0.85374337 0.000709516 0.0007145423 0.0001264311 0.0003359395 0.00000197689 ABC-FA 

90 0.26951253 0.000072468 0.0000725243 0.0000039169 0.0000477501 0.00000133984 ABC-FA 

120 0.06754231 0.000003255 0.0000045577 0.0000263238 0.0000039054 0.00000254381 ABC-FA 

160 0.16555507 0.000023419 0.000027376 0.000066912 0.0000184527 0.00001582867 ABC-FA 

200 0.07357868 0.000037617 0.0000540878 0.0000231682 0.0000371159 0.00000474864 ABC-FA 
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9. CONCLUSIONS 
 

 In this paper proposes three methods (ABC), (FA) and (ABC_FA) to estimate Survival 

functions based on the parameters (λ, θ) of Right Truncated Inverse Generalized Rayleigh 

distribution. Simulation is utilized to compared the suggested method with classical 

method which are includes (MLE and MOM). The results shows that (In the first, second, 

third and fourth cases, it was found that (ABC_FA) algorithm is better than the other 

algorithms in all the different sample sizes that were randomly selected in this paper, where 

the proposed algorithms were strengthened by taking the strengths of each proposed 

algorithm in this paper and merging them with Some in order to give better and stronger 

results, as the results proved that the new algorithms are the best because they have less 

MSE. 

 

10. RECOMMENDATION 
 

In this section, some recommendations for further studies were presented as follows: 
 

1. Different optimization algorithms have different strengths and weaknesses. Thus, 

our recommendation is to propose other hybrid algorithms to estimate the Survival 

functions based on the parameters of any distribution. 

2. Using our proposed methods to estimate the parameters of any distribution 

containing more parameters to generalize the algorithm. 
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