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ABSTRACT 
 

 The competing risks model plays an important role in the statistical analysis of 

engineering, econometric, biological and other fields. A tested product may fail from 

different causes. Therefore, these failure causes as if competing with each other to bring 

about the failure of tested products (an experimental unit). Hence, in the statistical 

literature, this is known as the competing risk problem and it has been studied quite 

extensively by several researchers when the lifetime of the product is the latent failure time 

of the first failure cause among all the possible failure causes. In this paper, a competing 

risks model based on a generalized progressive hybrid type-I (GPH type-I) censoring is 

considered when the latent lifetime distributions of failure causes are inverse Weibull (IW) 

distributed and partially observed. We established various estimation methods including 

Maximum likelihood estimates (MLEs) and Bayes estimates (BEs). MLEs with the 

corresponding asymptotic confidence intervals are obtained. Bayes estimates of the 

parameters are obtained based on squared error loss (SEL) function under the assumption 

of independent gamma priors. Furthermore, we applied Markov Chain Monte Carlo 

(MCMC) techniques to compute BEs and to calculate the credible intervals. Finally, 

simulation studies and real data set are used for illustrative purpose. 
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1. INTRODUCTION 
 

 The most widely used censoring techniques in real-world test experiments are type-I 

and type-II censoring. The experimental time is fixed in type-I censoring scheme, but the 

number of observed failures is a random variable. On the other hand, in type-II censoring 

scheme, the experimental time is a random variable while the number of observed failures 

is fixed. Hybrid censoring is the combination of type-I and type-II censoring schemes. If 

the experiment ends at the time point 
*

1 ( )min( , )rT x T  it is referred to as hybrid type I 
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proposed by Epstein (1954). The experiment is referred to as a hybrid type-II, suggested 

by Childs et al. (2003), if it ends at the time point 
*
2 ( )max( , )rT x T . These schemes have 

the disadvantage of not allowing the units to be removed from the experiment at any point 

other than the terminal point. To deal with this problem, a more general censoring scheme 

called progressive type-II censoring is used. Balakrishnan and Aggarwala (2000) and Wu 

(2002) proposed another type of censoring called progressive censoring allows removal of 

units from the test at times other than the final termination point.  
 

  Recently, progressive type-II censoring scheme has become very popular for analyzing 

life test data. Kundu and Joarder (2006) and Childs et al. (2008) introduced hybrid 

censoring schemes in the context of progressive censoring; they considered a type-I and 

type-II progressive hybrid censoring schemes, respectively, which are a combination of 

progressive type-II and hybrid censoring schemes. The drawback of the progressive hybrid 

Type-I censoring, similar to the conventional Type-I censoring, is that the number of 

failures is random and it can turn out to be a very small number (even equal to zero), and 

therefore the standard statistical inference procedures may not be applicable or they will 

have low efficiency. To overcome this drawback, Chandrasekar et al. (2004) proposed two 

versions of generalized hybrid censoring. 
 

 Cho et al. (2015a), introduced a new censoring scheme called GPH type-I censoring 

which can be explain as follows: suppose n  identical units are placed on a life testing 

experiment with k  and r  pre-fixed with 1 k r n    and value of T  is fixed as well. 

The censoring scheme 1 2, ,....., rR R R  (where 0, 1,....,iR i r  ) are pre-fixed integers 

satisfies 
1

.
r

i
i

R r n


  Then, at the time of the first failure (1)x , 1R  of the remaining units 

are randomly removed. Similarly at the time of the second failure (2)x , 2R  of the remaining 

units are removed and so on. This process continues until, immediately following the 

terminated time 1 ( ) ( )max( ,min( , ))k rT x x T   all the remaining units are removed from the 

experiment as a schematic illustration in the Figure 1. Note that GPH type-I censoring 

provides the flexibility to continue the experiment beyond time point T  if an appropriate 

number of failures are not observed. Under this scheme, the experimenter would ideally 

like to observe r  failures, but is willing to accept a bare minimum of k  failures. Let D  

denote the number of observed failures up to time T . In this scheme, the data is one of the 

following types 
 

  (1) (2) ( ) ( ) ( ) case..... 1k k rx x x if T x x      
 

  (1) (2) ( ) ( ) ( ) cas.... e. 2D k rx x x if x T x      
 

  (1) (2) ( ) ( ) ( ) ( )..... ..... cas 3ek r k rx x x x if x x T       
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Figure 1: Schematic Illustration of GPH Type-I Censoring Scheme 

 

 Note that for case 1, ( ) ( )k rT x x   and ( 1) ( )...k rx x    are not observed. For case 2, 

( ) ( 1)D Dx T x    and ( 1) ( ).....D rx x    are not observed. The likelihood function of the 

GPH type-I censoring scheme can be found in Cho et al. (2015 a) as the following form 
 

  
*

( ) ( )
1 1

( ) ( )
1 1

( ) ( )
1 1

( )(1 ( ))

( )(1 ( )) (1 ( ))

( )(1

( 1) case1

( 1) case2

( 1) case3( ))

i

i D

i

k r k

i V

R
V

i i

D r D

i V i i

r r r

i i

R R
V i i

R
V i

i i
i

V i

f F

L f

R x x

R x x

R x F x

F F T

f

  

  

  







  












  

  

  

   (1) 

 

where *

1

D

D i
i

R n D R


   . 

 

 Cho et al. (2015b), discussed the maximum likelihood and Bayes estimation of the 

Weibull distribution based on GPH type-I censoring. Otherwise, there are also some other 

similar generalized progressive hybrid censoring scheme proposed by Cho et al. (2016) 

and Kotb (2018). Lee et al. (2016), proposed the likelihood inference of the exponential 

parameter under GPH type-I censoring scheme. 
 

 Kundu and Koley (2017) analyzed the exponential GPH type-I censored data in the 

presence of competing risks. Wang (2018), introduced MLEs, approximate confidence 

intervals (ACIs), BEs and the highest posterior density (HPD) credible intervals are also 

constructed by using Metropolis-Hasting (MH) algorithm of the unknown parameters when 

the latent failure times follow the Weibull competing risks model based on GPH type-I 

censoring scheme. Moreover, various additional generalized progressive hybrid censoring 

schemes with similar properties have been presented in the literature, for further study see 

Wang and Li (2019), Wang et al. (2020), Wang et al. (2021) and Wang et al. (2022). 
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 In this paper, we develop the statistical inference of the unknown parameters when the 
latent failure times follow the IW competing risks model based on GPH type-I censoring 
scheme, the MLEs and ACIs are introduced for the unknown parameters in the presence of 
competing risks when the cause of failure of each item is known. BE under SEL function 
and Bayes credible intervals (BCIs) are also generated by using the MH algorithm. A real 
data set has been provided for illustration. 
 

 The rest article will be organized as follows: in Section 2, we describe the model and 
discuss the basic notations used in this paper and the inference of MLEs for unknown 
parameters is covered. Gamma distribution is used as a prior distribution for the unknown 
parameters along with the MH algorithm in Section 3 to examine the Bayesian estimation 
approach. Theoretical findings are demonstrated in Section 4 with the use of a simulated 
research and a real data. Finally, Section 5 contains the conclusions. 
 

2. MODEL DESCRIPTION AND LIKELIHOOD FUNCTION 
 

 Consider a lifetime experiment with n  identical units where its lifetimes are  

described by identically independent and distributed (i.i.d) random variables 1 2, ,... nX X X

. Without loss of generality, we assume that there are only two causes of failure. Let jiX  

denotes the lifetime of the thi  item under the thj  cause of failure for 1,2,... ,  1,2i n j   and

 1 2,i i iX min X X . The competing risks model assumes that the data consists of a failure 

time and an indicator denoting the cause of failure. We use the latent failure time modeling 
of Cox (1959) for analyzing competing risks data. In the latent failure time modeling, it is 
assumed that competing causes of failures are independent random variables. 
 

 Consider a population, where every units failed due to one of the two known causes; 1 

and 2. A unit is selected at random from the population. Let the variable i  is the indicator 

denoting the cause of failure of the observation, i.e., failure due to cause 1 ( 1)i  , or 

failure due to cause 2 ( 2)i  , or failure due to one of the causes 1 or 2 but it is unknown 

( )i  . Here, , 1,2i j j    means the unit i  has failed due to cause j , while  i    

means that the cause of failure of unit i  is unknown. Under the GPH type-I censoring 

scheme in presence of competing risk data, we have one of the following types of 
observations 
 

            1 21 1 2 2, , , , , ,......, , ,              if           ,     case1k kk k r
x R x R x R T x x      

             11 1 ,..., , ,......, , , , , ,       if           , .    case2k k D Dk D k r
x R x R x R x T x    

             11 1, , ,......, , , ,....., , ,      if        .       case3k kk k r
x R x R x r r Rr x x T      

 

where 
1, if 1,2

(
0, otherwis

)
e

i

j
jI





 


 

and 
*1, if

(
0, otherwise

*)
.

i
iI 


 





 

 



Samia, Osama and Amarat 57 

 The likelihood function of GPH type-I censored under competing risks when the cause 

of failure is known can be written as follows 
 

  

 

 

 

*

2

( ) ( ) ( )
1 1

2

( ) ( ) ( )
1 1

2

( ) ( ) ( )
1 1

( )( ( ))

( )( ( )) ( ( )

case1

case2

case3

)

( )( ( ))

i

i

i D

i

i

i

k
R

i i i

R R
i

i j

D

i i

R
i i i

i j

r

i j

h x x x

h x x x

h

F F

L F F F T

F Fx x x

 

 
















 






 

 

 

    (2)   

where 

*

( 1)V

j

V i

R


   , ,  ,  j k j D j r      for case 1, 2 and 3 respectively

     1 2F T F T F T ,  ( )i ih x  the hazard rate function under the cause of failure  

i j  , i  is the indicator for the cause of failure satisfying 
 

  
1, units f ails due to cause 1

2, units f ails due to cause 2.
i


 


 

 

 Inverse Weibull distribution has been used to model degradation of mechanical 

components such as pistons, crankshafts of diesel engines, as well as breakdown of 

insulating fluid to mention just a few areas. The usefulness and applications of IW 

distribution in various areas including reliability, and branching processes can be seen in 

Keller et al. (1985). Keller and Kamath (1982) introduced IW distribution with two 

parameters β and λ. Many articles have considered IW distribution under different 

censoring schemes, see for example, Kundu and Howlader (2010), Sultan et al. (2014), 

Mohie El-Din and Nagy (2017) and Ateya (2020). 
 

 In this paper, we make inference under the assumption that the latent failure times 

follow two parameter IW distributions with different scale parameters 1 2, 0   , 1 2  , 

the same shape parameter   and the cause of failure is known. The cumulative distribution 

function (cdf) and the probability density function (pdf) of the IW are, respectively, given 

by 
 

   ; ,  xF x e
                     (3) 

 

     1
; ,                  , ,  0xf x x e x

          
 

where   is the shape parameter and   is the scale parameter.  
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Figure 2: Density Function of IW Distribution for Some Value of   and   

 

 Figure 2 illustrate the behavior of IW distribution for some various values of   and  

 . The pdf, cdf, survival function and hazard function of jiX  from thj cause of failure 

are, respectively, given by 
 

     1 , ,  0
; ,            ;j x j

j j j
x

f x x e
    

             (4) 

 

  ( ); ,  j x

j jF x e


                    (5) 

 

  ; ,  1( ) j x

j jF x e


                    (6) 

and 

  
 1 1; ,  1( ) ( )j x

j j jh x x e
                    (7) 

 

2.1 Maximum Likelihood Estimation 

 Based on equation (2), (6) and (7), the natural logarithm of the likelihood function of 

GPH type-I in presence of competing risks can be written as  
 

 

* *

1 2
*

1 2 1 2
1 1

ln ln ln ln ln ln( (ln( ln(( 1) ) ) ))
i

j j

i i
i i

L j x A A wj j
 

              (8) 

where  

  

1

1

1
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( 1) case3

V
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k r
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D r

i V i

r r
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 

 
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1

*
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1
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 Differentiating equation (8) with respect to 1,  and 2 , respectively, we obtained 
 

   
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 =    n     l
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  
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2
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 =      
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where  1
1   1TZ e   and  2

2   1TZ e  . The MLEs of  , j  where  1,2j  cannot 

be expressed in closed form. So we need to employ some required numerical approach  

for computing the MLEs of  , j . As a result, it may be calculated for every given GPH  

type-I censored using numerical methods such the fixed point iterative approach to obtain 

the MLEs for  , j  where  1,2j  . We present the relative risk rates, 1RR and 2RR  due 

to causes 1 and 2, respectively, in closed forms. The relative risk related to cause 1 is 

calculated as follows: 
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 The relative risk related to cause 2 is calculated as follows: 
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2.2 Confidence Interval 

 In this subsection, the asymptotic variance covariance matrix 1
0J   for the maximum 

likelihood estimators can be written as follows 
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 The second derivatives of ln L  with respect to  , 1  and 2 are as follows 
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where 
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 Also, we obtained the  100 1 %  confidence intervals for the parameters 1,    

and 2  using the normal approximate of the MLEs and asymptotic variance covariance 

matrix, as  

     /2 /2
ˆ ˆ ˆ ˆ    ,     Z var Z var        

 

     1 /2 1 1 /2 1
ˆ ˆ ˆ ˆ    ,     Z var Z var        

 

     2 /2 2 2 /2 2
ˆ ˆ ˆ ˆ    ,     Z var Z var        

 

where /2Z  is the percentile of the standard normal distribution with right-tail probability 

/ 2 . 
 

3. BAYESIAN ESTIMATION 
 

 In this section, we consider Bayesian inference of the unknown parameters when the 

latent failure times follow the IW competing risks model using GPH type-I censoring 

scheme with competing risks. The BEs and HPD credible intervals were obtained for the 

unknown parameters, HPD is one of the methods for defining a credible interval in 

Bayesian statistics. 
 

3.1 Prior Distributions 

 In this subsection, we assumed that the priors of  , 1  and 2  are independent and 

follow Gamma (a1,b1), Gamma (a2,b2) and Gamma (a3,b3), respectively. Therefore, the 

priors for  , 1  and 2  are of the forms 
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then, the joint prior is given by 
 

         1 2 1 2, ,              .              (9) 
 

 The elicitation of the hyper-parameters will depend on the prior knowledge of the 

unknown parameters. These informative priors will be obtained from the MLEs for 

 1 2, ,    by equating the mean and variance of  21
ˆ ˆ ˆ, ,t t t    with the mean and variance 

of the priors under consideration (Gamma priors), where 1,2...,t M  and M  is the 

number of samples available from the IW distribution. Thus, on equating mean and 

variance of  21
ˆ ˆ ˆ, ,t t t    with the mean and variance of Gamma priors, one can obtain (Dey 

et al. (2016)) 
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 By solving the above equations, the estimated hyper-parameters can be written as  
 

  

2

1
1 2

1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
a

M M



 


 

 


     



 

 

 

  1
1 2

1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
b

M M



 






     



 

 

 

  

2

1
1

2 2

1 1
1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
a

M M



 


 

 


     



 

 

 

  
1

1
2 2

1 1
1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
b

M M



 






     



 

 



Samia, Osama and Amarat 65 

  

2

2
1

3 2

2 2
1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
a

M M



 


 

 


     



 

 

and 

  
2

1
3 2

2 2
1 1

1 ˆ

1 1ˆ ˆ
1

M
t

t

M M
t t

t t

M
b

M M



 






     



 

                 (10) 

 

 Based on equation (9), the posterior density function of the parameters  , 1  and 2  

can be written as follows: 
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 Bayes estimator of any function of  , 1  and 2 , say  1 2, ,     under SEL function 

is the posterior mean, denoted by  1 2, ,     and can be obtained as follows: 
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 Bayes estimator of  1 2, ,     cannot be expressed in closed form, so we need to 

employ some approximation method to compute the estimate given in (12). We propose to 

use MCMC method to obtain the BEs and HPD credible intervals of the unknown 

parameters. This method is particularly useful in Bayesian inference as a result of focusing 

on subsequent distributions that are often difficult to work with through mathematical 

analysis. The MH algorithm starts with simulating a candidate sample   from the proposal 
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distribution q(.). Note that samples from the proposal distribution are not accepted 

automatically as posterior samples. These candidate samples are accepted probabilistically 

based on the acceptance probability. To draw samples from a distribution using MCMC: 
 

1. Start with an initial guess: a single value that could be derived from the distribution. 

2. Generating a series of new samples from this initial guess. Two steps are generated 

as a result of each new sample: 
 

 Proposal: the most recent sample is disturbed with a small random perturbation to 

provide a proposal for the new sample. 
 

 Acceptance: A new proposal will be approved as a new sample or rejected (in this case 

the old sample is recorded). 
 

 The best known of these are the Gibbs sampling algorithm, MH presented by 

Metropolis et al. (1953) and Hastings (1970). 
 

 The MH algorithm sampling can be described as follows: 
 

Step 1: Start with any initial guess 
 0
    which  1 2 , ,     . 

 

Step 2: Set 1t  . 
 

Step 3: Generate   with normal proposal distribution   ˆ ˆ ,( ( ))q N var    . 
 

Step 4: Given the candidate point  , calculate the acceptance probability 

 
  

   

    

1

1

1 1

( )
min 1 ,

)

,

(

t

t

t t

x q

x

A

q

 

 

 

   
 

 

 
 

 


 





 

 

Step 5: Generate a sample from uniform distribution, i.e.,  0,1u u . 

 

 

    

      

1

1 1

,

,

t t

t t t

u A

u A

Accept

if

Accept

  

 

     

     







 

 

Step 6: Set  1t t  , and repeat steps 2-5 M times until get M  samples and obtain 

 1 2 , 1,2,..., , ttt t M     

 

From the random samples of size M drawn from the posterior density, some of the 

initial samples can be discarded (burn-in), and remaining samples can be carried out to 

calculate Bayes estimates. Then, BEs of 1 2, ,   , with respect to SEL function is 

     11 2 2
 1

, ,  , ,t
M

t t

t

M
 

           

 

 where  represent the number of burn-in samples and  1,.....t M  .  
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Step 7: To obtain the HPD credible intervals of  1 2, ,tt t     first arrange all the 

estimates  1 2 , fo, , r 1,2,...t t
t

t t M      in an ascending order, as 
     1 2

, ,...
M

   , 

after burn in as 
     1 2

, ,...
M 

   , then for arbitrary 0 1 , the  100 1 %

two sided HPD credible interval of  1 2, ,tt t     can be obtained as 

  
  1 /2[ ( )][ ],

t Mt
    

 


 
 

,   1,  2..... / 2t M        

where t  is chosen such that 

  
  

 

  1 /2 1 /[ ( )] [ ( )][ ] [ ]

1

2

( )/2
, i ,m n

t M t Mt

Mt

t


 

       

 
   

    
  

 

where  x denotes the greatest integer less than or equal to x . Then the HPD credible 

interval of t  is that interval which has the smallest width. 

 

4. SIMULATION STUDY AND DATA ANALYSIS 
 

 The aim of this section is to compare the performance of the different methods of 

estimation discussed in the previous sections. Monte Carlo study is employed to check the 

behavior of the proposed methods as well as to evaluate the statistical performances of the 

estimators under GPH type-I censoring scheme in the presence of competing risks model. 

Also, a real data set is analyzed for illustrative purpose. R-statistical programming 

language will be used for calculation. Further, one can utilize bbmle and HD Interval 

packages to compute MLEs and HPD interval in R-language. 
 

4.1 Simulation Study 

 In this subsection, we present some simulation results mainly to see how the different 

methods proposed in this paper behave in practice. Monte Carlo process is performed using 

two methods of estimation; namely maximum likelihood estimation and Bayesian 

estimation. To generate generalized progressive hybrid censored competing risks data from 

IW distribution, do the following algorithm: 
 

Step 1: Set the parameter values of 1,   and 2  

Step 2: Generate an ordinary progressive Type-II censored sample ( ) ,  1,2,....R
ix i r  

using the algorithm outlined by Balakrishnan and Sandhu (1995), as follows:  

a) Generate w  independent observations of size r  as 1 2, ,.... rw w w . 

b) For a given values of , ,n r T  and ,  1,2,...,iR i r  put 

1

1

( )
r

j
j r i

i R

iV w



  

 
 . 

c) Set 1 1 1 ...i r r r iU V V V     for  1,2,...,i r . Then iU  is a progressive type-II 

censored sample of size r  from (0,1)U  distribution. 

d) Generate progressive type-II censored competing risks sample from IW ( ), j 

by  
1( ; , )ji

x F x   ,  1,2 ,  1,2,.... .j i r   
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Step 3: If       
k r

T x x   the experiment stops at thk  failure, we get the generalized 

progressively hybrid censored sample of case 1 which is      1 2
, ,.... .

k
x x x  

 

Step 4: If    k r
x T x   the experiment stops at pre-fixed time T  with 

thD  the number 

of observed failures up to time T . In this case, we get the generalized progressive 

hybrid censored sample of case 2 which is      1 2
, ,..... .

D
x x x  

 

Step 5: If    k r
x x T   the experiment stops at 

thr  failure, we get the generalized 

progressively hybrid censored sample of case 3 which is      1 2
, ,..... .

r
x x x  

 

 Using each simulated data, the MLEs and associated ACIs of 1,   and 2  are 

computed. Here, When the actual values of the parameters  1 2, ,    are taken as 

(1.5,.5,.75) and (2,1.2,1.5), a large number of 1000 GPH type-I censored samples are 

generated from IW distribution using various mixtures of sample sizes n  ( for each cause 

of failure, ) r  (effective sample size), k  (minimum effective number of failures) and T  

(threshold time point). Also, three different progressive censoring schemes are considered 

as 

Scheme I: 1 2, ....  0rR n r R R     , 

Scheme II: /2 1 /2 1 /2 1, .... ....  0r r r rR n r R R R R         , 

Scheme III: 1 1....  0,r rR R R n r     . 
 

Consider the following different cases in Table 1. 

 

Table 1 

Different Cases Considered for Simulation when  0.6,0.8T   

Scheme I Scheme II Scheme III 

 20,  18,  10n r k    

 20,  18,  15n r k    

 40,  25,  10n r k    

 40,  25,  15n r k    

 20,  18,  10n r k    

 20,  18,  15n r k    

 40,  25,  10n r k    

 40,  25,  15n r k    

 20,  18,  10n r k    

 20,  18,  15n r k    

 40,  25,  10n r k    

 40,  25,  15n r k    
 

 Based on the generated data, MLEs and associated 95% ACIs / HPD are computed. 

Note that the initial guess values are considered to be the same as the true parameter values 

while obtaining MLEs and subsequently get the hyper parameter values from equation (10). 

These values, hyper-parameters, are then plugged-in to calculate the desired estimates. We 

have obtained various estimates based on 1000 replications. At the end, using MH 

algorithm to calculate Bayesian estimators, 2000 burn-in samples are discarded among the 

total 10000 MCMC samples generated from the posterior density. The performance of 95% 

ACIs / HPD are compared using their average interval lengths (AILs) and related coverage 

probabilities (CPs) (in brackets), respectively. The average estimates (AEs) and related 

Mean squared errors (MSEs) (in brackets) for both methods are reported in Table 2-5. 
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 Specifically, the average estimates (AEs) of 1 2a, nd    (say θ) is given by 

  
1

1 N

N





    for  1,2,3i   

 

where N denotes the number of replications in the Monte Carlo simulation and 

1 2 1 3 2, ,        . 
 

 A comparison between point estimates of   was made based on their MSE as 

  2

1

1
MSE( ) ( )

N

N





     for 1,2,3i   

 

 The smaller value of MSE represents an estimator with better accuracy. 
 

 On the other hand, the comparison between the interval estimates of   was made based 

on their AILs and CP, respectively, as 
 

  
1

1
AIL( ) ( )

N

i U L
N

  


    and ( ; )
1

1
CP( ) ( )

N

i U L iI
N   

    

 

where (.)I  is the indicator function, (.)L  and (.)U  denote the lower and upper bounds, 

respectively, of 100 1( )% asymptotic (or credible) interval. 
 

 From Tables 2-5, it is observed that: 
 

 All of the average estimates and related MSEs for both methods are showed.  

 As the effective increases (i.e., n or r or k, or their combinations), the AEs and MSEs 

of both MLEs and BEs for parameters 1,   and 2  decreases in most cases. 

 Under fixed censoring schemes, the AEs decreases and MSEs increases of MLEs, 

when T increases. 

 Further, the corresponding AILs and CPs (in brackets) for all the proposed 

confidence intervals, namely; ACIs and HPD interval are presented when 0.6T 

and 0.8T  , respectively. 

 For all cases of confidence intervals, HPD interval of the Bayes SE has the smallest 

length among the approximate confidence interval of the MLEs. 

 In most cases, as the value of 1,   and 2  increases, the associated MSEs of the 

MLEs of 1,   and 2  increase (in the case of ACIs) and decrease (in the case of 

credible intervals). 
 

 To sum up, it is clear from the simulation results that the performance of both Bayes 

point and credible interval estimates behave superior than the traditional estimates obtained 

under the maximum likelihood approach in terms of minimum MSEs for point estimates 

and in terms of lowest AILs and largest CPs for interval estimates. Finally, the Bayes 

MCMC method using MH algorithm to estimate the unknown parameters of the IW 

distribution under GPH type-I censored data with competing risks is recommended. 
 

 Moreover, as further illustration, the trace and density plots for all parameters in an 

MCMC trace with their histograms for each parameter and the convergence of MCMC 

estimation for 1,   and 2  of GPH type-I using MH algorithm are showed in Figure 3. 
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Table 2 

AEs, MSEs (in bracket), AILs and CPs (in brackets) of the  

MLEs and BEs at    1 2, , 1.5,.5,.75     and  0.6T   

n  r  k  Sc par 
MLE Bayes 

AEs(MSE) ACI (CP) AEs(MSE) HPD (CP) 

20 18 

10 

I 

𝛽 

𝜆1 

𝜆2 

1.4314(0.4784) 1.3539(87.0) 1.6603(0.0427) 0.4653(98.8) 

0.9954(0.4286) 1.0549(90.1) 0.6041(0.0174) 0.2509(98.1) 

1.2863(0.4389) 1.4598(96.8) 0.8276(0.0107) 0.2432(96.3) 

II 

𝛽 

𝜆1 

𝜆2 

1.3996(0.4089) 1.3208(88.1) 1.6610(0.0400) 0.4399(97.9) 

1.0159(0.4448) 1.0615(92.0) 0.6142(0.0195) 0.2539(98.9) 

1.2893(0.4206) 1.4597(97.4) 0.8159(0.0079) 0.2329(97.5) 

III 

𝛽 

𝜆1 

𝜆2 

1.4151(0.4796) 1.3299(87.7) 1.6554(0.0422) 0.4709(97.2) 

1.0116(0.4459) 1.0492(90.8) 0.6121(0.0196) 0.2488(98.8) 

1.2769(0.4176) 1.4443(97.4) 0.8105(0.0076) 0.2162(97.7) 

15 

I 

𝛽 

𝜆1 

𝜆2 

1.6016(0.3352) 1.2433(87.9) 1.6252(0.0282) 0.4249(97.2) 

0.7019(0.1235) 0.7607(89.2) 0.5419(0.0049) 0.1989(98.0) 

1.1721(0.3167) 1.1338(93.2) 0.8537(0.0158) 0.2708(96.8) 

II 

𝛽 

𝜆1 

𝜆2 

1.5912(0.3324) 1.2420(87.4) 1.6372(0.0336) 0.4529(98.1) 

0.7096(0.1218) 0.7679(90.2) 0.5512(0.0059) 0.2096(97.2) 

1.1777(0.3130) 1.1391(93.6) 0.8395(0.0121) 0.2386(95.8) 

III 

𝛽 

𝜆1 

𝜆2 

1.5825(0.3319) 1.2429(87.1) 1.6256(0.0296) 0.4296(97.5) 

0.7205(0.1356) 0.7722(89.0) 0.5520(0.0066) 0.2059(97.3) 

1.1675(0.3096) 1.1338(92.9) 0.8572(0.0168) 0.2720(96.3) 

40 25 

10 

I 

𝛽 

𝜆1 

𝜆2 

1.1647(0.2862) 0.8536(85.9) 1.6475(0.0411) 0.5407(97.7) 

1.2627(0.8597) 0.9508(83.3) 0.6847(0.0517) 0.4119(98.2) 

1.5262(0.9063) 1.3214(92.3) 0.8523(0.0138) 0.2194(98.0) 

II 

𝛽 

𝜆1 

𝜆2 

1.1582(0.2830) 0.8217(84.8) 1.6232(0.0283) 0.4473(96.0) 

1.2777(0.9063) 0.9125(80.4) 0.7014(0.0595) 0.4089(96.5) 

1.4723(0.7541) 1.2076(91.2) 0.8491(0.0123) 0.1956(96.6) 

III 

𝛽 

𝜆1 

𝜆2 

1.1505(0.2777) 0.8118(84.4) 1.6260(0.0297) 0.4486(96.9) 

1.2953(0.9224) 0.8935(84.1) 0.7151(0.0664) 0.4052(97.9) 

1.4728(0.7181) 0.9201(85.2) 1.6359(0.0316) 0.4524(98.7) 

15 

I 

𝛽 

𝜆1 

𝜆2 

1.0372(0.5249) 0.8381(71.6) 0.6284(0.0309) 0.3586(96.2) 

1.3684(0.5472) 1.1742(93.2) 0.8638(0.0174) 0.2553(96.0) 

1.2136(0.2772) 0.8591(85.9) 1.6377(0.0364) 0.4939(97.3) 

II 

𝛽 

𝜆1 

𝜆2 

1.1721(0.7129) 0.8595(78.0) 0.6714(0.0489) 0.4020(97.5) 

1.4219(0.6279) 1.1685(93.4) 0.8517(0.0135) 0.2058(97.5) 

1.2213(0.2843) 0.8556(84.1) 1.6399(0.0377) 0.5264(96.6) 

III 

𝛽 

𝜆1 

𝜆2 

1.1961(0.7679) 0.8457(76.2) 0.6927(0.0602) 0.4241(96.7) 

1.4103(0.6176) 1.1274(94.5) 0.8562(0.0139) 0.2082(96.0) 

1.0372(0.5249) 0.9201(85.2) 1.6359(0.0316) 0.4524(98.7) 
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Table 3 

AEs, MSEs(in bracket), AILs and CPs(in brackets) of the MLEs  

and Bayes Estimates at    1 2, , 1.5,.5,.75     and  0.8T   

n  r  k  Sc par 
MLE Bayes 

AEs(MSE) ACI (CP) AEs(MSE) HPD (CP) 

20 18 

10 

I 

𝛽 

𝜆1 

𝜆2 

1.3147(0.4020) 1.0216(85.5) 1.6190(0.0310) 0.5023(97.8) 

1.1659(0.8141) 0.9181(65.8) 0.6584(0.0463) 0.4028(97.1) 

1.3727(0.6082) 1.2464(91.4) 0.8441(0.0123) 0.2332(96.9) 

II 

𝛽 

𝜆1 

𝜆2 

1.3371(0.3238) 1.0276(85.2) 1.6197(0.0312) 0.4969(98.9) 

1.1272(0.7629) 0.8940(63.7) 0.6555(0.0465) 0.4056(97.8) 

1.3247(0.5333) 1.1967(91.4) 0.8398(0.0115) 0.2277(96.6) 

III 

𝛽 

𝜆1 

𝜆2 

1.2861(0.3475) 0.9966(84.0) 1.6058(0.0303) 0.5355(97.6) 

1.2059(0.8757) 0.9214(69.0) 0.6970(0.0658) 0.4386(97.1) 

1.3646(0.5753) 1.2104(93.9) 0.8477(0.0126) 0.2154(96.5) 

15 

I 

𝛽 

𝜆1 

𝜆2 

1.4769(0.3014) 1.0874(86.3) 1.6193(0.0316) 0.4487(98.0) 

0.8579(0.3120) 0.7830(77.4) 0.5855(0.0182) 0.3376(96.8) 

1.2492(0.3975) 1.1143(93.4) 0.8484(0.0139) 0.2354(97.5) 

II 

𝛽 

𝜆1 

𝜆2 

1.4671(0.3423) 1.0890(86.5) 1.6068(0.0264) 0.4788(98.6) 

0.9069(0.3903) 0.7974(72.1) 0.6073(0.0249) 0.3503(98.6) 

1.2524(0.4173) 1.1142(92.4) 0.8556(0.0153) 0.2566(96.5) 

III 

𝛽 

𝜆1 

𝜆2 

1.4597(0.2808) 1.0838(85.3) 1.6122(0.0258) 0.4514(97.1) 

0.9052(0.3914) 0.7927(72.1) 0.6079(0.0269) 0.3657(99.1) 

1.2440(0.4038) 1.1064(93.9) 0.8422(0.0122) 0.2300(96.8) 

40 25 

10 

I 

𝛽 

𝜆1 

𝜆2 

1.4566(0.1302) 0.8625(88.6) 1.6087(0.0247) 0.4281(96.7) 

0.7330(0.1772) 0.6042(91.1) 0.5619(0.0145) 0.2981(95.2) 

1.2127(0.3278) 0.8993(92.1) 0.8914(0.0256) 0.2841(96.9) 

II 

𝛽 

𝜆1 

𝜆2 

1.4923(0.1441) 0.9058(88.8) 1.6230(0.0272) 0.4249(96.6) 

0.7097(0.1651) 0.5948(91.4) 0.5568(0.0152) 0.2931(95.3) 

1.1873(0.3049) 0.9029(91.5) 0.9029(0.0294) 0.2949(96.6) 

III 

𝛽 

𝜆1 

𝜆2 

1.5053(0.1424) 0.9336(88.5) 1.6204(0.0264) 0.4128(97.8) 

0.6881(0.1546) 0.5908(92.7) 0.5533(0.0153) 0.2061(95.2) 

1.1558(0.2735) 0.9018(92.1) 0.8832(0.0224) 0.2587(97.8) 

15 

I 

𝛽 

𝜆1 

𝜆2 

1.5025(0.1712) 0.9344(86.7) 1.6231(0.0296) 0.4765(98.7) 

0.7081(0.1913) 0.5948(92.2) 0.5567(0.0186) 0.5690(95.7) 

1.1651(0.2962) 0.9034(90.5) 0.8923(0.0254) 0.2797(97.6) 

II 

𝛽 

𝜆1 

𝜆2 

1.4681(0.1437) 0.8913(88.6) 1.6141(0.0275) 0.4467(96.7) 

0.7204(0.1685) 0.6005(91.1) 0.5577(0.0149) 0.2611(95.2) 

1.1864(0.2958) 0.8971(91.3) 0.8949(0.0265) 0.2764(96.7) 

III 

𝛽 

𝜆1 

𝜆2 

1.5157(0.1542) 0.9423(88.4) 1.6161(0.0268) 0.4477(98.2) 

0.6819(0.1610) 0.5875(91.4) 0.5501(0.0155) 0.2152(95.5) 

1.1448(0.2772) 0.8969(91.5) 0.8894(0.0249) 0.2887(97.3) 
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Table 4 

AEs, MSEs(in bracket), AILs and CPs(in brackets) of the MLEs  

and BEs at    1 2, , 2,1.2,1.5     and 0.6T   

n  r  k  Sc par 
MLE Bayes 

AEs(MSE) ACI (CP) AEs(MSE) HPD (CP) 

20 18 

10 

I 

𝛽 

𝜆1 

𝜆2 

2.9485(4.5877) 2.7659(85.7) 2.1389(1.4941) 0.4619(99.4) 

1.3476(0.3466) 1.2592(88.0) 1.2761(0.2028) 0.3955(97.8) 

2.0789(1.0667) 1.8241(89.5) 0.0599(0.0107) 0.5047(96.9) 

II 

𝛽 

𝜆1 

𝜆2 

2.9571(3.9806) 2.8011(85.3) 2.1168(0.1179) 0.4622(98.6) 

1.3609(0.3551) 1.2603(86.5) 1.2674(0.0328) 0.4201(97.5) 

2.0619(1.0585) 1.7943(89.2) 1.6534(0.0568) 0.4922(97.4) 

III 

𝛽 

𝜆1 

𝜆2 

2.9875(5.6183) 2.8567(86.4) 2.1567(2.3894) 0.4797(98.3) 

1.3181(0.3196) 1.2382(88.4) 1.2804(0.5277) 0.4111(97.7) 

2.0142(1.1305) 1.7831(91.0) 1.6453(0.0493) 0.4949(98.7) 

15 

I 

𝛽 

𝜆1 

𝜆2 

2.3092(0.9241) 1.7330(87.6) 2.0327(0.0192) 0.4956(99.2) 

0.8579(0.3120) 0.7830(77.4) 0.5855(0.0182) 0.3376(96.8) 

2.0142(1.1305) 1.7831(91.0) 1.6453(0.0493) 0.4949(98.7) 

II 

𝛽 

𝜆1 

𝜆2 

2.3092(0.9241) 1.7330(87.6) 2.0327(0.0192) 0.4956(99.2) 

1.6197(0.4157) 1.2227(91.1) 1.3306(0.0299) 0.4089(96.9) 

2.3191(1.2365) 1.7105(89.9) 1.7404(1.6837) 0.5051(98.6) 

III 

𝛽 

𝜆1 

𝜆2 

2.2841(0.9668) 1.7338(86.8) 2.0275(0.0203) 0.5261(98.5) 

1.5944(0.3926) 1.1971(91.2) 1.3275(0.0276) 0.4073(98.1) 

2.2491(1.1021) 1.6447(92.0) 1.6925(0.0532) 0.4965(96.8) 

40 25 

10 

I 

𝛽 

𝜆1 

𝜆2 

3.0759(3.3156) 2.9106(86.2) 2.2380(2.6287) 0.46567(97.7) 

1.0505(0.3061) 1.1307(83.7) 1.2399(0.0236) 0.4684(98.0) 

1.6835(0.4404) 1.6543(93.0) 1.6593(0.0552) 0.5338(97.1) 

II 

𝛽 

𝜆1 

𝜆2 

3.2049(4.6596) 3.1257(86.0) 2.2685(4.0862) 0.5048(97.5) 

1.0379(0.3064) 1.1391(84.5) 1.2263(0.0327) 0.4560(98.4) 

1.6207(0.4209) 1.6248(91.4) 1.6467(0.0627) 0.5408(97.7) 

III 

𝛽 

𝜆1 

𝜆2 

3.2178(4.3261) 3.2225(84.7) 2.2431(4.4589) 0.4949(97.4) 

1.0049(0.3045) 1.1407(85.0) 1.2163(0.0508) 0.4847(98.6) 

1.5587(0.4484) 1.6114(83.2) 1.6446(0.0669) 0.5631(98.7) 

15 

I 

𝛽 

𝜆1 

𝜆2 

2.4483(1.1216) 1.8440(86.7) 2.1288(0.0375) 0.5523(97.9) 

1.3574(0.2375) 1.01756(85.5) 1.2910(0.0233) 0.4681(96.5) 

2.0143(0.5546) 1.3901(90.2) 1.7402(0.0820) 0.5985(97.1) 

II 

𝛽 

𝜆1 

𝜆2 

2.5570(1.4522) 1.9789(86.0) 2.1268(0.0388) 0.5196(98.2) 

1.3045(0.1976) 1.0051(88.3) 1.2932(0.0214) 0.4337(97.2) 

1.9419(0.4689) 1.3629(92.9) 1.7286(0.0712) 0.5135(96.5) 

III 

𝛽 

𝜆1 

𝜆2 

2.5224(1.3869) 1.9925(85.5) 2.1187(0.0383) 0.5199(98.2) 

1.2988(0.1819) 1.0057(88.7) 1.2921(0.0195) 0.3998(95.3) 

1.9271(0.4551) 1.3656(92.0) 1.7291(0.0809) 0.5035(96.1) 
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Table 5 

AEs, MSEs(in bracket), AILs and CPs(in brackets) of the  

MLEs and BE    1 2, , 2,1.2,1.5     and  0.8T   

n  r  k  Sc par 
MLE Bayes 

AEs(MSE) ACI (CP) AEs(MSE) HPD (CP) 

20 18 

10 

I 

𝛽 

𝜆1 

𝜆2 

2.9039(4.4882) 2.7212(86.1) 2.1405(1.4944) 0.4575(99.4) 

1.3803(0.3397) 1.2738(88.6) 1.2838(0.2031) 0.3753(97.3) 

2.0948(1.0549) 1.8291(89.9) 1.6644(0.0600) 0.5172(98.2) 

II 

𝛽 

𝜆1 

𝜆2 

2.8885(3.7866) 2.7329(85.9) 2.1188(0.1181) 2.3064(98.6) 

1.4061(0.3461) 1.2812(87.9) 1.2803(0.0312) 0.3864(97.9) 

2.0859(1.0405) 1.8058(89.6) 1.6544(0.0553) 0.4950(97.1) 

III 

𝛽 

𝜆1 

𝜆2 

2.8812(5.2868) 2.7419(86.8) 2.1582(2.3866) 0.4783(97.6) 

1.3843(0.3019) 1.2685(91.1) 1.2992(0.5255) 0.3575(97.5) 

2.0485(1.1012) 1.7946(91.6) 1.6458(0.0469) 0.4982(98.8) 

15 

I 

𝛽 

𝜆1 

𝜆2 

2.3092(0.9241) 1.7330(87.6) 2.0327(0.0192) 0.4956(99.2) 

1.6197(0.4157) 1.2227(91.1) 1.3306(0.0299) 0.4089(96.8) 

2.3195(1.2365) 1.7105(89.9) 1.7404(1.6837) 0.5051(98.6) 

II 

𝛽 

𝜆1 

𝜆2 

2.2164(0.7702) 1.6695(86.9) 2.0187(0.0193) 0.5214(98.9) 

1.6549(0.4399) 1.2345(91.6) 1.3391(0.0309) 0.4178(96.1) 

2.3243(1.2280) 1.6997(90.6) 1.7028(0.0578) 0.5089(97.1) 

III 

𝛽 

𝜆1 

𝜆2 

2.2817(0.9639) 1.7320(86.9) 2.0275(0.0203) 0.5261(98.5) 

1.5962(0.3917) 1.1979(91.2) 1.3280(0.0276) 0.4035(98.1) 

2.2503(1.1010) 1.6451(92.0) 1.6925(0.0532) 0.4974(96.9) 

40 25 

10 

I 

𝛽 

𝜆1 

𝜆2 

2.6563(2.8187) 2.4786(84.6) 2.1956(0.0619) 0.5679(97.6) 

1.4570(0.4384) 1.2458(82.7) 1.3537(0.2446) 0.4793(97.1) 

1.9053(0.4361) 1.6954(95.2) 0.5225(0.0138) 0.5328(96.2) 

II 

𝛽 

𝜆1 

𝜆2 

2.5202(2.3547) 2.3791(85.4) 2.1814(0.0565) 0.4991(98.7) 

1.5715(0.5067) 1.2758(85.1) 1.4019(0.1119) 0.4859(98.4) 

1.9139(0.4142) 1.6600(94.5) 1.6677(0.0498) 0.5153(97.5) 

III 

𝛽 

𝜆1 

𝜆2 

2.4293(2.5072) 2.3258(84.8) 2.2106(0.1833) 0.5509(98.7) 

1.6836(0.6179) 1.2960(87.8) 1.4495(0.8427) 0.4478(98.6) 

1.9357(0.4068) 1.6540(96.3) 1.6499(0.0557) 0.4676(96.5) 

15 

I 

𝛽 

𝜆1 

𝜆2 

2.4471(1.0683) 1.8384(86.0) 2.1276(0.0783) 0.5097(98.7) 

1.3624(0.2145) 1.0185(88.1) 1.3089(0.0259) 0.4412(96.5) 

2.0124(0.5363) 1.3952(90.5) 1.7145(0.0668) 0.5619(97.2) 

II 

𝛽 

𝜆1 

𝜆2 

2.4369(1.2939) 1.8823(86.3) 2.1269(0.0743) 0.5077(97.6) 

1.3881(0.2246) 1.0262(88.3) 1.3219(0.0280) 0.4154(97.1) 

1.9819(0.4589) 1.3781(92.7) 1.7112(0.0633) 0.5427(96.8) 

III 

𝛽 

𝜆1 

𝜆2 

2.4322(1.2849) 1.9219(85.7) 2.1545(0.5373) 0.4799(99.1) 

1.4192(0.2221) 1.0382(89.7) 1.3412(0.0388) 0.3959(97.6) 

1.9705(0.4383) 1.3664(93.4) 1.7089(0.0623) 0.5292(96.5) 
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Figure 3: Convergence of MCMC Estimates for 𝛽, 𝜆1 and 𝜆2 using MH Algorithm 

 

4.2 Real Data 

 A real data set is analyzed in this section to illustrate the proposed competing risk 

model. The studied data was first analyzed by Meintanis (2007) using Marshall-Olkin 

distributions. The data employed here corresponds to the soccer (football) data where at 

least one goal was scored directly by a kick by any team and at least one goal was scored 

by the home team. In this data analysis, random variable 1iX denotes the time in hours 

(divided by 60) of the first kick goal scored by any team and 2iX  represents the time in 

hours (divided by 60) of the first goal of any type scored by the home team, and the detail 

data is provided in Table 4, the random variables, 1iX  and 2iX  are treated as two 

competing risks as cause 1 and cause 2, respectively, and the associated complete 

competing risks data are also reported. Here we are analysing the time, say 

 1 2,i i iX min X X , taken to score the first goal of any type by a team in the UEFA 

Champion League (football game) as competing risks data. To see how the causes are 

competing to each other, there are three possibilities (i) 1 2i iX X , (ii) 1 2i iX X  and  

(iii) 1 2i iX X . So, we have 1i iX X  if 1 2i iX X  and 2i iX X  if 1 2i iX X . Thus 

causes are competing among each other. From Table 6, three groups of generalized 

progressive hybrid type-I censored competing risks are generated which are listed in Table 

7 using the same initial sample size setting 37n   and items iR  removed at the time 
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censoring iT  where  1,2,....i r . It is seen that the finally three groups of failure samples 

correspond to types of observations as case 1, case 2 and case 3, respectively, and these 

different schemes can be described as follow: 
 

Case 1 ( 1 2 29 30.....  0,  7R R R R     , this is can be written as: 290 ,( )7 , .5R T 

and 25K  ), Case 2 ( 1 2 3 307, ... 0R R R R     , this is can be written as: 

29( )7,0 , 1R T   and 27D  ) and Case 3 ( 1 2 3 29 304, ... 0, 3R R R R R      , 

this is can be written as: 284,0 ,3 , 1.( ) 3R T   and 30r  ).  
 

 Since there is no information about the unknown parameters, the non-informative priors 

(NIPs) with 1 1 2 2 3 3 0a b a b a b       are adopted in this illustrative example. 

 

Table 6 

Complete Competing Risks Failure Data  1 2,i iX X  

for the Proportion Time of Football Game 

Origin Football Game Proportion Time 

(0.0333, 0.0333) (0.6833, 0.0500) (0.7000, 0.0500) (0.9000, 0.1167) 

(0.1333, 0.1333) (0.4167, 0.1500) (0.9166, 0.1833) (0.7333, 0.2167) 

(0.3667, 0.2333) (0.4167, 0.2333) (1.0667, 0.2500) (0.2667, 0.2667) 

(0.2667, 1.2500) (1.0500, 0.3000) (0.3000, 0.3000) (0.3167, 0.3167) 

(0.4333, 0.3333) (0.4000, 0.4000) (0.4333, 0.8000) (0.4500, 0.7833) 

(0.4667, 0.4667) (0.8500, 0.4667) (0.7333, 0.5000) (0.5667, 0.5667) 

(0.6000, 0.8667) (0.6500, 0.6500) (0.8833, 0.6500) (0.6667, 0.6667) 

(0.7000, 0.7000) (1.3667, 0.8000) (0.8167, 0.8167) (0.8167, 0.8167) 

(1.1000, 1.0333) (1.2667, 1.0667) (1.1000, 1.4167) (1.1500, 1.1833) 

(1.2000, 1.2000)    

Complete Competing Risks Failure Data 

(0.0333, 1) (0.0500, 2) (0.0500, 2) (0.1167, 2) (0.1333, 1) (0.1500, 2) (0.1833, 2) 

(0.2167, 2) (0.2333, 2) (0.2333, 2) (0.2500, 2) (0.2667, 2) (0.2667, 1) (0.3000, 2) 

(0.3000, 1) (0.3167, 1) (0.3333, 2) (0.4000, 1) (0.4333, 1) (0.4500, 1) (0.4667, 1) 

(0.4667, 2) (0.5000, 2) (0.5667, 1) (0.6000, 1) (0.6500, 1) (0.6500, 2) (0.6667, 1) 

(0.7000, 1) (0.8000, 2) (0.8167, 1) (0.8167, 1) (1.0333, 2) (1.0667, 2) (1.1000, 1) 

(1.1500, 1) (1.2000, 1)      
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Table 7 

GPH Type-I Censored Samples from Football Game Data 

Case 1: 29 37,   30,   0 ,7 , .5,( )   25n r R T k      

(.0333, 1) (.0500, 2) (.1167, 2) (.0333, 1) (.1333, 1) (.1500, 2) (.1833, 2) 

(.2167, 2) (.2333, 2) (.2333, 2) (.2500, 2) (.2667, 1) (.2666, 1) (.3000, 2) 

(.3000, 1) (.3167, 1) (.3333, 2) (.4000, 1) (.4667, 2) (.4333,1) (.4500, 1) 

(.4667, 1) (.5000, 2) (.5667, 1) (.6000, 1)    

Case 2: 29 37,   30,   7,0 ,  1,( )   27n r R T D      

(.0333, 1) (.0500, 2) (.1167, 2) (.1333, 1) (.1500, 2) (.1833, 2) (.2167, 2) 

(.2333, 2) (.2500, 2) (.2667, 1) (.2667, 1) (.3000, 1) (.3000, 1) (.3167, 1) 

(.3333, 2) (.4000, 1) (.4333, 1) (.4500, 1) (.4667, 1) (.5000, 2) (.5667, 1) 

(.6000, 1) (0.6500, 2) (.6667, 1) (.7000, 1) (.8000, 2) (.8167, 1)  

Case 3: 28 37,   30,   4,0 ,3( ),  1.3,   30n r R T r      

(0.0333, 1) (0.0500, 2) (.1167, 2) (.1333, 1) (.1500, 2) (.1833, 2) (.2167, 2) 

(0.2333, 2) (0.2500, 2) (.2667, 2) (.2667, 1) (.3000, 1) (.3000, 1) (.3167, 1) 

(0.3333, 2) (0.4000, 1) (.4333, 1) (.4500, 1) (.4667, 1) (.5000, 2) (.5667, 1) 

(0.6000, 1) (0.6500, 2) (.6667, 1) (.7000, 1) (.8000, 2) (.8167, 1) (.8167, 1) 

(1.0333, 2) (1.0667, 2)      

 

 Before analyze the data, we investigate whether the IW distribution can be employed 

or not to analyze these data. Kolmogorov-Smirnov test statistic values (K-S) and the 

corresponding p-values are provided, saying that the data fit the IW distribution with the 

parameters given in Table 8. Moreover, as further illustration, the empirical cumulative 

distributions plot and the fitted densities plot with a histogram of probability are graphed 

in Figure 4, which also imply that the IW distribution provides a reasonable fit for these 

data. Moreover, the curves of profile log-likelihood function are plotted in Figure 5, which 

shows that the MLE of   is unique and exist for all cases. The MLEs and BEs (with their 

standard errors) based on both case 1, 2 and 3 are calculated and reported in Table 9. It is 

observed from this table that the point estimates obtained by maximum likelihood and 

Bayesian methods of the unknown parameters  , 1  and 2  are quite close to each other 

and the relative risk at each censoring scheme are computed and reported in Table 9. The 

results of Table 10 indicate that the HPDs are slightly shorter than the other confidence 

intervals in respect of their interval lengths. 

 

Table 8 

MLEs, Kolmogorov-Smirnov Test and p-value Results for Data 

Data   1  2  K-S p-value 

Cause 1 for failure 0.9098716 0.3239284 - 0.2399817 0.2238614 

Cause 2 for failure 1.1279799 - 0.1416295 0.1738660 0.6479818 
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Figure 4: Fitted the cdf and pdf of IW for Data 

 
 

Figure 5: Plots of the Profile Log-Likelihood of   from Real Data 
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Table 9 

Point Estimates of 𝜷, 𝝀𝟏 and 𝝀𝟐 for Real Data and Relative Risk 

Case Parameter 
MLE Bayes 

1  RR  2  RR  
Estimate sd.error Estimate sd.error 

1 

𝛽 0.885468 0.117363 0.908368 0.118657 

0.4275 0.5725 𝜆1 0.367085 0.112515 0.350686 0.113485 

𝜆2 0.274121 0.089564 0.255262 0.083335 

2 

𝛽 1.068541 0.097822 0.745556 0.091513 

0.2467 0.7533 𝜆1 0.485360 0.128200 0.306153 0.084629 

𝜆2 0.349940 0.102160 0.279963 0.076142 

3 

𝛽 1.127046 0.095993 1.128659 0.093544 

0.1872 0.8128 𝜆1 0.262253 0.072281 0.260797 0.073632 

𝜆2 0.259646 0.068907 0.262037 0.068134 
 

Table 10 

Interval Estimates for MLEs and HPD Credible Interval  

for Real Data based on GPH Type-I Censored 

Case par 
ACI HPD 

lower upper AIL lower upper AIL 

1 

𝛽 0.655441 1.115495 0.460054 0.6831695 1.1379157 0.4547463 

𝜆1 0.146559 0.587609 0.441051 0.6831695 1.1379157 0.4547463 

𝜆2 0.098578 0.449664 0.351086 0.1128373 0.4234993 0.3106620 

2 

𝛽 0.555328 0.918450 0.363122 0.5678666 0.9211730 0.3533065 

𝜆1 0.434291 1.038141 0.603849 0.4455977 1.0149608 0.5693631 

𝜆2 0.229722 0.717220 0.487498 0.2411288 0.7265564 0.4854276 

3 

𝛽 0.938903 1.315189 0.376286 0.9615474 1.3445845 0.3830371 

𝜆1 0.120585 0.403921 0.283335 0.1240977 0.4005367 0.2764395 

𝜆2 0.124591 0.394701 0.270109 0.1493062 0.3488508 0.1995447 

ACI: approximate confidence interval, par: parameter 

 

5. CONCLUSIONS 
 

 In this paper, we considered making statistical inference for GPH type-I in presence of 

competing risks. We obtained both point and interval estimates of the parameters using 

MLE and Bayesian approaches when latent failure times follow IW distribution with the 

same shape and different scale parameters. We propose to apply MCMC technique to carry 

out a Bayesian estimation procedure. The performance of the proposed methods was also 

studied and we noticed that the Bayesian method provides better estimation results 

compared to the MLE method. A real data is also discussed in support of the proposed 

competing risks model. In most instances, the MLEs and the Bayes estimates are almost 

similar and the HPDs have shorter interval lengths than those of associated ACIs in most 

cases. The Bayes estimates are obtained under non-informative prior because we do not 

have any prior information about the unknown parameters. In the literature, a limitation of 

the progressive hybrid control system is that it cannot be applied when few failures occur 

before time T. So, the GPH type-I censoring scheme proposed that allows us to observe a 

pre-specified number of failures. More work is needed in this way. As an extension of the 
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current work is the inference of unknown parameters based on data from GPH type-I in the 

presence of competing risks when latent failure times follow IW distributions with different 

scale and shape parameters or a different shape and common scale parameters. Also, 

assumption is made in this paper that the competing risks are statistically independent. The 

case, however, where the competing risks are dependent, is very common in practice and 

related statistical inference with dependent competing risks model is possible future work. 

We hope that the results and methodologies proposed here will be beneficial to reliability 

practitioners and extended to other censoring plans. 
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