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ABSTRACT 
 

 The probability model ‘Power Lomax Geometric Distribution’ proposed in this paper 

is derived from Power Lomax distribution through its compounding with the Geometric 

distribution. We present its various theoretical properties including hazard function, mean 

residual life and entropy. The family of this distribution constitutes heterogeneous 

characteristics, and is so classified into three distinguishable subfamilies. Each subfamily 

is unique in its importance with respect to theoretical and practical applications. The ML 

method is used for the estimation of four parameters of this distribution. To assess its 

adequacy we consider four real life data sets comparing it with other fitted models in 

literature. The model is flexible in its applicability to a large number of different situations. 
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1. INTRODUCTION 
 

 Various probabilistic models are available in statistical literature for their description 

of datasets relating to industrial, medical and other sciences. Lomax (1954) introduced a 

two parameter distribution for modeling life datasets in industry and later it was widely 

used in other scientific fields. As for a few references, Harris (1968) studied the income 

and wealth data through the application of Lomax distribution. Bryson (1974) suggested it 

as an alternative to the exponential distribution when the dataset is heavy-tailed. Atkinson 

and Harrison (1979) applied Lomax model in modeling business failure data. The 

distribution also has its applications in modeling the sizes of computer files on servers 

Holland et al. (2006). Corbellini et al. (2010), Amal S. Hassan & Al-Ghamdi (2009) etc. 

are some other papers which focus on Lomax distribution for its reliability studies and life 

testing. A number of extensions of the Lomax model have been developed by various 

authors. Some of these distributions are for instance Marshall–Olkin extended-Lomax 

(Ghitany et al., 2007), Extended-Lomax (Lemonte & Cordeiro, 2013), Gamma-Lomax 
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(Cordeiro et al., 2015), Exponentiated Lomax Geometric distributions (Amal Soliman 

Hassan & Abd-Allah, 2017). The compounding of probability distributions has also been 

a useful approach in producing flexible models. Some of these models, for instance, are 

Exponential-geometric distribution by Adamidis & Loukas (1998), Generalized linear 

Exponential Geometric distribution by Okasha & Al-Shomrani (2019) and the Quasi 

Xgamma Geometric distribution by Sen et al. (2019) etc. These generalized models have 

their specific applications in scientific fields but there are situations where the existing 

models in literature fail to fit adequately.  
 

 Rady et al. (2016) proposed Power Lomax distribution (POLOD) with pdf 
 

     
 1

1f x x x
 

      , 0x             (1) 
 

providing its applications where 0, 0     and 0   are parameters. In this paper, we 

develop Power Lomax Geometric Distribution (POLOGD) through mixing of Power 

Lomax distribution with Geometric distribution through an additional parameter. We study 

its various theoretical properties assessing the role of this parameter and provide its 

applications.  
 

 The material organized in this paper is as follows. In Section 2, the proposed POLOGD 

is derived and its special cases are discussed. In Section 3, we state and prove a theorem 

on characterization of this distribution. Section 4 considers three subfamilies of POLOG 

distributions that are heterogeneous with respect to the shapes of their density curves. Its 

quantile function, moments, skewness, kurtosis, hazard and mean residual life (MRL) etc 

are obtained in Section 5. A comparison is made POLOGD versus POLOD in Section 6. 

Finally, the ML estimates of distribution’s parameters are studied through simulation 

procedure in Section 7. Its applications to published datasets are also given in this section. 

Proofs of some mathematical theorems in this paper are included in the Appendix. 

 

2. FORMULATION OF MODEL 
 

 Let 1 2, , , Nx x x  be a random sample of size N from POLOD with pdf as  

defined in Eq. (1). Suppose that N  is a zero-truncated geometric random variable  

with pmf     11 nf n p p   ; 1,2, ,n   ,  0,1p . If    1 21
min , , , NX X X X  

is the first order statistic its conditional pdf given N n  is 

     
 1

1
1

1 |

n

f x n n x x x


  

    
       

 
. From the joint distribution of 

 ,X N , it can be seen that the probability density function of X  simplifies to  

   
   

 

 

1
1

2

1
;

1

p x x
f x

p x

 
  


 

   
 


    

 

, 0x           (2)  
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where  , , , p    
 
is the set of parameters with , , 0     and  0,1p . Defining it 

as the pdf of POLOGD random variable 𝑋, we obtain its cumulative distribution function 

(cdf)  
 

   
 

 

1

;

1

x

F x

p x


 


 


    

  


    
 

, 0x               (3) 

 

2.1 Special Cases 

 Burr-XII Geometric (B-XIIG) distribution (Korkmaz & Erisoglu, 2014) follows from 

the proposed POLOGD for 1  . However, as 𝑝 approaches zero we obtain the Power 

Lomax distribution (POLOD) (Rady et al., 2016), Lomax distribution (LOD) (Lomax, 

1954) for 1  , Burr-XII (B-XII) distribution (Burr, 1942) for 1  .  

 

3. CHARACTERIZATION OF POLOGD 
 

 We use the well-known theorem by Glänzel (1987) for the characterization of a 

distribution where  1q X  and  2q X  are real functions of the random variable 𝑋 such 

that 
 

         2 1| |E q X X x E q X X x x   
  

 

where  x  is real function of x. If 1 2q q   has no real solution then the cdf of 𝑋 can be 

uniquely determined by the functions 1 2,q q  and  . In the context of this theorem, we 

determine the functions  1q X  and  2q X  with reference to POLOGD.

  

Theorem 1 

 The functions  1q X  and  2q X  relating to POLOGD for its characterization under 

Glanzel’s theorem are  

     
2

1
1 1 1q X p X


  

    
 

 
      1

2 1 1q X q X X


    . 

 

Proof: 

 By using the pdf and cdf of POLOGD, it can be shown that the conditional expectations 

of the functions  1q X  and  2q X  are 

           
1 1

1 | 1 1 1E q X X x p F x x
         , 0x    

and 

           
21 1

2

1
| 1 1 1

2
E q X X x p F x x

          , 0x  . 
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 So that the ratio      2 1| |E q X X x E q X X x   simplifies to    11
1 .

2
x x


      

 

 Also  

         1 2 1

1
1

2

x
x q x q x q x


 

       

    ≠ 0, 0x  . 

 

 Conversely, with  x  as the above expression we have 

   
   

     

1

1 1

1 2

1
x q X x

s x x
x q X q X





  

         

,  0x   

and so 

    ln 1
x

s x


 

    

,           0x   

 

and the expression 
 

   
 

     
 

1 2

x
s x

a

x
F x C e dx

x q x q x




 


 
 

where 𝐶 is a normalizing constant and 0a   in this case 
 

  

 
2

1

11
1 1 1

x

a

p x x
x p dx


 

 


   
              



 
 

which ultimately simplifies to the cdf of POLOGD. 

 

3.1 Corollary 

 On substituting the relevant values of POLOGD parameters in the Theorem 1 we can 

now characterize the distributions mentioned above under the special cases. 

 

4. SUBFAMILIES OF POLOG DISTRIBUTION 
 

 The pdf curves of POLOG distributions have different heterogeneous shapes. We 

explore here parametric restrictions to generate subfamilies of POLOGD that display 

similarity of shapes of the pdf curves of the members within each subfamily.  
 

 The limit of POLOG pdf  f x  as 0x   is  
 

   
   

 

 
 

1
1

20 0

, 1

1
, 1

1
1

0 , 1

x x

p x x
lim f x lim

p
p x

 
  

  
 

  
    

  
          

.  (4) 
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 With   0
x
lim f x


  it follows that parameter   plays a conspicuous role in 

differentiating the shapes of POLOG density curves. That is, the family of POLOG 

distributions broadly disintegrates into the following three subfamilies.  
 

  

 
 
 

1 : 1; ; 0; 0,1

2 : 1; ; 0; 0,1

3 : 1; ; 0; 0,1 .

Subfamily x p

Subfamily x p

Subfamily x p

       


      
       

 

 

4.1 Trends of POLOG pdf Curves at 𝒙 = 𝟎 

 At the origin the pdf curves of the members of the first subfamily begin with a 

downward trend whereas the density curves of the distributions in the third subfamily move 

upward. For the second subfamily with 1   the density curves of the distributions trend 

below the limit  1 p    on the vertical axis at 0x  . It is easy to verify that the density 

function  f x  of the first and second POLOGD subfamilies assumes a decreasing value 

as x  increases.  
 

 The following graphs illustrate the pdf curves of some members of the POLOGD 

subfamilies for varying value of the parameter 𝑝. 

 

 
(a) 3, 0.5, 2       (b)

 
3, 1, 2       (c)

 
3, 2, 2       

Figure 1: pdf Curves of POLOGD with 1  , 1   and 1    

 

 From Figure 1 it can be observed that with the increasing value of 𝑝 alone the tails of 

 f x  become narrow and its mode shifts to the left. The density curves in the first 

subfamily remain L-shaped. The height  1 p    of  f x  at 0x   increases in the 

second subfamily. The pdf curves in the third subfamily begin at 0x   assuming different 

shapes with longer tails for larger 𝑝 values. 
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5. CHARACTERISTICS OF POLOGD 
 

 We discuss below some important properties of the proposed distribution. 
 

5.1 Quantiles 

 The qth quantile qx  of the distribution follows from ;qF x q     and is given as 

  
 
 

1

1
1

1
1

1
q

qp
x

q






 
   

    
   

 

.              (5)

 
 

 Assuming that a particular parameter changes and its other three parameters remain 

fixed, it is found that the quantile qx   

i) Decreases if  or 𝑝 increases. 

ii) Increases if   increases. 

iii) a) Increases if   increases and       1 11 1 1qp q
      . 

 b) Decreases if   increases and       1 11 1 1qp q
      .  

 

 The proofs of above assertions are briefly presented in Appendix A1. 

 In particular the median following from above simplifies to 

   

1
1

1

0.5 2 1x p





 
    

 
.               (6) 

 

 It is easy to see that the median of POLOG distributions occurs at 1x   for 1 2p   

and  12 1 3


   . Thus for different values of the parameters   and  , there exist a 

large number of POLOG distributions with the same median 1.  

 

5.2 Mode 

 From Eq. (4), it is clear that the mode of Subfamily 1 does not exist. For the second 

subfamily as discussed in Section 4, it has mode at 0x  . The mode of a distribution in 

the third subfamily is determined by the solution of the equation   0f x  , that is, 

         
1

1 1 2x x p x p




   
 

               
   

.      (7) 

 

 The modes of some selected distributions of Subfamily 3 are given Table 5 in  

Appendix A2. The mode of a distribution in this subfamily increases as the values of    

or   increase; and decreases as   or 𝑝 increases. 
 

5.3 Moments of POLOGD 

 The rth moment of a POLOG distribution is  
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     
 

 
2

1
1

0

1 1r
r p x x p x dx

   
     

          
 

 . 

 

 On using the expansion  

   
0

1
1

1

k j

j

k j
z z

k





  
  

 
 ,  1, 0z k 

 
 

the above reduces to
 

       
 1 1

1 1 1 1

0 0

1 1

j

j j r
j

j

x
p w x dx

  


     




      

    

where  1 j
jw j p  . 

 

 Let 
x

t





. Under this transformation, the rth moment in terms of Beta functions are 

given as 

   
   

1 1

1 10 0

1
1

1

r r

r j r r
jj

p w t dt

t

  
 

    
 

    



 
 

      
0

1 1, 1

r

j
j

r r
p w B j







        

  
   

        (8)  
 

provided the condition r   holds. 
 

 It follows that the mean of a POLOG distribution with 1   is  

       
1

1
0

1 1
1 1 1, 1j

j

p j p B j







          

  
        (9) 

 

 As the quantity  1j jp p   decreases with increasing p, it follows that for other 

parameters fixed 1  decreases as 𝑝 increases. Also, as 0p  , it simplifies to the mean 

1
1 1

1,B


    
  

 of POLOD in (Rady et al., 2016). That is, the mean of a POLO 

distribution with fixed ,   and   serves as the upper bound of the mean of POLOG 

distribution.  
 

 As for the effects of other parameters, we can use Table 5 in Appendix A2 that shows 

the means of several POLOG distributions. Based on it we observe that the mean of 

POLOGD in each subfamily increases when   or   increases while the other two 

parameters remain fixed. On the contrary the mean decreases by increasing  .  
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5.4 Skewness and Kurtosis 

 The family of POLOG distributions has a wide variation in its shapes depending 

primarily on the parameter 


. We discuss here the skewness and kurtosis aspects of these 

distributions.  
 

 The rth moment about mean of POLOG distribution is obtained through the relation

   1
0

1
r k k

r r k
k

r

k





     

 
 . By using the relevant moments, we additionally determine 

the coefficients of skewness and kurtosis of the distributions. 
 

 Based on Table 5 in Appendix A2, we discover that the coefficient of skewness of a 

distribution in Subfamily 1 diminishes when   increases or 𝑝 decreases. The distributions 

in Subfamily 2 with 1 
 
display longer positively skewed tails when 𝑝 increases. In 

Subfamily 3 the coefficient first decreases and then increases depending on the value 

of   and 𝑝. Some of the distributions in this subfamily are nearly symmetrical. As for the 

increase in  , the coefficient of skewness decreases for all subfamilies. 
 

 With regard to kurtosis, we observe more or less a pattern similar to that of skewness 

when the parameters vary. 

 

5.5 Hazard Function 

 The hazard function of POLOGD is  
 

   
 

 

1
1x x

h x

x p


 


 

  


   

 ,  0x  .            (10)  

 

 It is easy to observe that 

  
 0

1

( ) 1
1

0 1

x

lim h x
p

   



  

 
  

 

and
 

  0
x
lim h x


 .  

 

 From above it follows that the hazard curves of POLOG distributions do not show 

similarity in their shapes.  

 

Remarks:  

The hazard function of POLOGD has the following properties. 

i) The shape of a hazard curve of the distribution is primarily dependent on  . Let us first 

assume that this parameter varies and the other parameters are fixed, the expression 

(10) for  h x  and the function  1x x     are expected to display similar 

shapes of their curves. To have a general idea about the shape of POLOGD hazard 
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curves, we can consider the shape aspects of function  g x  defined in Appendix A3 

and conclude to have the following a general idea that the shape of POLOGD hazard 

curves:  

a. Decreases with increasing value of x in its first and second subfamilies.  

b. Describes a downward bathtub for the distributions in the third subfamily. 
 

 The critical point 0x  of a POLOGD hazard curve in the third subfamily is determined 

from a complicated equation   0h x  . In Figure 2 for illustration, we provide the 

hazard curves relating to POLOGD subfamilies with parametric values as follows: 
 

a. 0 1, 3, 2, 0.5p    . The hazard curves based on  0.1,0.3,0.5, 0.7,1 . 

b. 1, 3, 2, 0.5p       . The hazard rates relating to  2,3,5,7  . 

 

 
(a) 3, 2, 0.5p      (b) 3, 2, 0.5p      

Figure 2: Hazard Curves of POLOGD for 1   and 1   

 

 As for the significance of other shape parameters in the POLOGD hazard function, we 

state and prove the following theorems displaying the effect of varying a parameter 

when the other three parameters are fixed.  
 

ii) The hazard function of POLOGD increases when its parameter 𝑝 alone increases. 
 

 For proof, let 1 2p p  and the other parameters remain fixed. Then, since  

  1 2p p     
 

     1 2x p x p
 

           
 

 

 taking reciprocal the above simplifies to  

  
 

 

 

 

1 1
1 1

1 2

x x x x

x p x p

 
   

 
   

     


       

 

 and the result follows.  
 

 The following graphs illustrate the above property. 
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(a) 3, 0.5, 2       (b) 3, 1, 2       (c) 3, 2, 2       

Figure 3: Hazard Curves of POLOGD for different 𝒑 Values  

when 1  , 1   and 1   

 

 POLOGD being a generalization of POLOD has an additional parameter p. As this 

parameter varies a new distribution appears with its hazard property different from that 

of POLOD thus enhancing its versatility for applications. We conclude from the above 

mathematical result that:  

a. A larger 𝑝 value in the POLOGD model causes a larger hazard rate causing the 

risk for a shorter life of the product. It follows that the life of a product under the 

POLOD model takes a longer time for its expiry when compared with the product 

based on a POLOGD model.  

b. The lower bound of a POLOGD hazard rate is  1x x    , which is the 

hazard rate of POLOD. 
 

iii) The hazard function of POLOGD increases when   increases. 
 

For its proof, we write hazard function in the form

    1 1x x p x


   
       

 
. For fixed , , ,x p   and varying  , we can 

prove the result by applying Lemma 1 (see Appendix A4) with    1c x     .  

 

 
(a) 0.5, 0.5, 2p       (b) 0.5, 1, 2p       (c) 0.5, 2, 2p       

Figure 4: Hazard Curves of POLOGD for Different   Values  

when 1  , 1   and 1   
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5.6 Mean Residual Life of POLOGD 
 On using a similar approach as in Section 5.3, it can be shown that the mean residual 
life of the distribution simplifies to 

   

1

0

1 1
1 , , 1j

j

x x
p p B j


  



                     

   for  1  .  (11) 

 

 The graphs of MRL curves are presented below for the same members of POLOGD 
subfamilies as in Figure 3.  
 

 
(a) 3, 0.5, 2       (b)

 
3, 1, 2       (c)

 
3, 2, 2       

Figure 5: MRL of a POLOGD for different 𝒑 values when 1  , 1   and 1   
 

 As follows from the above graphs the MRL decreases with the increasing value of 𝑝 in 
each subfamily. The behavior of these graphs is opposite to that of the hazard curves in 

Figure 3. The MRL of a POLOG distribution with fixed parameters ,   and   does not 

exceed a value mentioned in the following corollary. 
 

5.7 Corollary 

i) As 0p  , the MRL for POLOD simplifies to 

1

1 1
1 , ,

x x
B


    

           

 

for 1   as in (Rady et al., 2016).  

ii) It is easy to prove that the MRL of POLOGD assumes a decreasing trend as 𝑝 
alone increases towards its upper bound that is the MRL of POLOD. 

 

6. POLOGD VERSUS POLOD 
 

 The generalization of POLOD through the additional parameter 𝑝 has produced useful 

distributions to cover additional datasets for fitting. We find in our above study that this 

parameter plays an important role in heterogeneous hazard rate and mean residual life. At 

the end, in this paper, we present applications where POLOGD performs as a more 

effective model relative to POLOD in fitting a dataset.  
 

7. PARAMETER ESTIMATION 
 

 In this section, we find the estimates of parameters of the POLOG distribution by using 

the maximum likelihood (ML) method.  
 

 The log-likelihood function of the random sample 1 2, , , nx x x  from POLOGD is  
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   
           
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 
 
          
 

 

 

   (12) 

 

 The ML estimates can be obtained from the following equations when equated to zero. 
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 We can solve this system of nonlinear equations by employing numerical iterative 

technique BFGS in optim command based on R-Language. 
 

 To assess the performance of the ML estimates of the distribution’s parameters  

we conduct a simulation study by drawing 10,000 random samples of sizes  

25,50,100n  from POLOG distributions with 0.5,1,3 , 0.5,1,2 , 0.5,1,2  and 

0.25,0.50,0.75p . Estimates of the parameters and their MSEs are provided in Table 6 of 

Appendix A5.  
 

 It can be seen that the ML estimates are close to the true values of the parameters, and 

their MSEs are also reasonably small. A larger sample size increases the efficiency of 

estimates.  

 

7.1 Applications of POLOGD Model 

 We provide here the applications of the POLOGD to four real life datasets for which 

the models have been proposed in literature. For its comparative assessment, we consider 

these fitted and other relevant models. The models are for these datasets, POLOD (Rady  

et al., 2016), Burr-XII Geometric (B-XIIG) distribution (Korkmaz & Erisoglu, 2014), 

Transmuted Exponentiated generalized Weibull (TExG-W) distribution (Yousof et al., 

2015), Gamma distribution (GD) (Bhaumik et al., 2009), Beta Exponentiated Lomax 

distribution (BELD) (Mead, 2016) and Generalized compound Rayleigh distribution 
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(GCRD) (Bekker et al., 2007). The criteria used for comparison are AIC, BIC, CAIC, 

HQIC. Additionally, we apply generally known powerful tests - Cramer Von Mises test 

(W) and Anderson Darling test (A) to provide the probability of acceptance of selected 

model. 
 

 The datasets (references indicated) that we use for our applications, are given in 

Appendix A6 for the convenience of readers.  
 

 Application 1 (Dataset I) 

A random sample of 128 bladder cancer patients on remission times (months) was 

used by (Rady et al., 2016) for fitting the model POLOD.  

 Application 2 (Dataset II) 

Bhaumik, Kapur and Gibbons (Bhaumik et al., 2009) fitted the Gamma distribution 

(GD) model to the Vinyl chloride  g L  dataset consist of 34 observations from 

clean up gradient groundwater monitoring wells.  

 Application 3 (Dataset III) 

Mead (Mead, 2016) applied Beta Exponential Lomax distribution to dataset of 40 

observations on the active repair times (hours) for an airborne communication 

transceiver. 

 Application 4 (Dataset IV) 

Bekker, Roux and Mosteit (Bekker et al., 2007) used this data on survival times 

(years) of 36 gastric cancer patients (who received chemotherapy treatment) in 

recommending Generalized compound Rayleigh distribution (GCRD) model. 

 

7.1.1 Comparative Performance of POLOGD Model:  
 The best fitted models were proposed by the authors for the above data sets in the papers 

referred above. When comparing the models the choice of a superior one is based on its 

minimum measures of goodness criteria. As for application of Cramer Von Mises test (W) 

and Anderson Darling test (A), a larger probability associated with the model favors it. We 

now fit POLOGD model to each data set for its performance.  
 

 Below in the tables we provide information on the parametric estimates of fitted 

models, log-likelihood and the measures of goodness of fit; the results on POLOGD model 

are highlighted.  

 

Table 1 

Parametric Estimates of Fitted Models and Goodness of Fit Measures  

for Dataset I  128n    

Model ̂  ̂  ̂  p̂  ̂  -2LL AIC BIC HQIC CAIC W A 

POLOGD 2.86 1.53 178 0.71 --- 820 827 839 832 828 0.9982 0.9993 

POLOD 0.33 3.47 48.2 --- --- 866 872 881 876 873 0.9587 0.9684 

B-XIIG 0.23 2.34 --- 0.00 --- 907 913 921 916 913 0.8782 0.9056 

TExG-W 0.54 1.04 0.331 1.13 0.167 825 835 849 840 835 0.9665 0.9751 
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Table 2 

Parametric Estimates of Fitted Models and Goodness of Fit Measures  

for Dataset II  34n   

Model ̂  ̂  ̂  p̂  ̂  -2LL AIC BIC HQIC CAIC W A 

POLOGD 0.51 0.9889 5.283 0.896 --- 123 131 137 133 132 0.9751 0.9896 

POLOD 4.39 0.7336 18.05 --- --- 147 153 157 154 153 0.9363 0.9675 

GD 0.19 232.60 --- --- --- 183 187 190 188 188 0.8709 0.9277 

TExG-W 4.95 0.5329 0 0.219 0.48 155 165 172 167 167 0.9034 0.9426 

 

Table 3 

Parametric Estimates of Fitted Models and Goodness of Fit Measures  

for Dataset III  40n   

Model ̂  ̂  ̂  p̂  ̂  -2LL AIC BIC HQIC CAIC W A 

POLOGD 153973 1 705760 0.2926 --- 190 198 205 201 199 0.7536 0.7216 

POLOD 24629 0.7288 44798 --- --- 200 206 211 208 207 0.7023 0.6867 

BLD 2599 0.0007 1191.0 179.5 --- 313 321 328 324 322 0.6800 0.7025 

BELD 0.0099 1160.1 0.0044 64.07 21.6 202 212 221 215 214 0.7189 0.6978 

 

Table 4 

Parametric Estimates of Fitted Models and Goodness of Fit Measures  

for Dataset IV  36n   

Model ̂  ̂  ̂  p̂  ̂  -2LL AIC BIC HQIC CAIC W A 

POLOGD 37.35 1.4915 630.89 0.9528 119 127 134 129 128 0.7302 0.7373 0.7216 

POLOD 0.639 1.1268 0.4449 --- 133 139 145 141 140 0.6925 0.7098 0.6867 

BLD 46.14 317.95 1.7214 --- 172 178 184 180 179 0.6844 0.7093 0.7025 

BELD 0.242 0.2406 --- 0.4201 286 292 297 294 292 0.6634 0.6874 0.6978 

 

 A comparison of models for each dataset based on information in the tables clearly 

indicates a general supremacy of our proposed POLOGD model.  
 

 Figure 6 (a, b, c and d) show the graphs of three estimated density curves which refer 

to POLOGD, POLOD and the third best of the remaining two models. The POLOGD 

density curves appear closer to the histograms described by the datasets. 
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Figure 6(a): pdf Curves 

Fitted to Dataset I 

 
Figure 6(b): pdf Curves  

Fitted to Dataset II 

  
Figure 6(c): pdf Curves  

Fitted to Dataset III 

Figure 6(d): pdf Curves  

Fitted to Dataset IV 

 

8. CONCLUSION 
 

 Power Lomax Geometric distribution (POLOGD) proposed in this paper is the 

distribution of the minimum order statistic of a sample from Power Lomax distribution 

(POLOD) when the random sample size itself is geometrically distributed with an 

additional parameter p. So that POLOGD derived by compounding is a generalized form 

of POLOD and has four parameters. Since its family has heterogeneous characteristics, we 

classify it into three distinct versatile subfamilies. It is discovered that each subfamily has 

its unique theoretical and practical importance in fitting certain datasets. We estimate the 

parameters of this model by the maximum likelihood method, and provide applications of 

its three subfamilies to real life datasets for the description of which the best models have 

been suggested in literature. Its comparison is also made with other relevant models using 

goodness of fit measures. The preferable performance of the proposed model suggests that 

it can be a useful candidate for model fitting in various situations. 
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APPENDIX A1: 
 

 Let    1 1k q p q    which is greater than 1 as 0 , 1p q  .  

 The three derivatives of qx  
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 For this assertion, we find the derivative  
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which on increasing   remains positive or negative as    1 1qp q   less than or 

more than  11


  respectively. 
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APPENDIX A2: 
 

Table 5 

Descriptive Statistics of POLOGD 

    p    Med Mode Mean Sk K    Med Mode Mean Sk K 

21 

0.5 

0.25 

0.50 0.00018 

D
oe

s 
no

t e
xi

st
 

0.0011 10.7 291.9  1.5 0.0567 0.0299 0.0687 1.38 5.73 

0.75 0.00322 0.0073 4.2 35.3  5 0.4228 0.4277 0.4206 0.10 2.84 

0.95 0.01077 0.0181 2.8 16.0  10 0.6502 0.6636 0.6433 0.49 3.35 

0.50 

0.50 0.00010 0.0008 12.7 408.1  1.5 0.0456 0.0210 0.0582 1.62 6.79 

0.75 0.00208 0.0056 4.9 46.2  5 0.3961 0.3929 0.3970 0.04 2.82 

0.95 0.00764 0.0143 3.2 20.2  10 0.6293 0.6378 0.6244 0.37 3.19 

0.75 

0.50 0.00003 0.0004 17.1 748.6  1.5 0.0306 0.0122 0.0428 2.10 9.51 

0.75 0.00093 0.0034 6.3 76.5  5 0.3512 0.3378 0.3569 0.27 2.95 

0.95 0.00406 0.0094 4.1 31.4  10 0.5926 0.5928 0.5911 0.17 3.05 

1 

0.25 

0.50 0.00073 0.0042 10.7 291.9  1.5 0.0900 0.0474 0.1090 1.38 5.73 

0.75 0.00810 0.0185 4.2 35.3  5 0.4856 0.4914 0.4832 0.10 2.84 

0.95 0.02233 0.0374 2.8 16.0  10 0.6969 0.7113 0.6895 0.49 3.35 

0.50 

0.50 0.00038 0.0030 12.7 408.1  1.5 0.0724 0.0334 0.0923 1.62 6.79 

0.75 0.00525 0.0141 4.9 46.2  5 0.4550 0.4514 0.4560 0.04 2.82 

0.95 0.01585 0.0297 3.2 20.2  10 0.6745 0.6836 0.6693 0.37 3.19 

0.75 

0.50 0.00011 0.0017 17.1 748.6  1.5 0.0485 0.0193 0.0679 2.10 9.51 

0.75 0.00235 0.0087 6.3 76.5  5 0.4034 0.3881 0.4099 0.27 2.95 

0.95 0.00841 0.0194 4.1 31.4  10 0.6351 0.6353 0.6336 0.17 3.05 

3 

0.25 

0.50 0.00656 0.0378 10.7 291.9  1.5 0.1872 0.0987 0.2267 1.38 5.73 

0.75 0.03506 0.0800 4.2 35.3  5 0.6049 0.6121 0.6019 0.10 2.84 

0.95 0.07098 0.1091 2.8 16.0  10 0.7778 0.7939 0.7696 0.49 3.35 

0.50 

0.50 0.00342 0.0273 12.7 408.1  1.5 0.1507 0.0694 0.1920 1.62 6.79 

0.75 0.02270 0.0612 4.9 46.2  5 0.5668 0.5623 0.5681 0.04 2.82 

0.95 0.05037 0.0858 3.2 20.2  10 0.7528 0.7630 0.7470 0.37 3.19 

0.75 

0.50 0.00103 0.0151 17.1 748.6  1.5 0.1009 0.0402 0.1412 2.10 9.51 

0.75 0.01018 0.0375 6.3 76.5  5 0.5025 0.4834 0.5107 0.27 2.95 

0.95 0.02674 0.0552 4.1 31.4  10 0.7089 0.7091 0.7071 0.17 3.05 
               

21 

1 0.5 0.5 

0.00038 0.0030 12.7 408.1  

3 

0.2691 0.2439 0.2803 0.51 3.12 

25 0.00027 0.0021 11.8 336.0  0.2538 0.2303 0.2642 0.50 3.09 

30 0.00019 0.0014 11.2 287.4  0.2387 0.2168 0.2483 0.49 3.06 

40 0.00010 0.0008 10.4 240.1  0.2168 0.1971 0.2253 0.47 3.03 
                

21 

0.5 

0.25 

1 

0.0135 

Z
er

o 

0.0215 2.57 13.83  

𝛼
=
2
5

 

0.0113 

Z
er

o 

0.0179 2.51 13.16 

0.50 0.0097 0.0172 2.96 17.32  0.0082 0.0143 2.89 16.50 

0.75 0.0053 0.0114 3.81 26.66  0.0045 0.0095 3.73 25.43 

1 

0.25 0.0270 0.0430 2.57 13.83  0.0226 0.0359 2.51 13.16 

0.50 0.0195 0.0344 2.96 17.32  0.0164 0.0287 2.89 16.50 

0.75 0.0107 0.0228 3.81 26.66  0.0090 0.0190 3.73 25.43 
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APPENDIX A3: 
 

 It can be shown that the function    1c cg x c x a x   with , 0a x   decreases when 

x increases under the condition 0 1c  . Otherwise, for 1c  , it describes a downward 

bathtub curve. 

 

APPENDIX A4: 
 

 Lemma 1: Let    
1

1 p c


     , where c, 𝑝 are fixed numbers such that 

0 1,c   0   and  0,1p . Then     is an increasing function of  . 

The proof follows from the simple application of calculus.  

 

APPENDIX A5: 

 

Table 6 

ML Estimates for the POLOG Distribution Parameters with their MSE  

(in bold form) 

3, 2     

  n 
0.25p   0.5p   0.75p   

      p        p        p  

0.5 

25 
3.014 0.535 2.192 0.291 2.963 0.498 2.062 0.432 2.986 0.476 2.026 0.698 

0.099 0.010 0.860 0.057 0.027 0.006 0.616 0.050 0.005 0.004 0.254 0.022 

50 
3.007 0.524 2.114 0.294 2.963 0.490 2.035 0.455 2.993 0.474 1.988 0.712 

0.073 0.004 0.352 0.036 0.020 0.003 0.252 0.027 0.001 0.003 0.038 0.012 

100 
3.015 0.521 2.077 0.298 2.979 0.488 1.998 0.461 2.995 0.482 2.015 0.734 

0.038 0.002 0.112 0.019 0.008 0.001 0.067 0.012 0.000 0.001 0.003 0.002 

1 

25 
3.033 1.037 2.946 0.350 2.975 0.052 1.998 0.401 2.991 0.927 2.010 0.696 

0.073 0.025 7.207 0.106 0.009 0.015 0.606 0.090 0.003 0.013 0.117 0.023 

50 
2.984 1.004 2.116 0.232 2.988 0.944 2.001 0.450 2.994 0.940 1.973 0.700 

0.019 0.013 1.373 0.027 0.005 0.009 0.140 0.023 0.001 0.008 0.027 0.021 

100 
3.001 1.002 2.054 0.238 2.992 0.956 1.982 0.465 2.998 

0.000 

0.951 2.000 0.730 

0.019 0.006 0.379 0.016 0.001 0.005 0.007 0.008 0.006 0.003 0.003 

2 

25 
2.977 1.882 2.028 0.193 2.983 1.859 1.995 0.437 2.990 1.863 2.016 0.693 

0.017 0.057 0.510 0.073 0.004 0.053 0.110 0.063 0.002 0.052 0.053 0.031 

50 
2.980 1.901 1.983 0.180 2.992 1.887 1.986 0.476 2.992 1.888 1.998 0.711 

0.012 0.030 0.046 0.067 0.002 0.030 0.005 0.013 0.001 0.032 0.011 0.010 

100 
2.989 1.918 1.973 0.209 3.002 1.906 2.047 0.504 2.997 1.914 1.999 0.732 

0.006 0.020 0.012 0.049 0.000 0.022 0.006 0.005 0.000 0.020 0.002 0.004 
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2, 0.5p    

  n 
0.5   1   2   

      p        p        p  

0.5 

25 
0.487 2.348 0.541 0.546 0.466 2.407 1.048 0.538 0.445 2.488 2.047 0.516 

0.022 0.311 0.119 0.018 0.017 0.417 0.091 0.020 0.018 0.645 0.037 0.022 

50 
0.493 2.240 0.506 0.529 0.480 2.267 1.014 0.525 0.461 2.321 2.031 0.517 

0.012 0.129 0.020 0.009 0.010 0.155 0.003 0.010 0.011 0.234 0.011 0.010 

100 
0.485 2.149 0.500 0.524 0.483 2.165 1.013 0.521 0.473 2.189 2.021 0.518 

0.004 0.052 0.002 0.006 0.004 0.065 0.001 0.005 0.005 0.088 0.005 0.006 

1 

25 
1.068 2.142 0.584 0.494 1.033 2.246 1.386 0.532 0.993 2.329 2.325 0.499 

0.136 0.134 0.539 0.035 0.093 0.200 1.850 0.050 0.085 0.272 1.624 0.051 

50 
1.045 2.088 0.570 0.504 1.028 2.157 1.185 0.529 0.980 2.218 2.113 0.521 

0.066 0.062 0.203 0.025 0.040 0.074 0.809 0.020 0.031 0.116 0.329 0.017 

100 
1.034 2.070 0.552 0.520 1.014 2.126 1.091 0.522 0.989 2.158 2.032 0.509 

0.023 0.027 0.108 0.011 0.010 0.037 0.206 0.010 0.010 0.053 0.046 0.007 

3 

25 
3.002 1.868 0.530 0.482 2.997 1.855 1.033 0.460 2.983 1.859 1.995 0.437 

0.002 0.045 0.022 0.009 0.002 0.051 0.050 0.028 0.004 0.053 0.110 0.063 

50 
3.006 1.903 0.526 0.486 3.004 1.886 1.025 0.488 2.992 1.887 1.986 0.476 

0.001 0.024 0.004 0.003 0.001 0.033 0.002 0.006 0.002 0.030 0.005 0.013 

100 
3.008 1.936 0.506 0.496 3.007 1.925 1.015 0.490 2.995 1.912 2.007 0.484 

0.000 0.012 0.002 0.001 0.000 0.016 0.001 0.002 0.000 0.022 0.001 0.003 

 

APPENDIX A6: 
 

Data I: Remission times (months) of bladder cancer patients 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 

0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 

25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 

10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 

7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 

4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 

2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 

5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 

12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

Dataset II: Vinyl chloride from clean up gradient ground-water monitoring wells in (μg/L) 

5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1, 8, 0.8, 0.4, 0.6, 0.9, 0.4, 2, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 

2.3, 1, 0.2, 0.1, 0.1, 1.8, 0.9, 2, 4, 6.8, 1.2, 0.4, 0.2. 

Dataset III: Active repair times (hours) for an airborne communication transceiver 

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 

1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 

5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50. 

Dataset IV: Survival times (years) of gastric cancer patients 

0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 

0.458, 0.466, 0.501, 0.507, 0.529, 0.534, 0.540, 0.641, 0.644, 0.696, 0.841, 0.863, 

1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 

2.444, 2.825, 2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. 


