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ABSTRACT

There are many situations in reliability or medical studies, where items may fail due
to one of several causes. Further, oging is unavoidable in any life testing. In this
paper attempts to estimate problem for the competing risks model where the data are
adaptive typdl progressive hybrid censored scheme and follow the inverse Weibull
distribution. In this regards, we obtaithe maximum likelihood estimation of the
parameters and the asymptotic confidence intervals for the unknown parameters. Further,
Bayes estimates of the parameters which obtained based on squared error and LINEX
loss functions under the assumptions ofejpendent gamma priors. For Bayesian
estimation, we take advantage of Markov Chain Monte Carlo techniques by applying the
MetropolisHasting algorithm under the square error and LINEX loss function to derive
Bayesian estimators. Finally, two data sets witMonte Carlo simulation study and a
real data set of the electronic applications are analyzed for illustrative purposes.

KEYWORDS

Adaptive typell progressive hybrid censored scheme, Inverse Weibull distribution,
Competing risks, Maximum likelihood &@®ation, Bayesian estimation, Markov Chain
Monte Carlo, Squared error and LINEX loss functions.

1. INTRODUCTION

In life-testing and reliability studies, both typeand typell censoring schemes are
widely used. Epstein and Sobel (1953) gave an earlyrpagie testing. They can be
described as follows: considem identical unites are placed in the test, in type
censoring schemes, the experiment continues up to a predeterminédf titoeever, in
typell censoring schemes, the experiment is terminated when a predetermined number of
failuresr < n occurs, as given by Cohen (1961). The combination of-kygel typell
censoring schemes is known as the hybrid censoring scheme, wdscfirst introduced
by Epstein (1954) in the context of kfesting experiments. In tygehybrid censoring

scheme, the life test experiment is terminated at a random'l'tTmHnin(X(,) ,T). Childs

et al. (2003) proposed a new hybrid censorinteste called a typB hybrid censoring
scheme in which the experiment would be terminated at the random time

T = max(X,y ,T).These schemes do not allow to remove the units from the experiment
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at any time point other than the terminal point. Taldeith this problem, a more general
censoring scheme called progressive ffpmnsoring is used.

The progressive typd censoring scheme can be conducted as follows: consider
identical units are put in a lifetime test andis a predetermined nuyar of units to be
failed. At the time of the first failureX,,, R units are randomly removed from the

remaining n- 1 surviving units. Then at the second failure tinxg,,, R, units of the
remainingn- 2 -R units are randomly removed. And so on, at the time of'Heilure
Xy all the remaining units are removed, thatis,= n -r é{;llR . The progressively
censoring schem®&, R,,..., R are fixed and predetermined prior to the study.

Kundu and Joarder (2006) and Childs et al. (2008) both investigated the
typell progressive hybrid censoring scheme in whichunits are plaed on a test

with censoring schemgR, R,...,R) and stopping timeT" =min(X,,T), where
Xa ¢ X €. ¥, are the order observed failure times resulting from the
progressively censored experiment dnds fixed in advane. Briefly, if X, <T, the
experiment terminates at time ., andr failures occur. As an alternative, the experiment
stops at timeT and onlyD failure occur before timd, where Xp) <T <Xp.q, and

0¢ D ¢ . The detailed description of the progressive type Il hybrid censoring scheme is
presented in Kundu and Joarder (2006) and Childs et al. (2008) (see also Kundu et al.
(2009)). Although, in order to control the total on test, theeeirpent time is fixed by the
experiment, so less thanm failures (or even equal to zero) might be observed which
delivers an advance effect on the efficiency of the inferential producer based on the
progressive type Il hybrid censoring scheme. Consequehtly appropriate to have a
model that takes into account an adaption process.

For the purpose of increasing the efficiency of statistical analysis as well as saving the
total test time, Ng et al. (2009) introduced adaptive fiygeogressive hybrid ensoring
scheme (ATl PHCS) an adjustment of Tygé progressive hybrid censoring scheme,
and investigated the statistics under the assumptions of experiment lifetime distribution
of the experimental units. Under this scheme the number of observeédailsrfixed
in advance but the experiment time is permitted to run over thdiged threshold time
T>0. If X, <T, the experiment stops at tim¥,, and we will have a usual

progressie type Il censoring scheme with the {fiseed progressive censoring scheme
(RRywR). I Xipy<T <Xpuyy, Where D+1 <, we adapt the number of items

progressively removed from the experiment upon failure bytting

D
Ru=R e = Riand R =n-m & R. Thus the effectively applied scheme is
i=1

D
R,R,0,..,0n r-& R, where D=maxD :Xp, <), that is, the first observed

i=1
failure time exceeding the ideal total tintle. The main advantage of this scheme is to
speed up the test when the test duration exceeds predeterminel timg assure us to
obtain effective failure numbers for the statistical inference. Many scholars devote
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themseles to estimating the unknown quantities based oAlAHCS. For example,
Mahmoud et al. (2013) studied statistical inference for generalized pareto distribution,
Al-Sobhi and Soliman (2016) considered exponentiated Weibull model and Mehie El
Din et al. (D17) discussed generalized exponential distributionS@bhi and Soliman
(2016) considered exponentiated Weibull model. Nassar and-Kabem (2017)
discussed inverse Weibull distribution (IWD) with ATPHCS sample and the optimal
censoring scheme wassalinvolved and see Yan and Wang (2020), Helu and Samawi
(2021), Alotaibi et al. (2022).

In reliability analysis, the failure of units at the same time may be attributable to more
than one cause. These causes are competing for the failure of the extsnimit. In the
statistical literature, this problem is known as the competing risks model. The causes of
failure in the competing risks data analysis can be assumed to be dependent or
independent where the data consists of a failure time and the tsdaeiase of failure.

Hemmati and Khorram (2011) and (2017) introduced the competing risks data under
AT-1l PHCS with the assumption of exponential distribution. In addition, Ashour and
Nassar (2014) investigated the analysis of generalized expondigtidbution under
AT-1 PHCS in the presence of competing risks data. Yan and Yimin (2019) investigated
the inference of the competing risks model with modified Weibull distribution under
AT-Il PHCS. Liu and Gui (2020) and Nassar et al. (2022) are stusBéimation the
parameters of the twparameter and ofgarameter Rayleigh distribution based on-AT
PHCS with competing risks. Ren and Gui (2021a) and Nassr et al. (2021) are investigated
the inference of the competing risks data with Weibull and tktended Weibull
distributions under ATl PHCS. Qin and Gui (2022) studied inference of lomax
distribution based on ATl PHCS with competing risks.

In this paper, we focus the estimation of the parameters for the IWD based-ibn AT
PHCS with competingisks data. We assume that the shape and scale parameters are all
different for the independent failure causes. We derive the maximum likelihood
estimators (MLEs) and the approximate confidence intervals (ACIs); also, obtained
Bayes estimators under squareor (SE) and LINEX loss functions using gamma priors
based on Markov Chain Monte Carlo (MCMC) techniqUé®e remainder of this paper is
organized as follows. In Section 2, we present the competing risk model and the
corresponding likelihood function baeg on ATII PHCS data. The maximum likelihood
estimation of the unknown parameters is established in Section 3. In Section 4, we
discuss Bayes estimators under SE and LINEX loss function using MCMC techniques. In
Section 5, the simulation results is given study the effectiveness of the proposed
estimation of the unknown parameters. In Section 6, analysis of real data set is presented.
Finally the conclusion is given in Section 7.

2. MODEL DESCRIPTION

Consider a life time experiment withi N identical units, where its lifetimes are
described by independent and identically distributed (i.i.d) random variables
X1, Xy, .., X, - Without loss of generality, assume that there are only two causes of failure.

We have X; =min{ X;, X3} for i =1,...n, where X,;,(k=1,2) denotes the latent failure
time of thei™ unit under thek cause of failure. We assume that the latent failure times
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Xy and X, are independent and the pa(Xy, X5 ) are i.i.d. Assume that the failure
times follow the IWD with the same shape parame(®sk =1,2) and different scale

parameters(l .,k =1,2). The probability densityfunction and cumulative distribution
function of IWD are given by

fo(xl e B) = lxbRPe % x 0,3, 10,k BZ )

Fxl o ) €Y% x 03,1, ®k>1z2 @)

and the corresponding survival functi®p and the failure rate functioh, are given by
F=1-e"" K =ixbDE* 15 x 0, 5, 10,k 13 (3)

The IWD is more appropriate model than the Weibull distribution because the
Weibull distribution does not provide a satisfactory parametric fit if the data indicate a
nonmonotone and unimodal hadarate functions. The hazard rate function of IWD can
be decreasing or increasing depending on the value of the shape parameter. The IWD is
useful to model several data, such as the time to breakdown of an insulating fluid
subjected to the action of coast tension and degradation of mechanical components
such as pistons and crankshafts of diesel engines. Extensive work has been done on the
IWD, see for example, Keller and Kamath (1982), Erto and Rapone (1984), Calabria and
Pulcini (1994), Maswadah (200and for more details about the generalizations of IWD
seeOluyede and Yandg2014). In addition, many articles have considered IWD under
different censoring schemes. Among others, Kundu and Howlader (2010), Musleh and
Helu (2014), Sultan et al. (2014), Xwn and Zaizai (2016), Nassar and Aasem
(2017), Mohie EIDin and Nagy (2017), Ateya (2017), Ateya (2020) and Kazemi and
Azizpoor (2021)

In the presence of competing risks, the data from anl AHCS is as follows:
(X(1)1d1! Rl)!---v(X(D)1 g.R )a(>§13+1): Ddﬁro)v----o% 1) or f_i,O),()(ﬁ) r R
r
where D is the number of observed failures before tifie R =n -r & R and
i=1

d i(1,2%). Here,d %,k k2 means the unithas failed at timeX, due to cause

‘Qwhile d = means the cause of uip fail is unknown. Let
a1, G =1 e. 1, u = 2 &
L@ =1y =" Lo quTe 2y =,7, n'd I
(G {0 else 2 (:'O Ise ) Sa % else

L L
then the random variableg=0Ol,( d Handr, =0Ol,( d 2) describe the number of
i=1 i=1

failures due to the first and the second cause of failures,ectggly, and

<
r; =0l 5( d *5 is the number of failures having failure times but corresponding causes
i=1
of failure are unknown. Hemmati and Khorram (2011), wrote the likelihood function in
this case as follows:



Salem, AbeKasem and Elassar 12¢

L:célé% L0 RO @ P (RO RO)

(fux) Balx )+ 04 Ex ) @ 7 8

o%éa(x(.))Fz(x( )t e (Fl(x)Fz(x))“ 4

where f, (x)is the PDF,F (x) is the CDF,k=1,2 and F (x) =1 -F (X).

We assume that there are only two causes of failure and the case of failure is known,
then under ATl PHCS existene competing risks data, we have the following
observation:

(X duR){ Xoy» 8B) ( Yoy 0% 9 %) ®)

Then the likelihood function of the observed data can be expressed as follows:

L=cO&u00)R0p) (B0 ROE)

R &= _ Ra— - 3R
%%Fl(x(i))':z(xa N) " FRONROO) R 4)
1= g
where6i s an constant which doesno6t dependent

3. MAXIMUM LIKELIHOOD E STIMATION

The existence of ATl PHCS under competing risks data (4) and from the life time
distribution (1) and (2), then the likelihood function of the observed data igntiving
constant can be written as:

D
!

R
L0 B (« k)'b0x(.> wokt.“ T @( TS ST R ANC)
where, Uy, %1 - v @=€ Y0, u, 1 - W (=€ ¥ ") andk=12.
Then, the corresponding ldikelihood function is given by
InL(l, B) f(In (1In+) by(InF , Inl )+ &

I
+a( { 1bnxg, In+; I 2+)
i=1

3
+a({ b nx, In+y w49
i=1

3 Rin(y )

b
r -_aR-_gln( : 2 M (6)
i=1 i3 -

vo%g)o
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The first order derivations of equation (6), with respedt tfoand b, for k=1,2, are
given respectively by

- Q & o ~o -
InLCl, WD _ne Joop X Wi P X0 Woa D _0OX, % |V
— =5 ax) a—— At r - R
UL kI i:1X() i 4 KU i §% Ki U ¢ i 1@9 w L
)
R
MInLCH, (B _ 1 X - b Xyt W IN X
ke Kok IR X, 1R1n %
K p kb ia=.1( FIX(I) R'-)&I) n)il)) i% ki u
D 1R winx; 3 D5l ® wl
+a RS0 WXy A, Bp0loy f winx ®)
i=1 Uyi C i3 - W

The asymptotic varianeeovariance matrix is obtained by inverting Fisher
information with the elements that are negatives of the expecteessof the second
partial derivatives of the likelihood functions. The asymptotic variaos@riance matrix
will be

elinL( L, b 0 2laL( . 1) b 'é;

é 3 HE Wb 0

& . L, b 0 L b B
|()1(IEk, é_ e HL yb 3

epzlnl_( kD 0 “lpL( . 1) b 0 u

e ML Wb ub g

¢ WinL( L, b o "Il b)Y

é ML yb nb B E

where k=1,2 and the elements of th42® 4 matrix 1(I 4, l,, ;b ,)l can be obtained as
follows:
RInL( L, D e Bexs Bwg o oxd ety D x:2® L w
2, - —g @ z ahk (n-r -aR)—ﬁ’
(Tal® o=t (ug) 2 ( Y it ()

w2inL( |, Do e ék kx(‘-)‘?(lnx(i))z raélkx(})*? VM(lnx(i))z

Vall b iz P4 Uyi
D | kx(_i)m winx;))? a D &l xR w(nx)?
taR 0 F AR :
i=1 Uy o iz - W
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WInL( b, Wb _ a’k R v o Wb " WX
Hi WD &= X(I) o ig (ug)?
D aR | kX(|) i ( llx(l 1) N X;)
i:1 (Uk.)
DR PNICLE U
=1 ( kr) -

Now, ACl for | 4, |,, ; andb,, can be obtained as follows

IEk °Zg,2~fvar( kﬁ, k 12 and E_ngZ%/ var( )

where Z, is the100(3- ¢ 2)% standard normal percentile.

4. BAYESIAN ESTIMATION

In this section, Bayesian estimation of the unknown parameters of the IWD under
AT-Il PHCS in presence of competing risks model b discussed.

4 1Posterior Distribution

We consider the Bayesian estimation under the assumption that the random variables
I and b, for k=12 are independently with gamma prior distition with

defined scale and shape parameters. Assuming thgt Gammg @, b),

b, Gammg a,,, by), kE2, the joint prior density ol
as

1 b, ;andb, can be written
pe( b)) ek g,h 0>k 12
Ps2( R) ’ﬁkb-le-b“z R, a o b o 0>k 1,2
Hence, the joint prior density df, andb, is given by
Pk ) R R2BehB2? g h,a0,,0e 0 R 12 9)
Combining equation (5) with equation (9) then
L(l 11 I2. 1b z)b( 1p 2|, 1,| 2) b;_1+61 1 *’22 TQ l_?:-‘—aqg' T2 a4-EE'b3|1 bblgbzt |2 b4 2

raR
OX(‘“*W U ow 'Y 1u0( LGP TS (10)

The joint posterior density df, andb, for k=1,2 can be written as

_ Lyl b (pd 4l)b b (11)

Lﬂm'z- pop(pd Ll dbdbd f 5

p( b 4, 1,b2|xb

o

031"
ODlnI
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Therefore, the Bayes estimates of any functiorl gf l,, ; and b, under SE loss
function, sayq( |, o ;,b,)is

aSE( b ob b)) PEC T o1y |:12<)

=A A @ifzly BDLOy, 20y b)) (by b p & b ¢b . (12)

0000

One limitation of the squared error loss function is its symmetry. A
well-known asymmetric loss function is the LINEX loss function, which is
UQun, Y (@ 9 7. q ) 1). The sign of ¢ represents the direction of
asymmetry, and its magnitude reflects the degree of its asymmetrg.<F@yr a negative
error has a more serious effect, and for 0, the effect of a positive error is more
serious. The Bayesian estimatedgf, . ;,b,) under the LINEX loss function is:

Gun( b 2 1b2) b ZHEE Y (13

Normally, the ratio of three integrals given by Equations (12) and (13) cannot be
obtained in a closed form. In this case, one may utilize the MCMC technique to generate
samples from the posterior distributions and, after that, compute the Bayesastiofiat
the individual parameters and highest posterior density (HPD) credible interval.

4.2MCMC Method

The method of MCMC can be used to generate samples from the posterior density
function (11) and in turn to compute the Bayes estimates of the unkpenameters and
compute the corresponding credible intervals. Based upon the target posterior distribution
(10), we obtain the conditional distribution &f, i and k=1,2 have the following

forms

Pa( I1| 3 102X Fﬁl tehh

A B f AR (14)
()lX(I)QI)’W Lb O)YI( - b ‘gv 1UC( L Lb)m( rl) =
Po( | o pbod) 3 feth
SALE ) -r &_IR (15)
le(' Wi LﬁOx( ‘!Vlu(l . W) Q)u.l
P3( li’| b ool ) P b
aR (16)

5x(.< b By, 1 OX(.<’2 b 1u0( L) ) U
=1
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P B| o ol xp 3 Be bl
T AR 17)
OX((‘EBW Lbox(('z b)gvluq ﬂLb)FiJ( '2) u e

The posterior ofl , and b, for k=1,2 in Equations from (14) to (17) are not

known. Thus, to derive from this distributions, one may employ the MetreldaBtings
method with normal proposal distribution. For more information concerning the
application of MH, readers may refer to Robert abdsella (2004).

To run the Gibbs sampler algorithm, we started with the MLEs. We then drew
samples from various full conditionals, in turn, using the most recent values of all other
conditioning variables unless some systematic pattern of convergeaa@chiaved. The
algorithm Gibbs sampling can be described as follows:

Step L:nitial 1, 9, B, Olare given, and one can refer to the results of MLE.

Step 2:sett=1.

Step 3:Generatel {7, £ from py( h| 4 1, byx® and py( b| o 1 by xd

respectively.

Step 4:Generateb(", § from py( Bl 4 2! ,xdandp,( B| 4 5l L xb

respectively.

Step 5:Then we can calculate(”, £, {® andb{.

Step 6:Setd 0 p.

Step 7:Repeat steps-3, M times, and obtair(l {?, £, b, Opi 1,.=M .

Step 8:Under SE loss function, obtain the Bayes estimatds of, and a

~ M ~ M
lsm B /M, b a—(')/M, . bal)iMdnd w &I

=1 i 1=
Step 9:Under LINEX loss functlon, obtain the Bayes estimated gf |, and a
M = ‘lna@ et MO’ "Ll Lin- %eeg)ll M 8
c Gi=1 C ic: ks
b = SInag e Moand b EnGectm
¢ ¢= C ici 3

Step 10:To obtain the credible intervals df;, l,,b, and b, order | {’, £) b1 and

o) a1 B W) (B0 L0 () Bl ) and (s, §1.... 1),
Then, the 100(- 29% symmetric credible intervals of | 4, b,b;

and b, become (I fov - ja 'W]),( Mg [%I)"’H)g, (bllg"'], It 'W]) and
(b[zg"'], s '>"3‘]) and the one which has shortest interval length among all the
100(1- 2 9% credible intervals is just the HPD credible interval.
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5. MONTE CARLO SIMULATION

To evaluate the pesfmance of different point and interval estimatordogfand |
for k=1,2 obtained in the previous sections theoretically, an extensive simulation study
is employed. Using various combtiemns of n (number of total test unitsy, (effective
sample size) and” (prefixed test time), a large number 1000 of ATPHCS samples
are generated from the IWD using two differesets of the true values of parameters
(bs, B, 1} )l namely Setl:(0.4,0.8,0.2,0.1) and S2t(0.8,1.0,0.4,0.2). Also, using two
different choices ofn such asn=50 and 100, the number of fadlesubjectsr is
determined when the percentages of failure informatign)100% are taken as 40 and

80%. Based on the proposed censoring plan, when the number of failures neaties
experiment is terminated. For ea€h,r) values, different threshold time points ofare

used such ag=0.4,0.8) and (=0.8,1.2) for parameter sets 1 and 2, respectively.

To assss the performance of removal patteRisi=1,2,...;y four censoring schemes
are considered, wher@=(1,1,1,0,0 is denoted byR=(1*3,0*2) for brevity, as

Schemel: R=n-rr, R=0 fori 1
Scheme2: R, =n-r,, R 6 fori 1, :
2
Scheme3: R=n-rr, R 6 fori r
and
6R=(3*(r/2),0*(r/2)), if r/n =40%;

Schemed: j _
iR=(@*(n -n,0*(2r R)), if r/n 868%.

For Bayes inference, to see the effects of the gamma density priors, we considered
two informative priors for each unkwn parameter. All hypgrarameters are chosen in
such a way that the prior mean become the expected value of the corresponding
parameter, for detail, see Kundu (2008). Without loss of generality, two different sets for
the hypefparametersy, by, i=1,2,3,< of both parameter sets 1 and 2knf and |  for

k=1,2 are used, namely:

i) For Setl:(0.4,0.8,0.2,0.1):
1 Prior-l: (&,&,8,8,)=(0.816,04,0.zandh =2,i =,2,3,2
1 Prior-ll: (&,a&, a5 8,)=(2.0,4.0,1.0,0.Eandh =5, i =,2,3,<
i) For Set2:(0.8,1.0,0.4,0.2):
1 Prior-l: (&,&,8a3 8,)=(1.6,2.0,0.8,0.4andh =2, 1 =,2,3,4
71 Priorll: (&,8,, 85 8,)=(4.0,5.0,2.0,1.Candh =5,i =,2,3,4

It is to be nentioned here that if improper prior informatien=h =0 for i =1,2,3,4
is available, the joint posterior density functionlyf and |  for k =1,2is redwced with

proportional to the joint likelihood function. Thus, if one does not have prior information
on the unknown parameters of interest, it is better to use the classical estimates instead of
the Bayes estimates because the latter are computationa#yexmensive.
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To calculate the Bayes MCMC estimates and associated credible interval estimates of
b, and |, fork=1,2, 12,000 MCMC samples via the Metropdktastings algorithm

are genertgd. By discarding the first 2,000 variates from each simulated chain as 'burn

in', the average Bayes estimates are computed based on 10,000 MCMC samples using SE

and LINEX (for c= 3) loss functions. To simulate the posterior samplém

corresponding MLEs of unknown parameters are used as initial values, consequently, one

can observe that the Markov chains reach the stationary condition very quickly.
Numerically, the average estimates (AEs)Ipf and | , for k=12 (sayj for

short) is given by

B =a ® 0234

where S is the number of generated sequence dtis the desired estiate ofj , j&/
denotes the computed estimate obtained-ath sample of the unknown parametey,,
j1=di, =%]s =4Jandj, =41

Comparison between different point estimate$ ofis made using two criteria called

root mean squareerror (RMSE) and mean absolute bias (MAB) values, using the
following formuas as

RMSEGE)=%§1(§E A 12,34
\f =

= 15 .
MAB(R) 54| B ofi 1284

and

respectively.

Also, the performances of asymptotic/credible intervals estimates are evaluated using
their average confidence lengths (ACLs) and coverage percentages (CPs) using the
following formulas, respectively, as

ACL(j () =& (Ug, & 1,2:3,4
(i) "gja:l( g B 23,4
and
oy 15
CPl 1) Eil]u(jﬁﬁ”);uu(@»’ t 1234

where J(‘) is the indicator functionL(® and U(Q® denote the lower and upper bounds,
respetively, of (1- #L00% asymptotic (or credible) interval.

All computational algorithms are coded R statistical programming language

software version 4.1.2 via two packages name

et al. (2006), (i ) OmaxLi ko package by Henningsen

a



13€ Inference for Inverse Weibull Competing Risks Hata

0 GoFKernel 6 package proposed by Pavi a (20
recommended by Elshahhat and Nassar (2021).

The average maximum likelihood and Bayes estimateb,ofand | | for k=1,2
with their RMSEs and MABs of are calculated and reported in Tab&sFlrther, the
ACL and CP values of 95% asymptotic/credible intervals of the same unknown
parameters are providedTables 916, respectively.

As an example, the heatmap plots of the simulation results (including: RMSE, MAB,
ACL and CP) ofb, and |, for k=1,2 using Setl at T =0.4 based on Prief (say P1)
are displayed in Figures4, respectively. For specification, several notations have been
used such as the Bayes esti maRl&d amdeBa\Se&s
estimates under LINEX loss usity ocand +3 ment iPolme da nads AALLLI21

N . .
P16, respectively. Al so, mentioned as Bayes
(100,80)-4 - -
(100,80)-3~ -
(100,80)-2~
(10080)-1~ -
(100,40)-4~
(100,40)-3~ RMSE MAB
o 2 - 06
g (100,40)-2 05
§ (100,40)-1- 04 04
& (50,40)-4~ & (50.40)-4 03
£ (50,40)-3- 02 (50,40)-3 g'i
(50,40)-2- (50,40)-2- ’
(50,40)-1- (50,40)-1-
(50,20)-4 - (50,20)-4 -
(50,20)-3 (50,20)-3
(50,20)-2 (50,20)-2
(50,20)-1 (50,20)-1
' " " " " "
g/ &g & & &g g zf w"{‘l .f;iy r\‘}w j\/ :\f{v
g & 3 ¥ I ¥ g 9 ¥ I I ¥
B1 By
(100,80)-4 ~ (100,80)-4 -
(100,80)-3~ (100,80)-3 -
(100,80)-2 ~ (100,80)-2 -
(100,40)-4~ (100.40)-4 -
(100,40)-3~ ACL (100.40)-3 -
g (100,40)-2- 0.8 E (100,40)-2 -
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From Tables 416, see the Appendix, we can make the following observations:

1 In general, the calculated results of both classical and Bayes estimators are pretty

good according to lowest RMSEs, MABs and ACLs ad aehighest CPs.

T As n (or r/n) increases, the RMSEs, MABs and ACLs of all estimatds,oand
I for k=1,2 decrease while their CPs incsesas expected. A similar behavior
is observed in case of the sum@fi=1,2,...r decreases. So, to get satisfactory
estimation results, one may tend to increase the effective sample size.

1 Since the variance of Prior Il is less than the varéaof Prior I, for each set of
parameter values, it can be seen that the Bayes MCMC estimates based on Prior I
perform better compared to other prior in terms of smallest RMSEs, MABs and

ACLs as well as highest CPs for all estimates. Similar behavadyssrved in the
case of credible interval estimation.
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1 Comparing the proposed schemes 1, 2, 3 and 4 on the basis of smallest RMSEs
and MABs (for point estimates) arsinallest ACLs as well as highest CPs (for
interval estimates), it can be seen that both classical and Bayes estimates of all
unknown parameters behave satisfactory based on Sehdmext Schemd)
than those obtained based on other censoring schemesisTdue to that the
expected duration of the experiment using Sch&rfwhich removes the survival
units n- r at the time of first failure occur) is greater than the Sch&rwhich
removes the survival units- r at the time of last failure occur).

1 Comparing the classical and Bayes estimates clearly shows that the MCMC
estimates using both SE and LINEX loss functions perform better than the
conventional likelihood estimates in terms of minimum RMSE and MAB galue
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Figure 4: Heatmap Plots for the Estimation Resultsof | ,

1 Consequently, the credible interval estimates also provide satisfactory results
when compared to the ACI estimates in terms of smallest ACLs and highest CPs.
This holds for all settings and for all unknown parameters. This result is due to the
fact that the Bayesian method combines the prior information about the parameter
and the sample data, while the maximum likelihood method uses only the sample

data.

1 It is also observed that the Bayes estimates developed under the LINEX loss
function perform better in most cases than those obtained under the SE loss
function. It is an expected result because the use of the SE loss function gives
equal weight to underestimat:nd overestimation due to its symmetric nature.
This result indicates that the Bayes MCMC estimates under LINEX loss function
are sensitive to the values of the shape parameter loss.

1 As T increases based on Setin most casesh¢ RMSEs and MABs for all
estimates ofb; increase; for all estimates di, decrease; for the MLEs of
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| .k 1,2 decrease and for the MCMC estimatesl gfk =,2 increase. AsT

increases based on S&tin most cases, the RMSEs and MABs for all estimates of
b,k 4,2 decrease while for all estimateslof,k =,2 increase.

T As T increases based o8etl, in most cases, the ACLs for all ACls of
b,k 1,2 increase while for all ACIs of ,,k 4,2 decrease. Also, the ACLs

for all credible intervals ofb, and | .,k =,2 increase wile for all credible
intervals of b, decrease. Additionally, opposite behavior is observed in the case
of the CPs for all estimates bf and| , for k=1,2.

T As T increases based on Sxtin most cases, the ACLs for all estimates of
b,k 4,2 decrease while for all estimates of ,k 1,2 increase. AsT

increases based on Sktin mast cases, the CPs for all estimatesbpfk =1,2
increase while for all estimates bf,k 4,2 decrease.

1 As the value ofb, and |, for k=1 2increasesthe associated RMSEs and
MABSs of the MLEs ofb, and | , decrease and dj, and |, increase while that
associated with the Bayes estimatesbpfincreases and ob, and |,k 4,2

decrease in most cases.
1 As the value ofb, and |, for k=12 increases, the associated ACLs of all

estimdes ofb, increase; ofb, and| , decrease while of ; increase (in the case

of ACIs) and decrease (in the case of credible intervals). Moreover, opposite
behavor is observed in case of t#s for all estimates df, and| , for k=1,2.

To sum up, it is clear from the simulation results that the performance of both Bayes
point and credible intgal estimates behave superior than the traditional estimates
obtained under the maximum likelihood approach in terms of minimum RMSEs and
MABs for point estimates and in terms of lowest ACLs and largest CPs for interval
estimates. Lastly, the Bayes MCM@rpdigm using Metropolislastings algorithm to
estimate the unknown parameters of the IWD under adaptive [T ypegressive hybrid
censored data with competing risks is recommended.

6. REAL-LIFE DATA ANALYSIS

To demonstrate how the proposed methodolocgesbe applied to real phenomenon,
one real data set consists of failure times for 33 small electronic applications with known
causes of failure in an automatic life test is analyzed. This data set was originally taken
from Lawless (2003) and later discadsby Chacko and Mohan (2019) and Ren and Gui
(2021b). The failures of these electronic applications were attributed to 18 different
modes. Following Sarhan et al. (2008), we mainly focus on the failure mode 9. Therefore,
we assignd 2 for the failure mode 9 and =2 for otherwise failure modes. Hence, the
total number of observed failures due to causes 1 and 2 from the complete failure times
are 17 and 16, respectively. Each failure time point in the origin@seiahas been
divided by one thousand for computational convenience. Transformed failure times of the
electronic applications are reported in Table 17.
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Table 17
Transformed Failure Times of the Electronic Applications
Cause Failure Times

1.167, 1.9251.990, 2.223, 2.400, 2.471, 2.551, 2.568, 2.69
3.034, 3.112, 3.214, 3.478, 3.504, 4.329, 6.976, 7.846
0.011, 0.035, 0.049, 0.170, 0.329, 0.381, 0.708, 0.958, 1.0
1.594, 2.327, 2.451, 2.702, 2.761, 2.831, 3.059

1

2

According to Ren and Gui (20211, investigate whether the competing risks inverse
Weibull lifetime model can provide a reasonable fit for the given data set, the
KolmogorovSmirnov (K-S) goodnessf-fit test statistics are used. The values of MLEs
with their standard errors (St.Es) athé K-S distance (with it§)-value) of the unknown
IWD parametersn the presence of cause 1 are 2.4202(0.4195), 8.1385(3.0084) and
0.1474(0.803) and in the presence of cause 2 are 0.5190(0.0923), 0.4653(0.1574) and
0.2293(0.319), respectively. It is alethat the correspondingvalues of both causes are
high than the significance level 18t Yy hence we cannot reject the null hypothesis that
the electronic applications data are coming from the IWD.

One of the major issues in maximum likelihood efece is that often it is not
possible to prove the existence and uniqueness of the derived estimators. To solve this
problem, using the observed failures due to causes 1 and 2, the contour plot of the log
likelihood function with respect to IWD parameten® plotted in Figure 5. It shows that

the MLEs l?k and IEk for k=1,2, are exist and are also unique. So, we suggest taking

these estimates as initial guesses to start the computatienadiloih. Besides the plots of

the empirical and estimated survival functions, the probafglitpability (PP) plots

based on the time of failure due to causes 1 and 2 are shown in Figure 6. It is evident that
the competing risks inverse Rayleigh modd fiie given data set well.

From Table 17, taking =11and R =2,i =,2,...r for eachT(=2,2.5), two adaptive
Typell progressive hybrid censored samples are generated and provided in Table 18.
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Figure 5: Contour Plot of Log-Likelihood Function of | , R
for k=1,2 under Electronic Data
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Table 18
Different AT -1l PHCS Samples Generated from Electronic Data
Sample Failure Time(Cause) (D) | R
A 0.011(2), 0.170(2), 0.708(2), 1.167(1), 1.990(1), 2.400 2(5) 12
2.451(2), 2.471(1), 2.551(1), 2.568(2.694(1)
B 0.011(2), 0.170(2), 0.708(2), 1.167(1), 1.990(1), 2.400 3(8) 6
2.551(1), 2.702(2), 3.034(1), 3.059(2), 3.112(1)

Using both samples A and B, the maximum likelihood and Bayes estimates (with their
St.Es) are calculated and pided in Table 19. Because no any prior information is
available about the unknown parametéys and |, for k=1,2, the Bayes estimates

relative to both SE and LINEX (foc= 2, 0.02, 2) loss functions are obtained utilizing
50,000 MCMC iterations and by taking first 10,000 iterative as-buperiod. However,

due to calculation reasons, all hyper parameters are selected in such a way that mean of
prior distribution approximatglequal to one while variance equal to 0.001. Also, 95% two
sided asymptotic/credible interval estimates (with their lengths of the unknown parameters
b, andl , for k=1,2, are also calcated and presented in Table 20.
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Using the invariance property df, and |, for k=12, the estimated relative risks
due to causes 1 and 2 based on sample A are 0.835 and 0.165 armuhbsm®agdle B are
0.787 and 0.213, respectively. From Tables209it can be seen that the classical and
Bayesian point estimates bf and| , for k=12, are close to each other. Moreover,
terms of smallest St.Es and shortest length, the Bayes estimates and associated credible
interval estimates ob, and |, for k=1,2, perform better than the corresponding
maximum likelhood estimates and associated ACI estimates.

Some vital statistics namely mean, median, mode, standard deviation (SD) and
skewness (Sk.) for the MCMC simulated sampledpfand | for k=12, after bun
in; are computed and provided in Table 21. To evaluate the MCMC convergence, using
samples A and B, trace plots of the posterior distributions,ofnd | |, for k=1,2, are
displayed in Figure 7. It represents 40,000 outputb,oind |, for k=1,2, with their

sample mean (soled liné ()) and 95% twesided credible intervals (dashed lines f)).
Further,it shows that the MCMC algorithm has converged well and the size ofitburn
sample is sufficient to avoid the influence of the initial guesses

Furthermore, using the Gaussian kernel density, the estimated marginal RQF of
and |, for k=1,2, using both generated samples A and B with their histograms as well
as their sample means (represented by vertical dashed lines (:)), based on 40,000 MCMC
variates are plotted in Figure 8. It showattthe generated posterior estimated pfand
I for k=1,2, are fairly symmetrical and quite close well to the theoretical posterior

density functions. Finally, the findings of the posed methods under electronic data set
provide a good explanation to our model.

Table 19
Point (with their St.Es) under Electronic Data
Sjlgple Parameter | MLE SE > ng%;( 2

b 1.796 1.790 1.790 1.790 1.789
. (0.470) | (0.010) [ (0.006) (0.007) (0.007)

b 0.161 0.153 0.153 0.153 0.152
A 2 (0.062) | (0.009) | (0.008) (0.008) (0.009)
| 7.166 7.160 7.161 7.160 7.159
! (2.832) | (0.011) | (0.006) (0.006) (0.007)

| 2.277 2.271 2.272 2.271 2.270
2 (0.488) | (0.008) | (0.006) (0.006) (0.007)

b 1.484 1.477 1.478 1.477 1.477
1 (0.430) | (0.010) | (0.006) (0.007) (0.007)

b 0.190 0.182 0.182 0.182 0.181
B 2 (0.063) | (0.008) | (0.008) (0.008) (0.009)
| 6.377 6.371 6.371 6.371 6.370
. (2.489) | (0.010) | (0.006) (0.006) (0.007)

| 2.126 2.120 2.120 2.120 2.119
2 (0.442) | (0.007) | (0.006) (0.006) (0.007)
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Table 20
Interval Estimates(lengths) underElectronic Data
Sample | Parameter ACI Credible Interval

Lower | Upper | Length | Lower | Upper | Length

1 0.875 2.718 1.843 1.741 1.839 0.097

A 1 0.039 | 0.282 | 0.243 | 0.106 | 0.198 | 0.092
_ 1.615 | 12.718 | 11.103 | 7.111 7.209 0.098

_ 1.321 3.233 1.913 2.222 2.320 0.098

) 0.640 2.327 1.687 1.428 1.526 0.098

B 1 0.067 0.313 0.246 0.137 0.227 0.091
_ 1.499 | 11.255| 9.756 | 6.323 | 6.420 | 0.098

_ 1.259 2.993 1.734 2.071 2.168 0.097

Table 21
Vital Statisticsof the Posterior Samplesunder Electronic Data
Sample | Parameter | Mean Median Mode SD Sk.

i 1.790 1.790 1.766 0.025 -0.003

A f 0.153 0.153 0.147 0.023 -0.015

_ 7.160 7.160 7.144 0.025 0.003

_ 2.271 2.271 2.217 0.025 0.025

1 1.477 1.477 1.435 0.025 -0.006

B ) 0.182 0.182 0.141 0.023 0.023

_ 6.371 6.371 6.330 0.025 0.027

_ 2.120 2.120 2.127 0.025 -0.011
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