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ABSTRACT 
 

 There are many situations in reliability or medical studies, where items may fail due 

to one of several causes. Further, censoring is unavoidable in any life testing. In this 

paper attempts to estimate problem for the competing risks model where the data are 

adaptive type-II progressive hybrid censored scheme and follow the inverse Weibull 

distribution. In this regards, we obtain the maximum likelihood estimation of the 

parameters and the asymptotic confidence intervals for the unknown parameters. Further, 

Bayes estimates of the parameters which obtained based on squared error and LINEX 

loss functions under the assumptions of independent gamma priors. For Bayesian 

estimation, we take advantage of Markov Chain Monte Carlo techniques by applying the 

Metropolis-Hasting algorithm under the square error and LINEX loss function to derive 

Bayesian estimators. Finally, two data sets with a Monte Carlo simulation study and a 

real data set of the electronic applications are analyzed for illustrative purposes.  
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1. INTRODUCTION  
 

 In life-testing and reliability studies, both type-I and type-II censoring schemes are 

widely used. Epstein and Sobel (1953) gave an early paper in life testing. They can be 

described as follows: consider n  identical unites are placed in the test, in type-I 

censoring schemes, the experiment continues up to a predetermined time Ὕ. However, in 

type-II censoring schemes, the experiment is terminated when a predetermined number of 

failures r < n occurs, as given by Cohen (1961). The combination of type-I and type-II 

censoring schemes is known as the hybrid censoring scheme, which was first introduced 

by Epstein (1954) in the context of life-testing experiments. In type-I hybrid censoring 

scheme, the life test experiment is terminated at a random time 
*

( )min( , )rT X T= . Childs 

et al. (2003) proposed a new hybrid censoring scheme called a type-II hybrid censoring 

scheme in which the experiment would be terminated at the random time 
*

( )max( , ).rT X T= These schemes do not allow to remove the units from the experiment 
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at any time point other than the terminal point. To deal with this problem, a more general 

censoring scheme called progressive type-II censoring is used.  
 

 The progressive type-II censoring scheme can be conducted as follows: consider ὲ 
identical units are put in a lifetime test and r is a predetermined number of units to be 

failed. At the time of the first failure (1)X , 1R  units are randomly removed from the 

remaining 1n-  surviving units. Then at the second failure time (2)X , 2R  units of the 

remaining 12n R- -  units are randomly removed. And so on, at the time of the r th failure 

( )rX  all the remaining units are removed, that is, 1
1

r
r iiR n r R-== - -ä . The progressively 

censoring scheme 1 2, ,..., rR R R  are fixed and predetermined prior to the study.  
 

 Kundu and Joarder (2006) and Childs et al. (2008) both investigated the  
type-II progressive hybrid censoring scheme in which n units are placed on a test  

with censoring scheme 1 2( , ,..., )rR R R  and stopping time 
*

( )min( , )rT X T= , where 

(1) (2) ( )... rX X X¢ ¢ ¢  are the order observed failure times resulting from the 

progressively censored experiment and T is fixed in advance. Briefly, if ( )rX T< , the 

experiment terminates at time ( )rX  and r failures occur. As an alternative, the experiment 

stops at time T and only D failure occur before time T, where ( ) ( 1)D DX T X +< < , and 

0 D r¢ ¢. The detailed description of the progressive type II hybrid censoring scheme is 

presented in Kundu and Joarder (2006) and Childs et al. (2008) (see also Kundu et al. 
(2009)). Although, in order to control the total on test, the experiment time is fixed by the 
experiment, so less than m failures (or even equal to zero) might be observed which 
delivers an advance effect on the efficiency of the inferential producer based on the 
progressive type II hybrid censoring scheme. Consequently, it is appropriate to have a 
model that takes into account an adaption process. 
 

 For the purpose of increasing the efficiency of statistical analysis as well as saving the 
total test time, Ng et al. (2009) introduced adaptive Type-II progressive hybrid censoring 
scheme (AT-II PHCS) an adjustment of Type-II progressive hybrid censoring scheme, 
and investigated the statistics under the assumptions of experiment lifetime distribution 
of the experimental units.  Under this scheme the number of observed failures r is fixed 
in advance but the experiment time is permitted to run over the (pre-fixed) threshold time 

0T> . If ( )rX T< , the experiment stops at time ( )rX , and we will have a usual 

progressive type II censoring scheme with the pre-fixed progressive censoring scheme 

1 2( , ,..., )rR R R . If ( ) ( 1)D DX T X +< < , where 1D r+ <, we adapt the number of items 

progressively removed from the experiment upon failure by setting 

1 2 1...D D rR R R+ + -= = =  and 
1

D

r i
i

R n m R
=

= - -ä . Thus the effectively applied scheme is 

1
1

,..., ,0,...,0,
D

D i
i

R R n r R
=

- -ä , where ( )max( : )DD D X T= < , that is, the first observed 

failure time exceeding the ideal total time T . The main advantage of this scheme is to 
speed up the test when the test duration exceeds predetermined time T  and assure us to 
obtain effective failure numbers for the statistical inference. Many scholars devote 
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themselves to estimating the unknown quantities based on AT-II PHCS. For example, 
Mahmoud et al. (2013) studied statistical inference for generalized pareto distribution, 
Al -Sobhi and Soliman (2016) considered exponentiated Weibull model and Mohie El-
Din et al. (2017) discussed generalized exponential distribution. Al-Sobhi and Soliman 
(2016) considered exponentiated Weibull model. Nassar and Abo-Kasem (2017) 
discussed inverse Weibull distribution (IWD) with AT-II PHCS sample and the optimal 
censoring scheme was also involved and see Yan and Wang (2020), Helu and Samawi 
(2021), Alotaibi et al. (2022). 
 

 In reliability analysis, the failure of units at the same time may be attributable to more 
than one cause. These causes are competing for the failure of the experimental unit. In the 
statistical literature, this problem is known as the competing risks model. The causes of 
failure in the competing risks data analysis can be assumed to be dependent or 
independent where the data consists of a failure time and the associated cause of failure.  
 

 Hemmati and Khorram (2011) and (2017) introduced the competing risks data under 
AT-II PHCS with the assumption of exponential distribution. In addition, Ashour and 
Nassar (2014) investigated the analysis of generalized exponential distribution under  
AT-I PHCS in the presence of competing risks data. Yan and Yimin (2019) investigated 
the inference of the competing risks model with modified Weibull distribution under  
AT-II PHCS. Liu and Gui (2020) and Nassar et al. (2022) are studied estimation the 
parameters of the two-parameter and one-parameter Rayleigh distribution based on AT-II 
PHCS with competing risks. Ren and Gui (2021a) and Nassr et al. (2021) are investigated 
the inference of the competing risks data with Weibull and the extended Weibull 
distributions under AT-II PHCS. Qin and Gui (2022) studied inference of lomax 
distribution based on AT-II PHCS with competing risks. 
 

 In this paper, we focus the estimation of the parameters for the IWD based on AT-II 
PHCS with competing risks data. We assume that the shape and scale parameters are all 
different for the independent failure causes. We derive the maximum likelihood 
estimators (MLEs) and the approximate confidence intervals (ACIs); also, obtained 
Bayes estimators under square error (SE) and LINEX loss functions using gamma priors 
based on Markov Chain Monte Carlo (MCMC) techniques. The remainder of this paper is 
organized as follows. In Section 2, we present the competing risk model and the 
corresponding likelihood function based on AT-II PHCS data. The maximum likelihood 
estimation of the unknown parameters is established in Section 3. In Section 4, we 
discuss Bayes estimators under SE and LINEX loss function using MCMC techniques. In 
Section 5, the simulation results is given to study the effectiveness of the proposed 
estimation of the unknown parameters. In Section 6, analysis of real data set is presented.  
Finally the conclusion is given in Section 7.  
 

2. MODEL DESCRIPTION  
 

 Consider a life time experiment with n NÍ  identical units, where its lifetimes are 

described by independent and identically distributed (i.i.d) random variables 

1 2, ,..., .nX X X  Without loss of generality, assume that there are only two causes of failure. 

We have { }1 2min ,i i iX X X=  for 1,...,i n= , where ,( 1,2)kiX k=  denotes the latent failure 

time of the i th unit under the kth  cause of failure. We assume that the latent failure times 
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1iX  and 2iX  are independent and the pairs ( )1 2,i iX X  are i.i.d. Assume that the failure 

times follow the IWD with the same shape parameters ( , 1,2)k kb =  and different scale 

parameters ( , 1,2).k kl =  The probability density function and cumulative distribution 

function of IWD are given by 
 

( 1)
( ; , ) , 0 , , 0 , 1,2

k
k kx

k k k k k k kf x x e x k
-b

- b + -l
l b =l b > l b > =     (1) 

 

( ; , ) , 0 , , 0 , 1,2
k

kx
k k k k kF x e x k

-b
-l

l b = > l b > =        (2) 
 

and the corresponding survival function kF  and the failure rate function kh  are given by 
 

  ( 1) 11 , ( 1) , 0 , , 0 , 1,2
k k

k k kx x
k k k k k kF e h x e x k

-b -b
-l - b + l -= - =l b - > l b > = (3) 

 

 The IWD is more appropriate model than the Weibull distribution because the 
Weibull distribution does not provide a satisfactory parametric fit if the data indicate a 
non-monotone and unimodal hazard rate functions. The hazard rate function of IWD can 
be decreasing or increasing depending on the value of the shape parameter. The IWD is 
useful to model several data, such as the time to breakdown of an insulating fluid 
subjected to the action of constant tension and degradation of mechanical components 
such as pistons and crankshafts of diesel engines. Extensive work has been done on the 
IWD, see for example, Keller and Kamath (1982), Erto and Rapone (1984), Calabria and 
Pulcini (1994), Maswadah (2003) and for more details about the generalizations of IWD 
see Oluyede and Yang (2014). In addition, many articles have considered IWD under 
different censoring schemes. Among others, Kundu and Howlader (2010), Musleh and 
Helu (2014), Sultan et al. (2014), Xiuyun and Zaizai (2016), Nassar and Abo-Kasem 
(2017), Mohie El-Din and Nagy (2017), Ateya (2017), Ateya (2020) and Kazemi and 
Azizpoor (2021) 
 

 In the presence of competing risks, the data from an AT-II PHCS is as follows:  
 

  ( )(1) 1 1 ( ) ( 1) 1 ( 1) 1( , , ),...,( , , ),( , ,0),...,( , ,0),( , , )rD D D D D r r r rX R X R X X X R+ + - -d d d d d 

where D is the number of observed failures before time T, 
1i

r

r iR n r R
=

= - -ä  and 

(1,2,*)id Í . Here, , 1,2i k kd = = means the unit i has failed at time ( )iX  due to cause 

Ὧ, while  id =*   means the cause of unit i to fail is unknown. Let 
 

  
i i i

1 i 2 i 3 i

1, ŭ =1 1, ŭ =2 1, ŭ =*
I (ŭ =1)= ,I (ŭ =2)= andI (ŭ =*)=

0 else 0 else 0 else

ë ë ë
ì ì ì
í í í

 

then the random variables 1 1
1

( 1)
r

i
i

r I
=

= d =Ô and 2 2
1

( 2)
r

i
i

r I
=

= d =Ô  describe the number of 

failures due to the first and the second cause of failures, respectively, and 

3 3
1

( *)
r

i
i

r I
=

= d =Ô  is the number of failures having failure times but corresponding causes 

of failure are unknown. Hemmati and Khorram (2011), wrote the likelihood function in 
this case as follows: 
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( ) ( )

( )

( ) ( ) 1

( 1) ( 2)

1 ( ) 2 ( ) 2 ( ) 1 ( )
1

( *)

1 ( ) 2 ( ) 2 ( ) 1 ( )

1 ( ) 2 ( ) 1 2
1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i

i

D

i i
i

r I I

i i i i
i

I

i i i i

D R n r R

i i r r
i

L c f x F x f x F x

f x F x f x F x

F x F x F x F x =

d = d =

=

d =

- -

=

å= æ
ç

õ+ ö
÷

äõå ³æ ö
ç ÷

Ô

Ô

 

 

where, ( )kf x is the PDF, ( )kF x  is the CDF, 1,2k=  and ( ) 1 ( )k kF x F x= - . 
 

 We assume that there are only two causes of failure and the case of failure is known, 

then under AT-II PHCS existence competing risks data, we have the following 

observation: 
 

  ( ) ( )( ) ( )(1) 1 1 ( ) ( 1) 1 ( ), , ,..., , , , , ,0 ,..., , ,D D D D D r r rX R X R X X R+ +d d d d  

 

 Then the likelihood function of the observed data can be expressed as follows: 
 

  ( ) ( )
( 1) ( 2)

1 ( ) 2 ( ) 2 ( ) 1 ( )
1

( ) ( ) ( ) ( )
i i

r I I

i i i i
i

L c f x F x f x F x
d = d =

=

õå= æ ö
ç ÷
Ô  

       ( ) ( ) 11 ( ) 2 ( ) 1 2
1

( ) ( ) ( ) ( )

D

i i
i

D R n r R

i i r r
i

F x F x F x F x =

- -

=

äõå
æ ö
ç ÷
Ô     (4) 

 

where, ὅ is an constant which doesnôt dependent on parameters. 
 

3. MAXIMUM LIKELIHOOD E STIMATION  
 

 The existence of AT-II PHCS under competing risks data (4) and from the life time 

distribution (1) and (2), then the likelihood function of the observed data ignoring the 

constant can be written as:  

1 2
1 2 1( 1) ( 1)

1 2 2 1 1 2 1 2( ) ( )
1 1 1

( , ) ( ) ( ) ( )

D

i
k i i

n r Rr r D
r R

k k k k i i i i i i r ri i
i i i

L x x =

- -
- b + - b +

= = =

ä
l b ´ l b w u w u u u u uÔ Ô Ô (5) 

 

where,  ( )(1 ) (1 )
k

k ix

ki ki e
-b

-l
u = -w = - , (1 ) (1 )

k
k rx

kr kr e
-b

-l
u = -w = -  and 1,2k= .  

 

 Then, the corresponding log-likelihood function is given by 
 

  

( ) ( ) ( )

( )( )

( )( )

1

2

1 1 1 2 2 2

1 ( ) 1 2
1

2 ( ) 2 1
1

ln , ln ln ln ln

1 ln ln ln

1 ln ln ln

k k

r

i i i
i

r

i i i
i

L r r

x

x

=

=

l b ´ l + b + l + b

+ - b + + w + u

+ - b + + w + u

ä

ä

 

       ( ) ( )1 2 1 2
1 1

ln ln
D D

i i i i r r
i i

R n r R
= =

õå
+ u u + - - u uöæ

ç ÷
ä ä      (6)                           
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 The first order derivations of equation (6), with respect to kl  and kb  for 1,2k= , are 

given respectively by  
 

3 ( ) ( )

( )
1 1 1 1

ln ( , )
k k kk k

k

r r D D
ki kii ik k k r kr

i ii
i i i ik k ki ki kr

x xL r x
x R n r R

-
-b -b -b

-b

= = = =

w wµ l b wõå
= - + + + - -öæ

µl l u u uç ÷
ä ä ä ä  

                        (7) 
 

  ( )
3 ( )( )

( ) ( )( )
1 1

lnln ( , )
ln ln

k
k k

k

r r
k ki iik k k

i k ii
i ik k ki

x xL r
x x x

-
-b

-b

= =

l wµ l b
= - - +l +

µb b u
ä ä  

      
( )( )

1 1

ln ln
k kD D

k ki ii k r kr r
i i

i iki kr

x x x x
R n r R

-b -b

= =

l w l wõå
+ + - - öæ

u uç ÷
ä ä    (8) 

 

 The asymptotic variance-covariance matrix is obtained by inverting Fisher 

information with the elements that are negatives of the expected values of the second 

partial derivatives of the likelihood functions. The asymptotic variance-covariance matrix 

will be 
 

1 2 1

2 2

2
1 11

2 2

2
2 22

2 2

2
1 1 1

2 2

2
2 2 2

1
0

Ĕ Ĕ Ĕ( , , ,

ln ( , ) ln ( , )
0 0

ln ( , ) ln ( , )
0 0

ln ( , ) ln ( , )
0 0

ln ( , ) ln ( , )
0 0

Ĕ Ĕ( , )

k k k k

k k k k

k k k k

k k k k

k k

L L

L L

L L

L L

I-

l l b

µ l b µ l b

µl µbµl

µ l b µ l b

µl µbµl

µ l b µ l b

µl µb µb

µ l b µ l b

µl µb µb

è ø
é ù
é ù
é ù
é ù
é ù

l b @-é ù
é ù
é ù
é ù
é ù
é ù
é ùê ú

2

1

Ĕ)

-

b

 

 

where 1,2k=  and the elements of the 4 4³  matrix 1 2 1 2( , , , )I l l b b can be obtained as 

follows:  
 

  
3

2

2 2 22
( ) ( )

2 2 2 2
1 1 1

ln ( , )
( ) ,

( ) ( )( )

k k kkr D D
ki kii ik k k r kr

i i
i i ik k ki krki

x xL r x
R n r R

-
- b - b - b

= = =

w wµ l b w
=- - - - - -

µ l l u uu
ä ä ä  

  

3
22

( )( )2
( )( )2 2

1 1

2 2
( )( )

1 1

(ln )ln ( , )
(ln )

(ln ) (ln )
,

k
k k

k

k k

r r
k ki iik k k

k ii
i i kik k

D D
k ki ii k r kr r

i i
i iki kr

x xL r
x x

x x x x
R n r R

-
-b

-b

= =

-b -b

= =

l wµ l b
=- + l +

uµ b b

l w l wõå
+ + - - öæ

u uç ÷

ä ä

ä ä
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3
2

( )( ) ( )
( )( ) 2

1 1

( )( ) ( )

2
1

2
1

( ) lnln ( , )
ln

( )

( ) ln

( )

( ) ln
( ) .

( )

k k
k k

k

k k

k k

r r
k ki k ki ii ik k

ii
i ik k ki

D
k ki k ki ii i

i
i ki

D
k r kr k r kr r

i
i kr

x x xL
x x

x x x
R

x x x
n r R

-
-b -b

-b

= =

-b -b

=

-b -b

=

å l w l -uµ l b
æ=- +
æµl µb u
ç

l w l -u
+

u

õl w l -u
+ - - ööu ÷

ä ä

ä

ä

 

 

 Now, ACI for 1 2 1, ,l l b and 2b , can be obtained as follows  
 

  /2 /2
Ĕ Ĕ Ĕ Ĕvar( ), 1,2 var( )k k k kZ k and Zg gl ° l = b ° b  

 

where /2Zg  is the 100(1 / 2)%-g  standard normal percentile. 

 

4. BAYESIAN ESTIMATION  
 

 In this section, Bayesian estimation of the unknown parameters of the IWD under  

AT-II PHCS in presence of competing risks model will be discussed. 
 

4.1 Posterior Distribution  

 We consider the Bayesian estimation under the assumption that the random variables

kl  and kb  for 1,2k=  are independently with gamma prior distribution with  

defined scale and shape parameters. Assuming that ( , ),k k kGamma a bl ~

2 2( , ), 1,2,k k kGamma a b k+ +b ~ =  the joint prior density of 1 2 1, ,l l b and 2b  can be written 

as  
 

1
( ) , , 0, 1,2,k k ka b

k k k kk e a b k
- - l

p l ´l > = 
 

2 21
2 2 2( ) , , 0, 1,2.k k ka b

k k k kk e a b k+ +- - b
+ + +p b ´b > = 

 

 Hence, the joint prior density of kl  and kb  is given by 
 

2 21 1
2 2( , ) , , , , 0, 1,2.k k k k k ka a b b

k k k k k kk k e a b a b k+ +- -- l - b
+ +p l b ´l b > =   (9) 

 

 Combining equation (5) with equation (9) then 
 

1 31 1 2 2 2 4 3 1 3 1 4 2 4 211 1 1
1 2 1 2 1 2 1 2 1 2 1 2( , , , ) ( , , , )

r ar a r a r a b b b bL e e
+ -+ - + - + -- l - b- l - bl l b b p l l b b ´l l b b  

  
1 2

1 2 1( 1) ( 1)
1 2 2 1 1 2 1 2( ) ( )

1 1 1

( ) ( )

D

i
i i

n r Rr r D
R

i i i i i i r ri i
i i i

x x =

- -
- b + - b +

= = =

ä
w u w u u u u uÔ Ô Ô         (10) 

 

 The joint posterior density of kl  and kb  for 1,2k=  can be written as 
 

1 2 1 2 1 2 1 2
1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2
0 0 0 0

( , , , ) ( , , , )
( , , , )

( , , , ) ( , , , )

L
x

L d d d d
¤¤¤¤

l l b b p l l b b
p l l b b =

l l b b p l l b b l l b bññññ

  (11) 
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 Therefore, the Bayes estimates of any function of 1 2 1, ,l l b and 2b  under SE loss 

function, say 1 2 1 2( , , , )q l l b b is  
 

  1 2 1 2 1 2 1 2( , , , ) ( , , , )SE E xq l l b b = l l b b 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
0 0 0 0

( , , , ) ( , , , ) ( , , , )L d d d d
¤¤¤¤

= q l l b b l l b b p l l b b l l b bññññ   (12) 

 

 One limitation of the squared error loss function is its symmetry. A  

well-known asymmetric loss function is the LINEX loss function, which is

( )
( , ) ( ( ) 1)Linc

Lin Lind e c
q -q

q q = - q -q -. The sign of c  represents the direction of 

asymmetry, and its magnitude reflects the degree of its asymmetry. For 0,c<  a negative 

error has a more serious effect, and for 0,c>  the effect of a positive error is more 

serious. The Bayesian estimate of 1 2 1 2( , , , )q l l b b under the LINEX loss function is:  
 

1 2 1 2

1
( , , , ) ln( ( )c

Lin E e x
c

- qq l l b b =-             (13) 

 

 Normally, the ratio of three integrals given by Equations (12) and (13) cannot be 

obtained in a closed form. In this case, one may utilize the MCMC technique to generate 

samples from the posterior distributions and, after that, compute the Bayes estimators of 

the individual parameters and highest posterior density (HPD) credible interval. 

 

4.2 MCMC Method  

 The method of MCMC can be used to generate samples from the posterior density 

function (11) and in turn to compute the Bayes estimates of the unknown parameters and 

compute the corresponding credible intervals. Based upon the target posterior distribution 

(10), we obtain the conditional distribution of ,k kl b and 1,2k=  have the following 

forms 
 

1 1 3 1

1 2
1 2 1

1
1 1 2 1 2 1

( 1) ( 1)
1 2 2 1 1 2 1( ) ( )

1 1 1

( , , , )

( ) ( )

D

i
i i

r a b

n r Rr r D
R

i i i i i i ri i
i i i

x e

x x =

+ -- l

- -
- b + - b +

= = =

p l l b b ´l

ä
w u w u u u uÔ Ô Ô

     (14) 

 

2 2 4 2

1 2
1 2 1

1
2 2 1 1 2 2

( 1) ( 1)
1 2 2 1 1 2 2( ) ( )

1 1 1

( , , , )

( ) ( )

D

i
i i

r a b

n r Rr r D
R

i i i i i i ri i
i i i

x e

x x =

+ -- l

- -
- b + - b +

= = =

p l l b b ´l

ä
w u w u u u uÔ Ô Ô

    (15)                        

 

1 3 3 1

1 2
1 2 1

1
3 1 1 2 2 1

( 1) ( 1)
1 2 2 1 1 2 1( ) ( )

1 1 1

( , , , )

( ) ( )

D

i
i i

r a b

n r Rr r D
R

i i i i i i ri i
i i i

x e

x x =

+ -- b

- -
- b + - b +

= = =

p b l l b ´b

ä
w u w u u u uÔ Ô Ô

    (16) 
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2 4 4 2

1 2
1 2 1

1
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    (17) 

 

 The posterior of kl  and kb  for 1,2k=  in Equations from (14) to (17) are not 

known. Thus, to derive from this distributions, one may employ the Metropolis-Hastings 

method with normal proposal distribution. For more information concerning the 

application of M-H, readers may refer to Robert and Casella (2004). 
 

 To run the Gibbs sampler algorithm, we started with the MLEs. We then drew 

samples from various full conditionals, in turn, using the most recent values of all other 

conditioning variables unless some systematic pattern of convergence was achieved. The 

algorithm Gibbs sampling can be described as follows: 
 

Step 1: Initial (0) (0) (0) (0)
1 2 1 2, , ,l l b b are given, and one can refer to the results of MLE.  

Step 2: set t=1.  

Step 3: Generate ( ) ( )
1 2,t tl l  from 1 1 2 1 2( , , , )xp l l b b and 2 2 1 1 2( , , , )xp l l b b 

respectively.  

Step 4: Generate ( ) ( )
1 2,t tb b  from 3 1 1 2 2( , , , )xp b l l b and 4 2 1 2 1( , , , )xp b l l b 

respectively. 

Step 5: Then we can calculate ( ) ( ) ( )
1 2 1, ,t t tl l b and ( )

2
tb . 

Step 6: Set ὸ ὸ ρ.  

Step 7: Repeat steps 3-5, M times, and obtain ( ) ( ) ( ) ( )
1 2 1 2( , , , ), 1,...,i i i i i Ml l b b = .  

Step 8: Under SE loss function, obtain the Bayes estimates of 1 2,l l and a  

 
( ) ( ) ( ) ( )

1 2 1 21 2 1 2
1 1 1 1

/ , / , / / .
M M M M

i i i i
SE SE SE SE

i i i i

M M M and M
= = = =

l = l l = l b = b b = bä ä ä ä  

Step 9: Under LINEX loss function, obtain the Bayes estimates of 1 2,l l and a 

 

( ) ( )
1 2

( ) ( )
1 2

1 2
1 1

1 2
1 1

1 1
ln / , ln / ,

1 1
ln / and ln / .

i i

i i

M M
c c

Lin Lin
i i

M M
c c

Lin Lin
i i

e M e M
c c

e M e M
c c

- l - l

= =

- b - b

= =

õ õå å
l =- l =-ö öæ æ

ç ç÷ ÷

õ õå å
b =- b =-ö öæ æ

ç ç÷ ÷

ä ä

ä ä

 

Step 10: To obtain the credible intervals of 11 2,, bl l  and 2b  order ( ) ( ) ( )
1 2 1,,i i i

bl l  and 

( )
2
i
b  as ( )( )( )[1] [2] [ ] [1] [2] [ ] [1] [2] [ ]

1 1 1 2 2 2 1 1 1, ,..., , , ,..., , , ,...,M M Ml l l l l l b b b and ( )[1] [2] [ ]
2 2 2, ,..., .Mb b b  

Then, the 100(1 2 )%- g  symmetric credible intervals of 11 2,, bl l   

and 2b  become ( )( )[ ] [(1 ) ] [ ] [(1 ) ]
1 1 2 2, , , ,M M M Mg -g g -gl l l l  ( )[ ] [(1 ) ]

1 1,M Mg -gb b  and 

( )[ ] [(1 ) ]
2 2,M Mg -gb b  and the one which has shortest interval length  among all the 

100(1 2 )%- g   credible intervals is just the HPD credible interval.  
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5. MONTE CARLO  SIMULATION  
 

 To evaluate the performance of different point and interval estimators of kb  and kl  
for 1,2k=  obtained in the previous sections theoretically, an extensive simulation study 

is employed. Using various combinations of n  (number of total test units), r (effective 

sample size) and T (pre-fixed test time), a large number 1000 of AT-II PHCS samples 

are generated from the IWD using two different sets of the true values of parameters 

1 2 1 2( , , , )b b l l namely Set-1:(0.4,0.8,0.2,0.1) and Set-2:(0.8,1.0,0.4,0.2). Also, using two 

different choices of n  such as n=50 and 100, the number of failed subjects r  is 

determined when the percentages of failure information ( )100%r n  are taken as 40 and 

80%. Based on the proposed censoring plan, when the number of failures reaches r , the 

experiment is terminated. For each ( , )n r  values, different threshold time points of T are 

used such as ( 0.4,0.8)=  and ( 0.8,1.2)=  for parameter sets 1 and 2, respectively. 
 

 

 To assess the performance of removal patterns ,  1,2,..., ,iR i r=  four censoring schemes 

are considered, where (1,1,1,0,0)R=  is denoted by (1*3,0*2)R=  for brevity, as 
 

 Scheme-1: 
  1 ,R n r= -  

    
0    for 1;iR i= ¸  

 Scheme-2:   

2

,      0    for  2r iR n r R i r= - =  ̧

 Scheme-3:   ,      0    for  r iR n r R i r= - =  ̧

and 

 Scheme-4:   
    (3*( 2),0*( 2)),       if  40%;

(1*( ),0*(2 )),    if  80%.

R r r r n

R n r r n r n

= =ë
ì
= - - =í

 

 

 For Bayes inference, to see the effects of the gamma density priors, we considered 

two informative priors for each unknown parameter. All hyper-parameters are chosen in 

such a way that the prior mean become the expected value of the corresponding 

parameter, for detail, see Kundu (2008). Without loss of generality, two different sets for 

the hyper-parameters , ,  1,2,3,4i ia b i=  of both parameter sets 1 and 2 of kb  and kl  for 

1,2k=  are used, namely: 
 

i) For Set-1: (0.4, 0.8, 0.2, 0.1): 

¶ Prior-I:  1 2 3 4( , , , ) (0.8,1.6,0.4,0.2)a a a a =  and 2, 1,2,3,4ib i= = . 

¶ Prior-II: 1 2 3 4( , , , ) (2.0,4.0,1.0,0.5)a a a a =  and 5, 1,2,3,4ib i= = . 

ii)  For Set-2: (0.8, 1.0, 0.4, 0.2): 

¶ Prior-I:  1 2 3 4( , , , ) (1.6,2.0,0.8,0.4)a a a a =  and 2, 1,2,3,4ib i= = . 

¶ Prior-II: 1 2 3 4( , , , ) (4.0,5.0,2.0,1.0)a a a a =  and 5, 1,2,3,4ib i= = . 
 

 It is to be mentioned here that if improper prior information 0i ia b= = for 1,2,3,4i=  

is available, the joint posterior density function of kb  and kl  
for 1,2k= is reduced with 

proportional to the joint likelihood function. Thus, if one does not have prior information 

on the unknown parameters of interest, it is better to use the classical estimates instead of 

the Bayes estimates because the latter are computationally more expensive. 
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 To calculate the Bayes MCMC estimates and associated credible interval estimates of 

kb  and kl for 1,2k= , 12,000 MCMC samples via the MetropolisïHastings algorithm 

are generated. By discarding the first 2,000 variates from each simulated chain as 'burn-

in', the average Bayes estimates are computed based on 10,000 MCMC samples using SE 

and LINEX (for 3c=°) loss functions. To simulate the posterior samples, the 

corresponding MLEs of unknown parameters are used as initial values, consequently, one 

can observe that the Markov chains reach the stationary condition very quickly. 
 

 Numerically, the average estimates (AEs) of kb  and kl  for 1,2k=  (say j for 

short) is given by  
 

( )

1

1
Ĕ Ĕ,   1,2,3,4,

S
j

jS
t t

=

j = j t=ä  

where S  is the number of generated sequence data, Ĕj is the desired estimate of j, ( )Ĕj
tj  

denotes the computed estimate obtained at j th-  sample of the unknown parameter hj , 

1 1j =b, 2 2j =b, 3 1j =l and 4 2j =l. 
 

 Comparison between different point estimates of j, is made using two criteria called 

root mean squared-error (RMSE) and mean absolute bias (MAB) values, using the 

following formulas as  
 

  ( ) 2

1

1
Ĕ ĔRMSE( ) ( ) ,   1,2,3,4,

S
j

hh
jS

t
=

j = j -j t=ä  

and 

   

( ) ( )

1

1
Ĕ ĔMAB ,        1,2,3,4,

S
j

hh
jS

t
=

j = j -j t=ä  

respectively.  
 

 Also, the performances of asymptotic/credible intervals estimates are evaluated using 

their average confidence lengths (ACLs) and coverage percentages (CPs) using the 

following formulas, respectively, as 
 

( ) ( ) ( )Ĕ Ĕ
1

1
ACL ( ),   1,2,3,4,j j

h h

S

j

U L
S

t j j
=

j = - t=ä  

and 

  ( ) ( ) ( )Ĕ Ĕ( ( ); ( ))
1

1
CP ,    1,2,3,4,1 j j

S

L U
jS t t

t j j
=

j = t=ä  

where ()1  is the indicator function, ( )L Ö and ( )U Ö
 
denote the lower and upper bounds, 

respectively, of (1 )100%-g  asymptotic (or credible) interval. 
 

 All computational algorithms are coded in R statistical programming language 

software version 4.1.2 via two packages namely (i) ócodaô package proposed by Plummer 

et al. (2006), (ii) ómaxLikô package by Henningsen and Toomet (2011) and (iii) 
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ôGoFKernelô package proposed by Pavia (2015). These packages were recently 

recommended by Elshahhat and Nassar (2021). 
 

 The average maximum likelihood and Bayes estimates of kb  and kl  for 1,2k=  

with their RMSEs and MABs of are calculated and reported in Tables 1-8. Further, the 

ACL and CP values of 95% asymptotic/credible intervals of the same unknown 

parameters are provided in Tables 9-16, respectively.  
 

 As an example, the heatmap plots of the simulation results (including: RMSE, MAB, 

ACL and CP) of kb  and kl  for 1,2k=  using Set-1 at 0.4T=  based on Prior-I (say P1) 

are displayed in Figures 1-4, respectively. For specification, several notations have been 

used such as the Bayes estimates under SE loss mentioned as ñSEL-P1ò and Bayes 

estimates under LINEX loss using ὧ σ and +3 mentioned as ñLL1-P1ò and ñLL2-

P1ò, respectively. Also, mentioned as Bayes credible interval ñBCIò. 

 

  

  

Figure 1: Heatmap Plots for the Estimation Results of 1b 

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

M
L
E

S
E

-P
1

S
E

-P
2

L
L
1
-P

1

L
L
2
-P

1

L
L
1
-P

2

L
L
2
-P

2

1

(n
,r

)-
S

c
h
e
m

e

0.2

0.4

0.6

RMSE

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

M
L
E

S
E

-P
1

S
E

-P
2

L
L
1
-P

1

L
L
2
-P

1

L
L
1
-P

2

L
L
2
-P

2

1

(n
,r

)-
S

c
h
e
m

e

0.1

0.2

0.3

0.4

0.5

MAB

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

ACI BCI-P1 BCI-P2

1

(n
,r

)-
S

c
h
e
m

e

0.2

0.4

0.6

0.8

ACL

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

ACI BCI-P1 BCI-P2

1

(n
,r

)-
S

c
h
e
m

e

0.89

0.91

0.93

0.95

0.97

CP



Salem, Abo-Kasem and Elassar 137 

  

 
 

Figure 2: Heatmap Plots for the Estimation Results of 2b  

 

 From Tables 1-16, see the Appendix, we can make the following observations: 
 

¶ In general, the calculated results of both classical and Bayes estimators are pretty 

good according to lowest RMSEs, MABs and ACLs as well as highest CPs. 

¶ As n  (or r n ) increases, the RMSEs, MABs and ACLs of all estimates of kb  and 

kl  for 1,2k=  decrease while their CPs increase as expected. A similar behavior 

is observed in case of the sum of , 1,2,...,iR i r=  decreases. So, to get satisfactory 

estimation results, one may tend to increase the effective sample size. 

¶ Since the variance of Prior II is less than the variance of Prior I, for each set of 

parameter values, it can be seen that the Bayes MCMC estimates based on Prior II 

perform better compared to other prior in terms of smallest RMSEs, MABs and 

ACLs as well as highest CPs for all estimates. Similar behavior is observed in the 

case of credible interval estimation.  
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Figure 3: Heatmap Plots for the Estimation Results of 1l 

¶ Comparing the proposed schemes 1, 2, 3 and 4 on the basis of smallest RMSEs 

and MABs (for point estimates) and smallest ACLs as well as highest CPs (for 

interval estimates), it can be seen that both classical and Bayes estimates of all 

unknown parameters behave satisfactory based on Scheme-1 (next Scheme-4) 

than those obtained based on other censoring schemes. This is due to that the 

expected duration of the experiment using Scheme-1 (which removes the survival 

units n r-  at the time of first failure occur) is greater than the Scheme-3 (which 

removes the survival units n r-  at the time of last failure occur). 

¶ Comparing the classical and Bayes estimates clearly shows that the MCMC 

estimates using both SE and LINEX loss functions perform better than the 

conventional likelihood estimates in terms of minimum RMSE and MAB values.  
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Figure 4: Heatmap Plots for the Estimation Results of 2l  

 

¶ Consequently, the credible interval estimates also provide satisfactory results 

when compared to the ACI estimates in terms of smallest ACLs and highest CPs. 

This holds for all settings and for all unknown parameters. This result is due to the 

fact that the Bayesian method combines the prior information about the parameter 

and the sample data, while the maximum likelihood method uses only the sample 

data. 

¶ It is also observed that the Bayes estimates developed under the LINEX loss 

function perform better in most cases than those obtained under the SE loss 

function. It is an expected result because the use of the SE loss function gives 

equal weight to underestimate and overestimation due to its symmetric nature. 

This result indicates that the Bayes MCMC estimates under LINEX loss function 

are sensitive to the values of the shape parameter loss. 

¶ As T  increases based on Set-1, in most cases, the RMSEs and MABs for all 

estimates of 1b increase; for all estimates of 2b  decrease; for the MLEs of 

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

M
L
E

S
E

-P
1

S
E

-P
2

L
L
1
-P

1

L
L
2
-P

1

L
L
1
-P

2

L
L
2
-P

2

2

(n
,r

)-
S

c
h
e
m

e

0.5

1.0

RMSE

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

M
L
E

S
E

-P
1

S
E

-P
2

L
L
1
-P

1

L
L
2
-P

1

L
L
1
-P

2

L
L
2
-P

2

2

(n
,r

)-
S

c
h
e
m

e

0.25

0.50

0.75

1.00

1.25

MAB

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

ACI BCI-P1 BCI-P2

2

(n
,r

)-
S

c
h
e
m

e

0.25

0.50

0.75

1.00

1.25

ACL

(50,20)-1

(50,20)-2

(50,20)-3

(50,20)-4

(50,40)-1

(50,40)-2

(50,40)-3

(50,40)-4

(100,40)-1

(100,40)-2

(100,40)-3

(100,40)-4

(100,80)-1

(100,80)-2

(100,80)-3

(100,80)-4

ACI BCI-P1 BCI-P2

2

(n
,r

)-
S

c
h
e
m

e

0.91

0.93

0.95

CP



Inference for Inverse Weibull Competing Risks Dataé 140 

, 1,2k kl =  decrease and for the MCMC estimates of , 1,2k kl =  increase. As T

increases based on Set-2, in most cases, the RMSEs and MABs for all estimates of 

, 1,2k kb =  decrease while for all estimates of , 1,2k kl =  increase. 

¶ As T  increases based on Set-1, in most cases, the ACLs for all ACIs of  

, 1,2k kb =  increase while for all ACIs of , 1,2k kl =  decrease. Also, the ACLs 

for all credible intervals of 1b and , 1,2k kl =  increase while for all credible 

intervals of 2b  decrease. Additionally, opposite behavior is observed in the case 

of the CPs for all estimates of kb  and kl  for 1,2k= . 

¶ As T  increases based on Set-2, in most cases, the ACLs for all estimates of 

, 1,2k kb =  decrease while for all estimates of , 1,2k kl =  increase. As T  

increases based on Set-2, in most cases, the CPs for all estimates of , 1,2k kb =  

increase while for all estimates of , 1,2k kl =  decrease.  

¶ As the value of kb  and kl   for 1,2k= increases, the associated RMSEs and 

MABs of the MLEs of 1b and 2l  decrease and of 2b  and 1l increase while that 

associated with the Bayes estimates of 1b increases and of 2b  and , 1,2k kl =  

decrease in most cases.  

¶ As the value of kb  and kl  for 1,2k=  increases, the associated ACLs of all 

estimates of 1b increase; of 2b  and 2l  decrease while of 1l increase (in the case 

of ACIs) and decrease (in the case of credible intervals). Moreover, opposite 

behavior is observed in case of the CPs for all estimates of kb  and kl  for 1,2k= . 
 

 To sum up, it is clear from the simulation results that the performance of both Bayes 

point and credible interval estimates behave superior than the traditional estimates 

obtained under the maximum likelihood approach in terms of minimum RMSEs and 

MABs for point estimates and in terms of lowest ACLs and largest CPs for interval 

estimates. Lastly, the Bayes MCMC paradigm using Metropolis-Hastings algorithm to 

estimate the unknown parameters of the IWD under adaptive Type-II progressive hybrid 

censored data with competing risks is recommended. 

 

6. REAL -LIFE DATA ANALYSIS  
 

 To demonstrate how the proposed methodologies can be applied to real phenomenon, 

one real data set consists of failure times for 33 small electronic applications with known 

causes of failure in an automatic life test is analyzed. This data set was originally taken 

from Lawless (2003) and later discussed by Chacko and Mohan (2019) and Ren and Gui 

(2021b). The failures of these electronic applications were attributed to 18 different 

modes. Following Sarhan et al. (2008), we mainly focus on the failure mode 9. Therefore, 

we assign 1d= for the failure mode 9 and 2d= for otherwise failure modes. Hence, the 

total number of observed failures due to causes 1 and 2 from the complete failure times 

are 17 and 16, respectively. Each failure time point in the original dataset has been 

divided by one thousand for computational convenience. Transformed failure times of the 

electronic applications are reported in Table 17. 
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Table 17 

Transformed Failure Times of the Electronic Applications 

Cause Failure Times 

1 
1.167, 1.925, 1.990, 2.223, 2.400, 2.471, 2.551, 2.568, 2.694, 

3.034, 3.112, 3.214, 3.478, 3.504, 4.329, 6.976, 7.846 

2 
0.011, 0.035, 0.049, 0.170, 0.329, 0.381, 0.708, 0.958, 1.062, 

1.594, 2.327, 2.451, 2.702, 2.761, 2.831, 3.059 

 

 According to Ren and Gui (2021b), to investigate whether the competing risks inverse 

Weibull lifetime model can provide a reasonable fit for the given data set, the 

Kolmogorov-Smirnov (K-S) goodness-of-fit test statistics are used. The values of MLEs 

with their standard errors (St.Es) and the K-S distance (with its ὴ-value) of the unknown 

IWD parameters in the presence of cause 1 are 2.4202(0.4195), 8.1385(3.0084) and 

0.1474(0.803) and in the presence of cause 2 are 0.5190(0.0923), 0.4653(0.1574) and 

0.2293(0.319), respectively. It is clear that the corresponding ὴ-values of both causes are 

high than the significance level  πȢπυ, hence we cannot reject the null hypothesis that 

the electronic applications data are coming from the IWD.  
 

 One of the major issues in maximum likelihood inference is that often it is not 

possible to prove the existence and uniqueness of the derived estimators. To solve this 

problem, using the observed failures due to causes 1 and 2, the contour plot of the log-

likelihood function with respect to IWD parameters are plotted in Figure 5. It shows that 

the MLEs Ĕkb  and Ĕkl  
for 1,2k= , are exist and are also unique. So, we suggest taking 

these estimates as initial guesses to start the computational iteration. Besides the plots of 

the empirical and estimated survival functions, the probability-probability (PP) plots 

based on the time of failure due to causes 1 and 2 are shown in Figure 6. It is evident that 

the competing risks inverse Rayleigh model fits the given data set well. 
 

 From Table 17, taking 11r=  and 2, 1,2,...,iR i r= =  for each ( 2,2.5)T = , two adaptive 

Type-II progressive hybrid censored samples are generated and provided in Table 18.   
 

  
(Cause 1) (Cause 2) 

Figure 5: Contour Plot of Log-Likelihood Function of ,k kl b  

for 1,2k=  under Electronic Data 
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(Cause 1) (Cause 2) 

Figure 6: Plot of Observation Values and Fitted Functions under Electronic Data 

 

 Table 18 

Different AT -II PHCS Samples Generated from Electronic Data 

Sample Failure Time(Cause) ( )T D  *
rR  

A 
0.011(2), 0.170(2), 0.708(2), 1.167(1), 1.990(1), 2.400(1), 

2.451(2), 2.471(1), 2.551(1), 2.568(1), 2.694(1) 
2(5) 12 

B 
0.011(2), 0.170(2), 0.708(2), 1.167(1), 1.990(1), 2.400(1), 

2.551(1), 2.702(2), 3.034(1), 3.059(2), 3.112(1) 
3(8) 6 

 

 Using both samples A and B, the maximum likelihood and Bayes estimates (with their 

St.Es) are calculated and provided in Table 19. Because no any prior information is 

available about the unknown parameters kb  and kl  for 1,2k= , the Bayes estimates 

relative to both SE and LINEX (for 2, 0.02, 2c=- - +) loss functions are obtained utilizing 

50,000 MCMC iterations and by taking first 10,000 iterative as burn-in period. However, 

due to calculation reasons, all hyper parameters are selected in such a way that mean of 

prior distribution approximately equal to one while variance equal to 0.001. Also, 95% two-

sided asymptotic/credible interval estimates (with their lengths of the unknown parameters 

kb  and kl  for 1,2k= , are also calculated and presented in Table 20. 
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 Using the invariance property of kb  and kl  for 1,2k= , the estimated relative risks 

due to causes 1 and 2 based on sample A are 0.835 and 0.165 and based on sample B are 
0.787 and 0.213, respectively. From Tables 19-20, it can be seen that the classical and 

Bayesian point estimates of kb  and kl  for 1,2k= , are close to each other. Moreover, in 

terms of smallest St.Es and shortest length, the Bayes estimates and associated credible 

interval estimates of kb  and kl  for 1,2k= , perform better than the corresponding 

maximum likelihood estimates and associated ACI estimates. 
 

 Some vital statistics namely mean, median, mode, standard deviation (SD) and 

skewness (Sk.) for the MCMC simulated samples of kb  and kl  for 1,2k= , after bun-

in; are computed and provided in Table 21. To evaluate the MCMC convergence, using 

samples A and B, trace plots of the posterior distributions of kb  and kl  for 1,2,k=  are 

displayed in Figure 7. It represents 40,000 outputs of kb  and kl  for 1,2k= , with their 

sample mean (soled line (ð)) and 95% two-sided credible intervals (dashed lines (- - -)). 
Further, it shows that the MCMC algorithm has converged well and the size of burn-in 
sample is sufficient to avoid the influence of the initial guesses. 
 

 Furthermore, using the Gaussian kernel density, the estimated marginal PDF of kb  

and kl  for 1,2k= , using both generated samples A and B with their histograms as well 

as their sample means (represented by vertical dashed lines (:)), based on 40,000 MCMC 

variates are plotted in Figure 8. It shows that the generated posterior estimates of kb  and 

kl  for 1,2k= , are fairly symmetrical and quite close well to the theoretical posterior 

density functions. Finally, the findings of the proposed methods under electronic data set 
provide a good explanation to our model. 

 

Table 19 

Point (with their St.Es) under Electronic Data 

Sample 

╬  O
Parameter MLE  SE 

LINEX  

-2 -0.02 +2 

A 

1b 
1.796 1.790 1.790 1.790 1.789 

(0.470) (0.010) (0.006) (0.007) (0.007) 

2b  
0.161 0.153 0.153 0.153 0.152 

(0.062) (0.009) (0.008) (0.008) (0.009) 

1l 
7.166 7.160 7.161 7.160 7.159 

(2.832) (0.011) (0.006) (0.006) (0.007) 

2l  
2.277 2.271 2.272 2.271 2.270 

(0.488) (0.008) (0.006) (0.006) (0.007) 

B 

1b 
1.484 1.477 1.478 1.477 1.477 

(0.430) (0.010) (0.006) (0.007) (0.007) 

2b  
0.190 0.182 0.182 0.182 0.181 

(0.063) (0.008) (0.008) (0.008) (0.009) 

1l 
6.377 6.371 6.371 6.371 6.370 

(2.489) (0.010) (0.006) (0.006) (0.007) 

2l  
2.126 2.120 2.120 2.120 2.119 

(0.442) (0.007) (0.006) (0.006) (0.007) 



Inference for Inverse Weibull Competing Risks Dataé 144 

 

Table 20 

 Interval Estimates (lengths) under Electronic Data 

Sample Parameter 
ACI  Credible Interval  

Lower Upper Length Lower Upper Length 

A 

 0.875 2.718 1.843 1.741 1.839 0.097 

 0.039 0.282 0.243 0.106 0.198 0.092 

‗ 1.615 12.718 11.103 7.111 7.209 0.098 

‗ 1.321 3.233 1.913 2.222 2.320 0.098 

B 

 0.640 2.327 1.687 1.428 1.526 0.098 

 0.067 0.313 0.246 0.137 0.227 0.091 

‗ 1.499 11.255 9.756 6.323 6.420 0.098 

‗ 1.259 2.993 1.734 2.071 2.168 0.097 

 

Table 21 

Vital Statistics of the Posterior Samples under Electronic Data 

Sample Parameter Mean Median Mode SD Sk. 

A 

 1.790 1.790 1.766 0.025 -0.003 

 0.153 0.153 0.147 0.023 -0.015 

‗ 7.160 7.160 7.144 0.025 0.003 

‗ 2.271 2.271 2.217 0.025 0.025 

B 

 1.477 1.477 1.435 0.025 -0.006 

 0.182 0.182 0.141 0.023 0.023 

‗ 6.371 6.371 6.330 0.025 0.027 

‗ 2.120 2.120 2.127 0.025 -0.011 
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(a) Sample A 

  

  
(b) Sample B 

 

Figure 7: MCMC Trace Plots of 1 2 1, ,l l b and 2b  from Electronic Data 
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