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ABSTRACT 
 

 In this work, a new compound lifetime model is presented and studied. The new density 

can be “asymmetric right skewed”, asymmetric left skewed”, “symmetric” and bimodal”. 

The failure rate of the new model can be “bathtub”, “monotonically decreasing”, “upside 

down increasing”, “J-shape” and “bathtub-bathtub”. Statistical properties such as ordinary 

raw moments, mean deviation, incomplete moments and moment generating function are 

derived and analyzed. We performed a graphical simulation study to assess the finite 

sample behavior of the estimators. Finally, two real life applications are analyzed to 

illustrate the importance of the new model.  
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1. INTRODUCTION 
 

 In the literature, using the zero-truncated-Poisson (ZTP) distribution, several 

compound lifetime G families have been defined and studied. However, in the 

compounding approaches via the ZTP model, there are two different approaches available; 

one is by using zero truncated power series (ZTPS) distribution and other by using ZTP 

distribution directly with other continuous distributions. A comprehensive survey 

regarding the Poisson G models is recently proposed by Maurya and Nadarajah (2020) and 

El-Morshedy et al. (2021). In this paper we employed the ZTP distribution to propose a 

new compound version of the double exponential (DE) distribution called the Poisson 

exponentiated double exponential (PEDE) distribution. Suppose that a device has 𝑁 (a 

discrete random variable) sub-components functioning in such independently way at a 

given time where 𝑁 has ZTP model with parameter 𝜎 and the failure time of ith component 

𝑌𝑖|𝑖 = 1,2, … independent of 𝑁. It is the conditional probability distribution of a Poisson-

distributed random variable (RV), given that the value of the RV is not zero. The 

probability mass function (PMF) of 𝑁 is given by 
 

𝑃𝜎(𝑛|𝜎 > 0) =
𝜎𝑛

Γ(1 + 𝑛)C𝜎
𝑒𝑥𝑝( − 𝜎), 

 

where 

C𝜎 = 1 − 𝑒𝑥𝑝(−𝜎) |𝜎 > 0. 
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 Note that for ZTP RV, the expected value E(𝑁|𝜎) and variance V(𝑁|𝜎) are, 

respectively, given by  
 

E(𝑁|𝜎) =
𝜎

C𝜎
, 

and  

V(𝑁|𝜎) =
1

C𝜎
𝜎(1 + 𝜎) −

1

C𝜎
2
𝜎2, 

 

respectively, (for more details, see Ramos et al. (2015), Aryal and Yousof (2017), Korkmaz 

et al. (2018) and Alizadeh et al. (2019)). Suppose that the failure time of each subsystem 

(ith component) has the exponentiated double exponential (EDE) defined by the cumulative 

distribution function (CDF) 
 

𝐹𝜃,𝛽,𝛿(𝑥) = (1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})
𝜃 |𝜃, 𝛽, 𝛿 > 0, 𝑥 > 0. (1) 

 

 For 𝜃 = 1, the EDE model reduces to the two-parameter DE model. For 𝛽 = 1, the 

EDE model reduces to the two-parameter type I EDE model. For 𝛿 = 1, the EDE model 

reduces to the two-parameter type II EDE model. For 𝛽 = 𝛿 = 1, the EDE model reduces 

to the one-parameter EDE model. For 𝜃 = 𝛽 = 1, the EDE model reduces to the one-

parameter type I DE model. For 𝜃 = 𝛿 = 1, the EDE model reduces to the one-parameter 

type II DE model. 
 

 Let 𝑌𝑖 denote the failure time of the ith subsystem and let 
 

𝑋 = 𝑚𝑖𝑛{𝑌1, 𝑌2, ⋯ , 𝑌𝑁}. 
 

 Therefore, the unconditional CDF of the Poisson exponentiated double exponential 

(PEDE) density function can be expressed as described by Ramos et al. (2015), Aryal and 

Yousof (2017), Korkmaz et al. (2018) and Alizadeh et al. (2019) as 
 

𝐹𝜎(𝑥) = C𝜎
−1𝑒𝑥𝑝[−𝜎H(𝑥)], 

 

where refers to the CDF of the base line model. For 𝜎 = 1, the Poisson G family reduces 

to the quasi Poisson G family. Based on the Poisson G family, the PEDE model can then 

be expressed as  
 

𝐹Λ(𝑥) = C𝜎
−1(1 − 𝑒𝑥𝑝{−𝜎(1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})𝜃})|𝑥 > 0, (2) 

 

where Λ = (𝜎, 𝜃, 𝛽, 𝛿) is the parameter vector of the PEDE model. Therefore, the PDF 

corresponding to (3) can be simplifies as 
 

𝑓𝛬(𝑥) = 𝜎𝛽𝜃𝛿C𝜎
𝑒𝑥𝑝(𝛿𝑥) 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]}

𝑒𝑥𝑝{𝜎(1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})𝜃}
 

× (1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})𝜃−1 |𝑥 > 0. 

 

 

(3) 
 

 A RV 𝑋 having PDF (3) is denoted by 𝑋 ∼ PEDE(Λ). For 𝜃 = 1, the PEDE model 

reduces to the PDE model. For 𝛽 = 1, the PEDE model reduces to the three-parameter  

type I PDE model. For 𝛿 = 1, the PEDE model reduces to the three-parameter type II PDE 

model. For 𝜃 = 𝛽 = 1, the PEDE model reduces to the two-parameter type I PDE model. 

For 𝜃 = 𝛿 = 1, the PEDE model reduces to the two-parameter type II PDE model. For  
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𝜎 = 1, the PEDE model reduces to the quasi PEDE (QPEDE) model. For 𝜎 = 𝛽 = 1, the 

PEDE model reduces to the two-parameter type I QPEDE model. For 𝜎 = 𝛿 = 1, the 

PEDE model reduces to the two-parameter type II QPEDE model. For 𝜎 = 𝜃 = 1, the 

PEDE model reduces to the quasi PDE (QPDE) model. For 𝜎 = 𝜃 = 𝛽 = 1, the PEDE 

model reduces to the one-parameter type I quasi PE (QPE) model. For 𝜎 = 𝜃 = 𝛿 = 1, the 

PEDE model reduces to the one-parameter type II quasi PE (QPE) model. Figure 1 gives 

some plots for the PEDE PDF.  
 

 In the statistical literature there are many versions of the exponential distribution such 

as Marshall-Olkin exponential (MOE) distribution (Ghitany et al. (2005)), Beta 

exponential (BE) distribution (Lee et al. (2007)), Kumaraswamy exponential (KE) 

distribution (Cordeiro et al. (2010)), Poisson-exponential (PE) distribution (Cancho et al. 

(2011)), Moment exponential (ME) distribution (Dara and Ahmad (2012)), Generalized 

Marshall-Olkin exponential (GMOE) distribution (Chakraborty and Handique (2017)), 

transmuted exponentiated generalized exponential (TEGE) distribution (Yousof et al. 

(2017a)), Marshall-Olkin Kumaraswamy exponential (MOKE) distribution (Chakraborty 

and Handique (2017)), Burr XII exponential (BXIIE) distribution (Cordeiro et al. (2018)), 

odd Lindley exponential (OLE) distribution (Almamy et al. (2018)), Topp Leone zero 

truncated Poisson exponential(TLZTPE) distribution (Refaie (2018a)), Burr X 

exponentiated exponential (BXEE) distribution (Refaie (2018b) and Khalil et al. (2019)), 

Poisson Topp Leone exponentiated exponential (PTLEE) distribution (Refaie (2018c)), 

Burr–Hatke exponential (BHE) distribution (Yousof et al. (2018)), the odd Lindley 

exponentiated exponential (OLEE) distribution (Refaie (2019)), Kumaraswamy Marshall-

Olkin exponential (KMOE) distribution (George and Thobias (2019)), quasi Poisson Burr 

X exponentiated exponential (QPBXEE) distribution (Mansour et al. (2020b)), generalized 

odd log-logistic exponentiated exponential (GOLLEE) distribution (Mansour et al. 

(2020b)), Marshall-Olkin Lehmann exponential (MOLE) (Elgohari and Yousof (2020)) 

and the Burr X exponential (BXE) distribution (Yousof et al. (2017b), Mansour et al. 

(2020c)) and the Burr–Hatke exponential distribution (Yadav et al. (2021)), among others. 
 

 Figure 2 gives some plots of the PEDE HRF for some selected parameter values. Based 

on Figure 1, we note that the new PDF can be “asymmetric right skewed shape”, 

asymmetric left skewed shape”, “symmetric shape” and bimodal”. Based on Figure 2, it is 

seen that the new HRF can be “bathtub”, “decreasing”, “upside down increasing (reversed 

bathtub)”, “J shape” and “bathtub- bathtub (W shape)”. 
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Figure 1: Plots for the PDFs for Some Selected Parameter Values 
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Figure 2: Plots for the HRF for Some Selected Parameter Values 

 

The new PEDE model could be useful in modeling  

I. The real-life datasets which have "monotonically increasing failure rate " as 

illustrated in Figures 6 and (bottom left plots). 

II. The real-life data sets which have some extreme values as shown in Figures 6 

and (bottom right plots). 

III. The real-life datasets which their nonparametric Kernel density are bimodal and 

asymmetric with right leavy tail as shown in Figures 6 and (top left plots). 

IV. The real-life datasets which their PDF can be “asymmetric right skewed shape”, 

asymmetric left skewed shape”, “symmetric shape” and bimodal” (see Figure 1). 

V. The real-life datasets which their HRF can be “bathtub”, “decreasing”, “upside 

down increasing (reversed bathtub)”, “J shape” and “bathtub- bathtub (W 

shape)” (see Figure 2). 
 

 The PEDE model proved its applicability and superiority against many well-known 

exponential extensions as shown below: 

I. In modeling the relief times data, the PEDE model is better than the odd Lindley 

exponential model, Marshall-Olkin exponential model, Moment exponential 

model, the Logarithmic Burr-Hatke exponential model, Generalized Marshall-
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Olkin exponential model, Beta exponential model, Marshall-Olkin 

Kumaraswamy exponential model, Kumaraswamy exponential model, the Burr X 

exponential model, Kumaraswamy Marshall-Olkin exponential model and 

standard exponential model under the Cramér-Von Mises Criteria, Anderson-

Darling Criteria, Akaike Information Criteria, Consistent Akaike Information 

Criteria, Bayesian Information Criteria, Hannan-Quinn Information Criteria, 

Kolmogorov-Smirnov (KS) and its corresponding P-value. 

II. In modeling the survival times of the aircraft windshield, the PGE-G family is 

better than the odd Lindley exponential model, Marshall-Olkin exponential 

model, Moment exponential model, the Logarithmic Burr-Hatke exponential 

model, Generalized Marshall-Olkin exponential model, Beta exponential model, 

Marshall-Olkin Kumaraswamy exponential model, Kumaraswamy exponential 

model, the Burr X exponential model, Kumaraswamy Marshall-Olkin exponential 

model and standard exponential model under the Cramér-Von Mises Criteria, 

Anderson-Darling Criteria, Akaike Information Criteria, Consistent Akaike 

Information Criteria, Bayesian Information Criteria, Hannan-Quinn Information 

Criteria, Kolmogorov-Smirnov (KS) and its corresponding P-value. 

 

2. MATHEMATICAL PROPERTIES 
 

2.1 Representation 

 In this section, we provide a useful linear representation for the PEDE density function. 

Using the power series, we expand the quantity 𝐴(𝑥) where 
 

𝐴(𝑥) = 𝑒𝑥𝑝{−𝜎(1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})𝜃}

= ∑
(−𝜎)𝑝

Γ(1 + 𝑝)
(1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]})𝜃𝑝.

+∞

𝑝=0

 

 

 

(4) 

 

 Then, the PDF in (4) can be expressed as 
 

𝑓𝛬(𝑥) = C𝜎
−1𝛽𝜃𝛿∑

(−1)𝑝𝜎1+𝑝𝑒𝑥𝑝(𝛿𝑥)

Γ(1 + 𝑝) 𝑒𝑥𝑝{𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]}

+∞

𝑝=0

 

[1 − 𝑒𝑥𝑝{−𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]}]𝜃(𝑝+1)−1⏟                        

𝐵(𝑥)

. 

 

 

 

(5) 

 

 Then, consider the power series  
 

(1 −
𝑎1
𝑎2
)
𝑎3

=∑
Γ(𝑎3 + 1)

𝑢! Γ(𝑎3 − 𝑢 + 1)

+∞

𝑢=0

(−
𝑎1
𝑎2
)
𝑢

|
|
𝑎1
𝑎2
|<1 and 𝑎3>0

. 
 

(6) 

 

 Applying (6) to the quantity 𝐵(𝑥) in (5), we get 
 

𝑓𝛬(𝑥) = C𝜎
−1𝛽𝜃𝛿 ∑

𝜎1+𝑝(−1)𝑝+𝑢Γ(𝜃(𝑝 + 1))𝑒𝑥𝑝(𝛿𝑥)

Γ(1 + 𝑢)Γ(1 + 𝑝)Γ(𝜃(𝑝 + 1) − 𝑢)

+∞

𝑝,𝑢=0

 

𝑒𝑥𝑝{−(𝑢 + 1)𝛽[𝑒𝑥𝑝(𝛿𝑥) − 1]}⏟                    

𝐶(𝑥)

. 

 

 

 

(7) 
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 Expanding the quantity 𝐶(𝑥) in power series, we can write 
 

𝐶(𝑥) =∑
(−1)𝑗(𝑢 + 1)𝑗

Γ(1 + 𝑗)

+∞

𝑗=0

[𝑒𝑥𝑝(𝛿𝑥) − 1]𝑗. 
 

(8) 

 

 Inserting the above expression of 𝐶(𝑥) in (9), the PEDE density reduces to  
 

𝑓𝛬(𝑥) = 𝜃𝛽C𝜎
−1𝛿  

∑ 𝜎1+𝑝
+∞

𝑝,𝑢,𝑗=0

(−1)𝑝+𝑗+𝑢Γ(𝜃(𝑝 + 1))(𝑢 + 1)𝑗𝑒𝑥𝑝(−𝛿𝑥)[1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑗

Γ(1 + 𝑝)Γ(1 + 𝑢)Γ(1 + 𝑗)Γ(𝜃(𝑝 + 1) − 𝑢)[𝑒𝑥𝑝(−𝛿𝑥)]𝑗+2
. 

 

 

(9) 

 

 Using the generalized binomial expansion to [𝑒𝑥𝑝(−𝛿𝑥)]𝑗+2, we can write  
 

{1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]}−𝑗−2 

=∑
Γ(1 + 𝑗●)

Γ(1 + 𝑣)Γ(𝑗 + 2)

+∞

𝑣=0

[1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑣|(𝑗●=𝑗+𝑣+1). 

 

 

(10) 

 

 Inserting (10) in (9), the PEDE density can be expressed as an infinite linear 

combination of exponentiated exponential (exp-E) density functions  
 

𝑓Λ(𝑥) = ∑ Δ𝑗,𝑣

+∞

𝑗,𝑣=0

g𝑗●,𝛿(𝑥), 
 

(11) 

where 

g𝑗● ,𝛿(𝑥) = 𝛿𝑗
●𝑒𝑥𝑝(−𝛿𝑥)[1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑗

●−1, 
 

is the PDF of the exponentiated exponential (exp-E) with power parameter 𝑗● and 
 

Δ𝑗,𝑣 = ∑ 𝜎1+𝑝𝜃𝛽C𝜎
−1

+∞

𝑝,𝑢=0

(−1)𝑝+𝑗+𝑢(𝑢 + 1)𝑗Γ(𝜃(𝑝 + 1))Γ(1 + 𝑗●)

Γ(1 + 𝑝)Γ(1 + 𝑢)Γ(1 + 𝑣)Γ(1 + 𝑗) 𝑗●Γ(𝜃(𝑝 + 1) − 𝑢)Γ(𝑗 + 2)
. 

 

 From Equation (11), it is seen that the PDF of PEDE model can be expressed as a linear 

combination of exp-E PDFs. So, several mathematical properties of the new family can be 

obtained by knowing those of the exp-E distribution. Similarly, the CDF of the PEDE 

model can also be expressed as a linear combination of exp-E CDFs given by  
 

𝐹𝛬(𝑥) = ∑ Δ𝑗,𝑣

+∞

𝑗,𝑣=0

 G𝑗●,𝛿(𝑥), 
 

(12) 

where 

G𝑗●,𝛿(𝑥) = [1 − 𝑒𝑥𝑝(−𝛿𝑥)]
𝑗● , 

 

is the CDF of the exp-E model with power parameter 𝑗●. 
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2.2 Moments and Moment Generating Function (MGF) 

 Based on Theorem 1, the rth moment of 𝑋, say 𝜇𝓇,𝑋
′ , follows from equation (11) as 

 

𝜇𝓇,𝑋
′ = 𝐸(𝑋𝓇) = ∑ Δ𝑗,𝑣

+∞

𝑗,𝑣=0

𝐸(𝑍𝑗●
𝓇). 

 

 Then, the rth moment of 𝑋 can then be expressed as 
 

𝜇𝓇,𝑋
′ |𝓇>−1 = 𝐸(𝑋

𝓇) = Γ(𝓇 + 1) ∑ Δ𝑗,𝑣,𝒽
(𝓇,𝑗●)

+∞

𝑗,𝑣,𝒽=0

, 

where 

Δ𝑗,𝑣,𝒽
(𝓇,𝑗●)

= Δ𝑗,𝑣Δ𝒽
(𝓇,𝑗●)

. 
 

 The nth central moment of 𝑋, say 𝑀𝑛,𝑋 can be derived directly from  

𝑀𝑛,𝑋 = 𝐸(𝑋 − 𝜇1,𝑋
′ )

𝑛
. Using (11) and Theorem 1, the MGF 𝑀𝑋(𝑡) of 𝑋 can be  

expressed as 
 

𝑀𝑋(𝑡)|𝓇>−1 = ∑
𝑡𝓇

𝓇!
𝜇𝓇,𝑋
′

+∞

𝑗,𝑣,𝒽,𝓇=0

, 

 

2.3 Incomplete Moments 

 Using Theorem 2, the sth incomplete moments of 𝑋 can be expressed as 
 

I𝑠,𝑋(𝑡)|𝑠>−1 = 𝛾(𝑠 + 1, 𝛿𝑡)∑ Δ𝑗,𝑣,𝒽
(𝑠,𝑗●)

+∞

𝒽=0

. 

 

 Therefore, the first incomplete moment of 𝑋 can be derived from I𝑠,𝑋(𝑡) when 𝑠 = 1. 

 

2.4 Residual Life Function (RLf) and the Life Expectation (LfE) 

 The 𝓆𝑡ℎ moment of the RLf of the RV 𝑋 can be obtined from 
 

𝐴𝓆,𝑋(𝑡) = 𝔼[(𝑋 − 𝑡)
𝓆]|𝑋>𝑡 𝑎𝑛𝑝 𝓆∈ℕ, 

 

or from 
 

𝐴𝓆,𝑋(𝑡) =
1

1 − 𝐹𝛬(𝑡)
∫
∞

𝑡

(−𝑡+𝑥)𝓆𝑓𝛬(𝑥)𝑑𝑥, 

 

which can also be written as 
 

𝐴𝓆,𝑋(𝑡)|𝓆>−1 =
Γ(𝓆 + 1, 𝛿𝑡)

[1 − 𝐹𝛬(𝑡)]
∑ Δ𝑗,𝑣,𝒽

(𝓆,𝑗●)(𝐴, 𝑋)

+∞

𝑗,𝑣,𝒽=0

, 

 

where 

Δ𝑗,𝑣,𝒽
(𝓆,𝑗●)(𝐴, 𝑋) = Δ𝑗,𝑣Δ𝒽

(𝓆,𝑗●)
∑

𝓆

𝑙=0
(
𝓆
𝑙
) (−𝑡)𝓆−𝑙 , 
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where Γ(1 + 𝑛, 𝑡) refers to upper incomplete gamma function. For 𝓆 = 1, we obtain the 

LfE which can be drived as 
 

𝐴1,𝑋(𝑡) =
Γ(2, 𝛿𝑡)

[1 − 𝐹𝛬(𝑡)]
∑ Δ𝑗,𝑣,𝒽

(2,𝑗●)(𝐴, 𝑋)

+∞

𝑗,𝑣,𝒽=0

, 

 

and represents the additional expected life for a certin system or component which is 

already alive at the age 𝑡.  
 

2.5 Reversed Residual Life (RRLf) and Mean Waiting Time (MWT) Functions 

 The 𝓆𝑡ℎ moment of the RRLf is 
 

𝐵𝑞,𝑋(𝑡) = 𝔼[(𝑡 − 𝑋)
𝓆]|𝑋≤𝑡,𝑡>0 and 𝓆∈ℕ, 

or 

𝐵𝓆,𝑋(𝑡) =
1

𝐹𝛬(𝑡)
∫
𝑡

0

(−𝑥 + 𝑡)𝓆𝑓𝛬(𝑥)𝑑𝑥, 

 

which can also be expressed as 
 

𝐵𝓆,𝑋(𝑡)|𝓆>−1 =
1

𝐹𝛬(𝑡)
𝛾(𝓆 + 1, 𝛿𝑡) ∑ Δ𝑗,𝑣,𝒽

(𝓆,𝑗●)(𝐵, 𝑋)

+∞

𝑗,𝑣,𝒽=0

, 

where 

Δ𝑗,𝑣,𝒽
(𝓆,𝑗●)(𝐵, 𝑋) = Δ𝑗,𝑣Δ𝒽

(𝓆,𝑗●)
∑

𝓆

𝑙=0
(−1)ℎ (

𝓆
𝑙
) 𝑡𝓆−𝑙 . 

 

 For 𝓆 = 1, we obtain the MWT 
 

𝐵1,𝑋(𝑡) =
1

𝐹𝛬(𝑡)
𝛾(2, 𝛿𝑡) ∑ Δ𝑗,𝑣,𝒽

(1,𝑗●)(𝐵, 𝑋)

+∞

𝑗,𝑣,𝒽=0

, 

 

which also can be called the mean inactivity time (MIT). 

 

2.5 Numerical and Graphical Analysis for Some Measures 

 Table 1 below gives numerical analysis for the mean (𝐸(𝑋)), variance (V(𝑋)), 
skewness (S(𝑋)) and kurtosis (K(𝑋)). Based on results listed in Table 1, it is noted  

that 𝐸(𝑋) decreases as 𝜎, 𝛽 and 𝛿 increases, 𝐸(𝑋) increases as 𝜃 increases,  

S(𝑋)  ∈ (−3.88, ∞) and K(𝑋) ranging from 1.445 to ∞. Figure 3 gives three-dimensional 

skewness plots for the for some selected parameter values. Figure 4 displays three-

dimensional kurtosis plots for the for some selected parameter values. 
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Table 1 

Numerical Results for 𝑬(𝑿), V(𝑿), S(𝑿) and K(𝑿) 

𝝈 𝜽 𝜷 𝜹 𝑬(𝑿) V(𝑿) S(𝑿) K(𝑿) 

−500 0.5 0.5 1 2.364448 0.5066787 −2.791627 9.599033 

−100    2.036134 0.5451138 −2.090994 6.259912 

−50    1.856956 0.5646022 −1.718185 4.860248 

−10    1.292527 0.6170022 −0.597689 2.147473 

10    0.006475 0.0026303 13.31246 258.5861 

50    1.5× 10−05 4.9× 10−07 49.93754 3343.939 

100    4.9× 10−08 1.6× 10−09 811.5032 658556.7 

500    1.4× 10−29 4.4× 10−31 ∞ ∞ 

        

10 0.001 0.75 0.75 4.0× 10−07 5.4× 10−07 2250.770 5769684 

 0.1   6.9× 10−05 7.2× 10−05 172.4978 35739.09 

 5   0.579327 0.3320642 0.1998015 1.444928 

 50   1.699491 0.7590853 −1.374691 3.042766 

 200   2.172982 0.8340872 −1.919511 4.794361 

 1000   2.589280 0.8566511 −2.413575 6.908853 

 50000   3.281533 0.8237015 −3.324846 12.11024 

 1000000   3.650380 0.7801610 −3.880359 16.10315 

        

−100 10 0.15 0.15 25.53609 15.57769 −5.846234 38.12432 

  0.5  17.21736 21.29620 −3.274437 12.46377 

  5  3.636574 9.254214 −0.296626 1.221108 

  50  0.123158 0.104939 2.351518 6.879394 

  200  0.009057 0.002266 5.256961 29.85848 

  0000  1.1× 10−05 3.5× 10−07 55.06121 3033.787 

        

00 2 00 0.001 0.1840655 4.1620260 11.6253 141.458 

   0.05 0.0328407 0.0418182 8.367325 105.2007 

   0.15 0.0109469 0.0046465 8.367325 105.2007 

   0.25 0.0065681 0.0016727 8.367324 105.2077 

   0.35 0.0046917 0.0008534 8.367331 105.1457 
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Figure 3: Three-Dimensional Skewness Plots 
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Figure 4: Three-Dimensional Kurtosis Plots 
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3. COPULAS 
 

For the propose of statistical modeling of the bivariate real-life datasets, we present many 

new bivariate PEDE (Biv-PEDE) type distributions using the theorems of the “Farlie-

Gumbel-Morgenstern copula” (FGMC) copula, modified FGMC, ”Clayton copula (CyC)”, 

“Renyi's entropy copula (REC)” and Ali-Mikhail-Haq copula (AMHC) (see Farlie (1960), 

Morgenstern (1956), Gumbel (1960), Gumbel (1961), Johnson and Kotz (1977), Nelsen 

(2007), Ali (1978), Al-babtain et al. (2020), Mansour et al. (2020a-f), Salah et al. (2020), 

Yousof et al. (2021c,d), Ali et al. (2021a,b)), Shehata and Yousof (2021) and Elgohari  

et al. (2021). The multivariate PEDE (Mv PEDE) type can be easily derived based on the 

Clayton copula. However, some future articles may be devoted for studying these new Biv-

PEDE extension.  

 

3.1 Biv-PEDE Type via CyC 

 Let us assume that 𝑋1 ∼ PEDE(Λ1) and 𝑋2 ∼ PEDE(Λ2). The CyC depending on the 

continuous marginal functions 𝒲 = 1 −𝒲 and 𝒦 = 1 −𝒦 can be considered as  
 

𝐶₰(𝒲,𝒦) = [max (𝒲
−₰
+𝒦

−₰
− 1) ; 0]

−
1

₰
, ₰ ∈ [−1,∞) − {0},𝒲

∈ (0,1) 𝑎𝑛𝑑 𝒦 ∈ (0,1). 
 

 Let  
 

𝒲 = 1 − 𝐹Λ1(𝒳1)|Λ1 , 𝒦 = 1 − 𝐹Λ2(𝒳2)|Λ2 ,  

and 

𝐹Λ𝑖(𝒳𝑖)|𝑖=1,2 = 𝒞𝜆𝑖
−1 (1 − 𝑒𝒳𝑝 {−𝜆𝑖 [1 − Ϛ𝛽𝑖,ξ𝑖(𝒳𝑖)]

𝜃𝑖
}). 

 

 Then, the Biv-PEDE type distribution can be obtained from 𝐶₰(𝒲,𝒦).  

 

3.2 Biv-PEDE Type via REC 

 The REC can express as 
 

𝐶(𝒲,𝒦) = 𝒳2𝒲+𝒳1𝒦 −𝒳1𝒳2, 
 

with the continuous marginal functions 𝒲 = 1 −𝒲 = 𝐹Λ1(𝒳1) ∈ (0,1) and 𝒦 = 1 −

𝒦 = 𝐹Λ1(𝒳2) ∈ (0,1), where the values 𝒳1 and 𝒳2 are in order to guarantee that 𝐶(𝒲,𝒦) 

of is a copula. Then, the associated CDF of the Biv-PEDE will be  
 

𝐹(𝒳1, 𝒳2) = 𝐶 (𝐹Λ1(𝒳1), 𝐹Λ1(𝒳2)), 
 

where 𝐹Λ𝑖(𝒳𝑖) is defined above. It is worth mentioning that this copula does not show a 

closed shape and numerical approaches become necessary. 

 

3.3 Biv-PEDE Type via FGMC 

 Considering the FGMC, then the joint CDF (J-CDF) can be expressed as 
 

𝐶₰(𝒲,𝒦) = 𝒲𝒦(1 + ₰𝒲𝒦), 
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where the continuous marginal function 𝒲 ∈ (0,1), 𝒦 ∈ (0,1) and ₰ ∈ [−1,1] where 

𝐶₰(𝒲, 0) = 𝐶₰(0,𝒦) = 0|(𝒲,𝒦∈(0,1)), which called " condition of the grounded minimum" 

and 𝐶Δ(𝒲, 1) = 𝒲 and 𝐶Δ(1,𝒦) = 𝒦 which called " condition of the grounded 

maximum". The conditions of the grounded minimum/maximum always valid for any 

copula.  
 

 Setting 𝒲 =𝒲Λ1|Λ1>0 and 𝒦 = 𝒦Λ2|Λ2>0. Then, we have 
 

𝐹(𝒳1, 𝒳2) = 𝐶 (𝐹Λ1(𝒳1), 𝐹Λ2(𝒳2)) = 𝒲𝒦(1 + ₰𝒲𝒦). 
 

 The J-CDF can be derived from 
 

𝑐₰(𝒲,𝒦) = 1 + ₰𝒲
∗𝒦∗, (𝒲∗ = 1 − 2𝒲 and 𝒦∗ = 1 − 2𝒦). 

 

or from 

𝑓₰(𝒳1, 𝒳2) = 𝑓Λ1(𝒳1)𝑓Λ2(𝒳2)𝑐 (𝐹Λ1(𝒳1), 𝐹Λ2(𝒳2)), 
 

where the two function 𝑐₰(𝒲,𝒦) and 𝑓₰(𝒳1, 𝒳2) are densities corresponding to the  

J-CDFs 𝐶₰(𝒲,𝒦) and 𝐹₰(𝒳1, 𝒳2). 

 

3.4 Biv-PEDE Type via Modified FGMC 

 The modified formula of the modified FGMC can written as 
 

𝐶₰(𝒲,𝒦) = 𝒲𝒦 + ₰𝒪(𝒲)●𝒰(𝒦)●, 
 

with 𝒪(𝒲)● = 𝒲𝒪(𝒲) and 𝒰(𝒦)● = 𝒦𝒰(𝒦) where 𝒪(𝒲) ∈ (0,1) and 𝒰(𝒦) ∈
(0,1) are two continuous functions where 𝒪(𝒲 = 0) = 𝒪(𝒲 = 1) = 𝒰(𝒦 = 0) =
𝒰(𝒦 = 1) = 0. Let  
 

𝐴(𝒟1(𝒲)) = 𝑖𝑛𝑓 {𝒪(𝒲)
●:
𝜕

𝜕𝒲
𝒪(𝒲)●, ∀𝒟1(𝒲)} < 0, 

 

𝐵(𝒟1(𝒲)) = 𝑠𝑢𝑝 {𝒪(𝒲)
●:
𝜕

𝜕𝒲
𝒪(𝒲)●, ∀𝒟1(𝒲)} < 0, 

 

𝐴(𝒟2(𝒦)) = 𝑖𝑛𝑓 {𝒰(𝒦)
●:
𝜕

𝜕𝒦
𝒰(𝒦)●, ∀𝒟2(𝒦)} > 0, 

and 

𝐵(𝒟2(𝒦)) = 𝑠𝑢𝑝 {𝒰(𝒦)
●:
𝜕

𝜕𝒦
𝒰(𝒦)●, ∀𝒟2(𝒦)} > 0. 

 

 Then for 
 

1 ≤ 𝑚𝑖𝑛(𝐴(𝒟1(𝒲))𝐵(𝒟1(𝒲)), 𝐴(𝒟2(𝒦))𝐵(𝒟2(𝒦))) 
 

we have 
 

𝜕

𝜕𝒲
𝒪(𝒲) + 𝒪(𝒲) =

𝜕

𝜕𝒲
𝒪(𝒲)●, 

 

where 
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𝒟1(𝒲) = {
𝜕

𝜕𝒲
𝒪(𝒲)● exists}, 

and 

𝒟2(𝒦) = {
𝜕

𝜕𝒦
𝒰(𝒦)● exists}. 

 

 The following four types can be derived and considered: 
 

I. Type I Modified FGMC 

Let ℋ1(𝒲) = 𝜆1𝐻𝜃1,𝛽1,ξ(𝒲) and ℋ2(𝒦) = 𝜆2𝐻𝜃2,𝛽2,ξ(𝒦). Then, the new 

bivariate version via modified FGMC type I can written using 
 

𝐶₰(𝒲,𝒦) = 𝒲𝒦 + ₰𝒪(𝒲)●𝒰(𝒦)●, 
 

II. Type II Modified FGMC 

 Consider 𝒫(𝒲; ₰1) and 𝒢(𝒦; ₰2) which satisfy the above conditions where  

 

𝒫(𝒲; ₰1)|(₰1>0) = 𝒲
₰1(1 −𝒲)1−₰1  and 𝒢(𝒦; ₰2)|(₰2>0) = 𝒦

₰2(1 −

𝒦)1−₰2 .  
 

Then, the corresponding bivariate version (modified FGMC Type II) can be derived 

from 
 

𝐶₰0,₰1,₰2(𝒲,𝒦) = 𝒲𝒦[1 + ₰0𝒫(𝒲; ₰1)𝒢(𝒦; ₰2)]. 
 

III. Type III Modified FGMC 

Let 𝒫(𝒲)̃ =𝒲[𝑙𝑜𝑔(1 +𝒲)]|(𝒲=1−𝒲)  and  𝒢(𝒦)̃ = 𝒦[𝑙𝑜𝑔(1 + 𝒦)]|(𝒦=1−𝒦). 

Then, the associated CDF of the Biv-PEDE-FGM (modified FGMC type III) as 
 

𝐶₰(𝒲,𝒦) = 𝒲𝒦[1 + ₰𝒫(𝒲)̃ 𝒢(𝒦)̃]. 
 

IV. Type IV Modified FGMC 

Using the quantile concept, the CDF of the Biv-PEDE-FGM (modified FGMC type 

IV) model can be obtained using 
 

𝐶(𝒲,𝒦) = 𝒲𝐹−1(𝒲) +𝒦𝐹−1(𝒦) − 𝐹−1(𝒲)𝐹−1(𝒦) 
 

 where 𝐹−1(𝒲) = 𝑄(𝒲)and 𝐹−1(𝒦) = 𝑄(𝒦). 
 

3.5 Biv-PEDE Type via AMHC 

 Under the “stronger Lipschitz condition”, the J-CDF of the Archimedean AMHC can 

written as 
 

𝐶₰(𝒲,𝒦) =
𝒲𝒦

1 − ₰𝒲𝒦
|₰∈(−1,1), 

 

the corresponding J-CDF of the Archimedean Ali-Mikhail-Haq copula can be express as 
 

𝑐₰(𝒲,𝒦) =
1 − ₰ + 2₰

𝒲𝒦

1−₰𝒲𝒦

[1 − ₰𝒲𝒦]
2 |₰∈(−1,1), 
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then for any 𝒲 = 1 − 𝐹Λ1(𝒳1) = |[𝒲=(1−𝒲)∈(0,1)] and 𝒦 = 1 − 𝐹Λ2(𝒳2)|[𝒦=(1−𝒦)∈(0,1)] 

we easily derive the copula 𝐶₰(𝒲,𝒦). 

 

4. THE MAXIMUM LIKELIHOOD METHOD 
 

 Let 𝑥1, 𝑥2, … , 𝑥𝑛 be an observed random sample (RS) from the PEDE model with 

parameters 𝜎, 𝜃, 𝛽 and 𝛿. The log-likelihood function (ℓ𝜎,𝜃,𝛽,𝛿) can be derived and 

maximized either directly by using the Ox program (via the “MaxBFGS sub-routine”),  

R (via the “optim” function) and MATH-CAD or by solving the nonlinear likelihood 

equations obtained by differentiating ℓ𝜎,𝜃,𝛽,𝛿 . The score vector components are given by 
 

U𝜎 =
𝜕

𝜕𝜎
ℓ𝜎,𝜃,𝛽,𝛿 , U𝜃 =

𝜕

𝜕𝜃
ℓ𝜎,𝜃,𝛽,𝛿 , U𝛽 =

𝜕

𝜕𝛽
ℓ𝜎,𝜃,𝛽,𝛿 and U𝛿 =

𝜕

𝜕𝛿
ℓ𝜎,𝜃,𝛽,𝛿 . 

 

 Setting the nonlinear system of equations U𝜎 = U𝜃 = U𝛽 = U𝛿 = 0 and solving them 

simultaneously yields the maximum likelihood estimations (MLEs) of 𝜎, 𝜃, 𝛽, 𝛿. These 

equations can be solved numerically using iterative methods such as the “Newton-

Raphson” type algorithms. For confidence interval (C.I) estimation of the model 

parameters, we require the observed information matrix J(�̂�, �̂�, �̂�, �̂�) which can be obtained 

from the authors upon request.  

 

5. SIMULATION 
 

 In this Section, we can present a two simulations studies, the first is graphical 

simulation and the second is numerical. First, the graphical simulation study is performed 

for assessing the finite sample behavior of the MLEs. The graphical assessment was based 

on the following algorithm: 
 

I. Using the QF of the PEDE distribution: we generate 1000 samples of size 𝑛 from 

the PEDE distribution where 
 

𝑄𝑈 =
1

𝛿
ln(1 −

1

𝛽
ln {1 − [−

1

𝜎
𝑙𝑛(1 − 𝑈(1 − 𝑒𝑥𝑝(−𝜎)))]

1

𝜃

}). 

 

II. Compute the MLEs for the 1000 samples. 
 

III. Compute the SEs of the MLEs for the 1000 samples, the standard errors (SEs) were 

computed by inverting the observed information matrix. 
 

IV. Compute the biases and mean squared errors given for Λ = (𝜎, 𝜃, 𝛽, 𝛿).  
 

V. Repeat these steps for 𝑛 = 10, 20, … , 500 with 𝜎 = 1,2, … ,100; 𝜃 = 1,2, … ,100; 

𝛽 = 1,2, … ,100 and 𝛿 = 1,2, … ,100 and computing the biases and mean squared 

errors (MSEs) for the model parameters. 
 

 Figure 5 (left panels) show how the biases vary with respect to the sample size𝑛.  

Figure 5 (right panels) show how the MSEs vary with respect to sample size𝑛. From  

Figure 5 the biases for each parameter are generally negative and decrease to zero as  

𝑛 → ∞ and the MSEs for each parameter decrease to zero as 𝑛 → ∞.  
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 Second, we perform a Monte Carlo numerical simulation study to verify the finite 

sample behavior of the MLEs numerically. All simulation results are obtained from  

𝑁 =≃ 000 Monte Carlo replications carried out using MATHCAD V15. In each 

replication, a random sample of size n is drawn from X ∼ PEDE distribution (𝜎, 𝜃, 𝛽, 𝛿). 

Clearly, the conjugate gradient method is used for maximizing the “total log-likelihood 

function”. The random number generation of the PEDE model is performed using the 

inversion method via the 𝑄𝑈 given above. Six different combinations of initial values of 

the four parameters are considered in Table 3. Table 3 lists the mean square errors (MSEs) 

of the MLEs of the PEDE model parameters by taking sample sizes n = 50, 100, 200, 300 

and 500. The values of the MSEs decrease when the sample size increases as expected 

under first-order asymptotic theory. 
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Figure 5: Biases and MSEs for the Parameter 𝝈, 𝜽, 𝜷 and 𝜹 
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Table 2 

Results of the Numerical Simulation 

𝚲 MSE 

n 𝝈 𝜷 𝜽 𝜹 𝝈 𝜷 𝜽 𝜹 

         

50 0.6 1.5 1.2 0.5 0.252943 0.046923 0.028109 0.002539 

 0.9 1.2 0.6 0.3 0.258263 0.070622 0.006463 0.002109 

 0.3 0.9 1.8 0.6 0.250053 0.084786 0.017171 0.004901 

 0.5 1.1 1.4 0.7 0.251712 0.021200 0.039335 0.003494 

 0.8 1.2 0.9 0.3 0.234719 0.036026 0.014766 0.001013 

 0.2 0.8 1.6 0.5 0.230866 0.061989 0.013785 0.002926 

         

100 0.6 1.5 1.2 0.5 0.122645 0.022676 0.012611 0.001233 

 0.9 1.2 0.6 0.3 0.125459 0.033081 0.002905 0.00101 

 0.3 0.9 1.8 0.6 0.121087 0.040814 0.007689 0.002401 

 0.5 1.1 1.4 0.7 0. 12200 0.010279 0.017636 0.001728 

 0.8 1.2 0.9 0.3 0.132609 0.021667 0.007138 0.000623 

 0.2 0.8 1.6 0.5 0.128956 0.037367 0.00661 0.001798 

         

200 0.6 1.5 1.2 0.5 0.060885 0.010924 0.00641 0.000583 

 0.9 1.2 0.6 0.3 0.059612 0.015473 0.001386 0.000462 

 0.3 0.9 1.8 0.6 0.057599 0.019332 0.003656 0.00113 

 0.5 1.1 1.4 0.7 0.060577 0.004981 0.008962 0.000811 

 0.8 1.2 0.9 0.3 0.061358 0.010102 0.003302 0.000291 

 0.2 0.8 1.6 0.5 0.059224 0.017497 0.003068 0.000843 

         

300 0.6 1.5 1.2 0.5 0.040422 0.006845 0.004252 0.000355 

 0.9 1.2 0.6 0.3 0.041277 0.010158 0.000981 0.000297 

 0.3 0.9 1.8 0.6 0.039864 0.012892 0.00259 0.00074 

 0.5 1.1 1.4 0.7 0.04024 0.003137 0.005943 0.000497 

 0.8 1.2 0.9 0.3 0.041168 0.006648 0.002216 0.000189 

 0.2 0.8 1.6 0.5 0.039772 0.011472 0.002059 0.000545 

         

500 0.6 1.5 1.2 0.5 0.023874 0.004279 0.00239 0.000227 

 0.9 1.2 0.6 0.3 0.023520 0.005494 0.000557 0.000155 

 0.3 0.9 1.8 0.6 0.022670 0.007093 0.01471 0.000397 

 0.5 1.1 1.4 0.7 0.023730 0.001953 0.003341 0.000317 

 0.8 1.2 0.9 0.3 0.023612 0.003545 0.001353 0.000099 

 0.2 0.8 1.6 0.5 0.023068 0.006090 0.00125 0.000286 
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6. MODELING RELIEF AND SURVIVAL TIMES 
 

 In this section, we analyze another two different real-life sets to illustrate the 

importance, applicability and flexibility of the proposed model. We compare the fit of the 

PEDE with other competitive E models. The fist data set represents the lifetime data 

relating to relief times (in minutes) of patients receiving an analgesic (see Gross, J. and 

Clark (1975)). The second data set represents the survival times (in days) of 72 guinea pigs 

infected with virulent tubercle bacilli (see Bjerkedal (1960)). These two real data sets are 

recently analyzed by Goual et al. (2019) and Ibrahim et al. (2020). 
 

 In the statistical literature there are many extensions of the exponential model which 

can be used in comparison such as Marshall-Olkin exponential (MOE) model (see Ghitany 

et al. (2005)), Beta exponential (BE) model (see Lee et al. (2007)), Kumaraswamy 

exponential (KE) model (Cordeiro et al. (2010)), Poisson-exponential (PE) model (see 

Cancho et al. (2011)), Moment exponential (ME) model (Dara and Ahmad (2012)), 

Generalized Marshall-Olkin exponential (GMOE) model (see Chakraborty and Handique 

(2017)), transmuted exponentiated generalized exponential (TEGE) distribution (see 

Yousof et al. (2017a)), Marshall-Olkin Kumaraswamy exponential (MOKE) model (see 

Chakraborty and Handique (2017)), Burr XII exponential (BXIIE) distribution (see 

Cordeiro et al. (2018)), odd Lindley exponential (OLE) model (Almamy et al. (2018)), 

Burr-Hatke exponential (BHE) model (see Yousof et al. (2018b)), Kumaraswamy 

Marshall-Olkin exponential (KMOE) model (see George and Thobias (2019)), quasi 

Poisson Burr X exponentiated exponential (QPBXEE) model (see Mansour et al. (2020b)), 

generalized odd log-logistic exponentiated exponential (GOLLEE) model (see Mansour et 

al. (2020b)) and the Burr X exponential (BXE) model (see Yousof et al. (2017a)) and 

Mansour et al. (2020c)), among others. In this section some competitive models are 

selected as competitive exponential extensions such as the odd Lindley exponential (OLE) 

model, Marshall-Olkin exponential (MOE) model, Moment exponential (ME) model, The 

Logarithmic Burr-Hatke exponential (LBHE) model, Generalized Marshall-Olkin 

exponential (GMOE)model, Beta exponential (BE)model, Marshall-Olkin Kumaraswamy 

exponential (MOKE)model, Kumaraswamy exponential (KE), the Burr X exponential 

(BXE)model, Kumaraswamy Marshall-Olkin exponential (KMOE) model and standard 

exponential (E) model. Some details related to these competitive models are available in 

Ibrahim et al. (2020).  
 

 The following are the CDFS of the competitive models: 
 

I. The standard exponential distribution 
 

𝐹𝛿(𝑥) = 1 − 𝑒𝑥𝑝(−𝛿𝑥) |𝛿 > 0, 𝑥 > 0; 
 

II. Burr type-X exponential distribution 
 

𝐹𝑎,𝛿(𝑥) = (1 − 𝑒𝑥𝑝{−[𝑒𝑥𝑝(𝛿𝑥) − 1]
2})𝑎  |𝑎, 𝛿 > 0, 𝑥 > 0; 

 

III. odd Lindley exponential distribution 
 

𝐹𝛿(𝑥) = 1 − {𝑒𝑥𝑝(−𝛿𝑥)}
−1[1 + 𝑒𝑥𝑝(−𝛿𝑥)] 

×
1

2
𝑒𝑥𝑝 (

−[1 − 𝑒𝑥𝑝(−𝛿𝑥)]

1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]
) |𝛿 > 0, 𝑥 > 0; 
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IV. Kumaraswamy Marshall-Olkin exponential distribution 

𝐹𝑎,𝑏,λ,𝛿(𝑥) = 1 − {1 − [
𝑒𝑥𝑝(−𝛿𝑥)

1 − (1 − λ)1 − 𝑒𝑥𝑝(−𝛿𝑥)
]

𝑎

}

𝑏

|𝑎, 𝑏, 𝛿 > 0, 𝑥 > 0; 

 

V. Moment exponential distribution 
 

𝐹𝛿(𝑥) = 1 − (1 +
𝑥

𝛿
) 𝑒−

𝑥

𝛿, | 𝛿>0,𝑥≥0; 
 

VI. Marshall-Olkin Kumaraswamy exponential distribution 
 

𝐹𝑎,𝑏,λ,𝛿(𝑥) =
{1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑎}𝑏

1 − (1 − λ)(1 − {1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑎}𝑏)
|𝑎, 𝑏, λ, 𝛿 > 0, 𝑥

> 0; 
 

VII. Burr–Hatke exponential distribution 
 

𝐹𝛿(𝑥)
1 − 𝑒𝑥𝑝(−𝛿𝑥)

1 − 𝛿𝑥
|𝛿 > 0, 𝑥 > 0; 

 

VIII. Beta exponential distribution 
 

𝐹𝑎,𝑏,𝛿(𝑥) = 𝐼1−𝑒𝑥𝑝(−𝛿𝑥)(𝑎, 𝑏)|𝑎, 𝑏, λ, 𝛿 > 0, 𝑥 > 0; 
 

IX. Marshall-Olkin exponential distribution 
 

𝐹λ,𝛿(𝑥) =
𝑒𝑥𝑝(−𝛿𝑥)

1 − (1 − λ)[1 − 𝑒𝑥𝑝(−𝛿𝑥)]
|λ, 𝛿 > 0, 𝑥 > 0; 

 

X. Kumaraswamy exponential distribution 
 

𝐹𝑎,𝑏,𝛿(𝑥) = 1 − {1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]
𝑎}𝑏|𝑎, 𝑏, 𝛿 > 0, 𝑥 > 0; 

 

XI. Generalized Marshall-Olkin exponential distribution. 
 

𝐹λ,𝛿(𝑥) =
1 − [1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑎

1 − (1 − λ)[1 − 𝑒𝑥𝑝(−𝛿𝑥)]𝑎
|𝑎, 𝛿 > 0, 𝑥 > 0. 

 

 For exploring the initial shape of real data, the nonparametric Kernel density estimation 

“NKDE” is presented in Figure 6 and 7 (top left panels). For checking the “normality” 

condition, the normal quantile- quantile “Q-Q plot” is presented in Figure 6 and 7 (top right 

panels). For discovering the shape of the empirical HRFs, the total time in test “TTT” plot 

is provided in Figure 6 and 7 (bottom left panels). To explore the extreme observations, 

the “box plot” is sketched in Figure 6 and 7 (bottom right panels). Based on Figure 6  

and 7 (top left panels), it is noted that the NKDEs are “symmetric with right skewed heavy 

tail”. Based on Figure 6 and 7 (top right panels), we see that the “normality” could be not 

exists. Based on Figure 6 and 7 (bottom left panels), we note that the HRF is "asymmetric 

monotonically increasing HRF" for the two data sets. Based on Figure 6 and 7 (bottom 

right panels), we note that no extreme values were spotted.  
 

 The following goodness-of-fit (GOF) are used in comparing the competitive models: 
 

I. Cramér-Von Mises (𝐶∗). 
II. Anderson-Darling (𝐴∗). 
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III. Akaike information (AI-Cr). 

IV. Consistent-AIC (CAI-Cr). 

V. Bayesian-IC (BI-Cr). 

VI. Hannan-Quinn-IC (HQI-Cr). 

VII. Kolmogorov-Smirnov (KS). 

VIII.  P-value. 
 

 For relief times, relevant results are listed in Tables 2 and 3. Table 3 gives the MLEs, 

SEs, 95%- lower C.I (95%-L.C.I) and 95%- upper C.I (95%-U.C.I). Table 4 provides the 

GOF test statistics for relief times data. For survival times: the analysis results are listed in 

Tables 4 and 5. Table 5 gives the MLEs, SEs, 95%-L.C.I and 95%-U.C.I. Table 6 gives the 

GOFs test statistics for survival times data. Figures 8 and 9 give estimated HRF (EHRF), 

estimated PDF (EPDF), Kaplan Meier survival (KMS) plot and probability- probability (P-

P) plot and for the two data set respectively. Based on Tables 3 and 5, we note that the 

PEDE model gives the lowest values for all test statistics where 𝐴∗ = 0.33,𝐶∗ = 0.056, p-

value=0.88, KS=0.13, AI-Cr=40.9, BI-Cr=44.8, CAI-Cr=43.2 and HQI-Cr=41.5 for the 

relief times data and 𝐴∗ = 0.39, 𝐶∗ = 0.06, p-value=0.73, KS = 0.080, AI-Cr=205.5, BI-

Cr=214.6, CAI-Cr=206.3 and HQI-Cr=209.2 for the survival times data. 

 

Table 3 

MLEs, SEs 95%-L.C.I and 95%-U.C.I for Relief Times Data 

Models  MLEs, SE, 95%-L.C.I and 95%-U.C.I 

PEDE (𝜎, 𝜃, 𝛽, 𝛿) MLE 2.624 13.61  5.739 0.189 

 SE (2.017)  (10.05) (3.37)  (0.07) 

 95%-L.C.I 0 0 0 0.49 

 95%-U.C.I 6.6 34.6 12.4 0.329 

KwMOE(a,b,λ,𝛿) MLE 8.868 34.826 0.299 4.899 

 SE (9.15) (22.31) (0.24) (3.18) 

 95%-L.C.I 0 0 0 0 

 95%-U.C.I 29 78.6 0.76 11 

MOKE(a,b,λ,𝛿) MLE 0.133 33.232 0.571 1.669 

 SE (0.332) (57.84) (0.72) (1.81) 

 95%-L.C.I 0 0 0 0 

 95%-U.C.I 0.8 146.6 2 5.2 

GMOE(a,λ,𝛿) MLE 0.519 89.462 3.169  

 SE (0.256) (66.278) (0.77)  

 95%-L.C.I 0.02 0 1.66  

 95%-U.C.I 1.02 219.4 4.7  

KE(a,b,𝛿) MLE 83.756 0.568 3.330  

 SE (42.361) (0.326) (1.188)  

 95%-L.C.I 0.7 0 1.00  

 95%-U.C.I 167 1.2 5.75  
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Models  MLEs, SE, 95%-L.C.I and 95%-U.C.I 

BE(a,b,𝛿) MLE 81.633 0.542 3.514  

 SE (120.41)  (0.327)  (1.410)  

 95%-L.C.I 0 0 0.750  

 95%-U.C.I 317.63 1.18 6.344  

MOE(λ,𝛿) MLE 54.47 2.32   

 SE (35.58) (0.37)   

 95%-L.C.I 0 1.58   

 95%-U.C.I 124.2 3.00   

BXE(a,𝛿) MLE 1.1635 0.3207   

 SE (0.33) (0.03)   

 95%-L.C.I 0.522 0.261   

 95%-U.C.I 1.825 0.384   

E(𝛿) MLE 0.5261    

 SE (0.117)    

 95%-L.C.I 0.321    

 95%-U.C.I 0.856    

ME(𝛿) MLE 0.950    

 SE (0.150)    

 95%-L.C.I 0.721    

 95%-U.C.I 1.288    

BHE (𝛿) MLE 0.5263    

 SE (0.118)    

 95%-L.C.I 0.432    

 95%-U.C.I 0.666    

OLE(𝛿) MLE 0.604    

 SE (0.054)    

 95%-L.C.I 0.501    

 95%-U.C.I 0.744    

 

Table 4 

GOF Statistics for Relief Times Data 

Models 𝑨∗ 𝑪∗ BI-Cr AI-Cr HQI-Cr CAI-Cr p-value  KS 

PEDE 0.33 0.056 44.8 40.9 41.5 43.2 0.88 0.13 

OLE 1.30 0.22 50.1 49.1 49.3 49.3 <0.1% 0.90 

E 4.60 0.96 68.7 68.3 68.0 67.9 0.004 0.42 

BXE 1.32 0.24 50.1 48.1 48.5 49.2 0.17 0.25 

MOE 0.80 0.14 45.5 43.5 43.9 44.2 0.55 0.18 

KE 0.45 0.07 44.8 42.5 42.3 43.3 0.86 0.14 

KMOE 1.08 0.19 46.8 43.4 43.6 45.6 0.86 0.15 

ME 0.70 0.12 55.3 54.3 54.5 54.5 0.07 0.32 

GMOE 0.51 0.08 45.7 42.8 43.3 44.3 0.78 0.15 

MOKE 0.60 0.11 45.5 41.6 42.3 44.3 0.87 0.14 

BHE 0.62 0.11 68.7 67.7 67.8 67.9 <0.1% 0.40 

BE 0.70 0.12 44.2 43.5 46.5 44.9 0.80 0.16 
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Table 5 

 MLEs, SEs, 95%-L.C.I and 95%-U.C.I for Survival Times Data 
Models  MLEs, SE, 95%-L.C.I and 95%-U.C.I 

PEDE (𝜎, 𝜃, 𝛽, 𝛿) MLE 3.649  3.069 60.199  0.009 

 SE (2.748)  (0.748)  (37.28)  (0.003) 
 95%-L.C.I 0 2.2 0 0.006 
 95%-U.C.I 8.9 4.9 134 14.8 

KwMOE (a,b,λ,𝛿) MLE 0.37 3.48 3.31 0.30 

 SE (0.14) (0.86) (0.78) (1.11) 
 95%-L.C.I 0.11 1.8 1.8 0 
 95%-U.C.I 0.6 5 4.8 2.5 

MOKE (a,b,λ,𝛿) MLE 0.008 2.716 1.986 0.099 

 SE (0.002) (1.316) (0.784) (0.048) 
 95%-L.C.I 0.004 0.14 0.4 0 
 95%-U.C.I 0.010 5.3 3.5 0.23 

GMOE(a,λ,𝛿) MLE 0.179 47.635 4.470  

 SE (0.07) (44.901) (1.327)  
 95%-L.C.I 0.041 0 2.1  
 95%-U.C.I 0.33 14 7.2  

BE(a,b,𝛿) MLE 0.807 3.461 1.331  

 SE (0.696) (1.003) (0.855)  
 95%-L.C.I 0 1.49 0   
 95%-U.C.I 2.17 5.42 3.01  

KE(a,b,𝛿) MLE 3.304 1.100 1.037  

 SE (1.106) (0.764) (0.614)  
 95%-L.C.I 1.13  0 0  
 95%-U.C.I 5.5 2.6 2.2  

MOE(a,𝛿) MLE 8.780 1.380   

 SE (3.555) (0.193)   
 95%-L.C.I 1.81 1.0   
 95%-U.C.I 15.74 1.80   

BXE(a,𝛿) MLE 0.480 0.2060   

 SE (0.061) (0.012)   
 95%-L.C.I 0.4 0.18   
 95%-U.C.I 0.5 0.23   

E(𝛿) MLE 0.540    

 SE (0.063)    
 95%-L.C.I 0.4    
 95%-U.C.I 0.7    

OLE(𝛿) MLE 0.38145    

 SE (0.021)    
 95%-L.C.I 0.3    
 95%-U.C.I 0.4    

ME(𝛿) MLE 0.9250    

 SE (0.080)    
 95%-L.C.I 0.62    
 95%-U.C.I 1.08    

BHE (𝛿) MLE 0.542    

 SE (0.06)    
 95%-L.C.I 0.41    
 95%-U.C.I 0.68    
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Table 6 

GOF Statistics for Survival Times Data 

Models 𝑨∗ 𝑪∗ BI-Cr AI-Cr HQI-Cr CAI-Cr p-value KS 

PEDE 0.39 0.06 214.6 205.5 209.2 206.3 0.73 0.080 

KE 0.74 0.11 216.2 209.4 212.1 209.8 0.500 0.09 

E 6.53 1.25 236.9 234.6 235.5 234.7 0.060 0.27 

BXE 2.90 0.52 239.9 235.3 237.1 235.5 0.002 0.22 

GMOE 1.02 0.16 217.4 210.5 213.2 211.2 0.510 0.09 

OLE 1.94 0.33 231.4 229.1 230.1 229.2 <0.1% 0.49 

KMOE 0.61 0.11 217.5 208.3 211.4 208.4 (0.530 0.09 

MOKE 0.79 0.12 218.6 209.4 213.3 210.2 0.440 0.10 

BHE 0.71 0.12 237.2 235.4 236.6 235.2 <0.1% 0.28 

BE 0.98 0.15 214.2 207.3 210.1 207.7 0.340 0.11 

MOE 1.20 0.17 215.0 210.2 212.2 210.5 0.430 0.10 

ME 1.52 0.25 212.7 210.4 211.3 210.5 0.130 0.14 

Figure 6: NKDE, Q-Q Plot TTT Plot and Box Plot for Relief Times Data 
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Figure 7: NKDE, Q-Q Plot TTT Plot and Box Plot for Survival Times Data 
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Figure 8: EHRF Plot, EPDF Plot, KMS Plot P-P Plot for Relief Times Data 
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Figure 9: EHRF Plot, EPDF Plot, KMS Plot P-P Plot for Survival Times Data 

 

7. CONCLUSIONS 
 

 In this work, a new compound lifetime model called the Poisson exponentiated double 
exponential distribution is defined and studied. The new density can be “asymmetric right 
skewed shape”, asymmetric left skewed shape”, “symmetric shape” and bimodal”. The 
new corresponding failure rate can be “bathtub (U-shape)”, “monotonically decreasing”, 
“upside down increasing”, “J-shape” and “bathtub- bathtub (W-shape)”.Relevant statistical 
properties such as ordinary raw moments, mean deviation, incomplete moments and 
moment generating function are derived and analyzed. We performed a graphical 
simulation study to assess the finite sample behavior of the estimators. Finally, two real 
life applications are analyzed to illustrate the importance of the new model. For the all real 
data sets, the Kernel density estimation is presented for exploring the “initial density shape” 
non parametrically, the “Quantile-Quantile plot” is presented for checking the “normality” 
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condition, the “total time in test” plot is provided for discovering the shape of the empirical 
failure rates, the “box plot” is sketched for exploring the extreme observations. As a future 
works, many new useful goodness-of-fit statistic tests for right censored validation such as 
the Nikulin-Rao-Robson goodness-of-fit statistic test, modified Nikulin-Rao-Robson 
goodness-of-fit statistic test, Bagdonavicius-Nikulin goodness-of-fit statistic test, modified 
Bagdonavicius-Nikulin goodness-of-fit statistic test as performed by Ibrahim et al. (2019), 
Goual et al. (2019, 2020), Mansour et al. (2020d,e,f), Yadav et al. (2020), Yousof et al. 
(2021a,b), and Goual and Yousof (2020), among others. Characterization results and 
regression modeling can be derived based on OBEE model (see Altun et al. (2018a,b,c,d) 
for more details). Saber and Yousof (2021), a stress-strength reliability estimation for the 
Poisson exponentiated double exponential may be also introduced. Following Yousof et al. 
(2019), regression modeling and characterizations may be presented. 
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APPENDIX 

 

Theorem 1: 
 

 Let 𝑍𝜍 be a RV having the exp-E distribution (𝜍, 𝛿), then the 𝓇th moment of 𝑍, say 

𝜇𝓇,𝑍
′ , follows from  

 

𝜇𝓇,𝑍
′ |𝓇>−1 = Γ(𝓇 + 1)∑ Δ𝒽

(𝓇,𝜍)

+∞

𝒽=0

, 

 

where  
 

Δ𝒽
(𝓇,𝜍)

=
𝜍

𝛿𝓇
(−1)𝒽 (

𝜍 − 1
𝒽

) (𝒽 + 1)𝓇+1. 

 

Theorem 2: 
 

 Let 𝑍𝜍 be a RV having the exp-E distribution (𝜍, 𝛿), then the 𝓇 th incomplete moment 

of 𝑍, say I𝓇,𝑍(𝑡), follows from  
 

I𝓇,𝑍(𝑡)|𝓇>−1 = 𝛾(𝓇 + 1, 𝛿𝑡)∑ Δ𝒽
(𝓇,𝜍)

+∞

𝒽=0

, 

 

where 𝛾(1 + 𝑛, 𝑡) refers to lower incomplete gamma function. Therefore, the first 

incomplete moment of 𝑍𝜍 can then be expressed as  
 

I1,𝑍(𝑡)|𝑠>−1 = 𝛾(2, 𝛿𝑡)∑ Δ𝒽
(𝓇,𝜑)

+∞

𝒽=0

. 


