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ABSTRACT 
 

 In this paper, for the first time, the impact of identification problem on probability 

distribution parameters is studied, effects of the identification problem are investigated in 

a new empirical distribution naming the inverted power Topp-Leone (IPTL) distribution, 

some mathematical properties are derived for the identified distribution. A simulation 

study is performed to study the behavior of identified estimators using the maximum 

likelihood method (MLE) and to illustrate the impact of ignoring the identification 

problem, a real data set is applied to investigate the identified distribution flexibility and 

a practical comparison between the identified and the non-identified IPTL distribution is 

performed. 
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1. INTRODUCTION 
 

 Topp and Leone (1955) proposed the bounded Topp-Leone (TL) distribution for 

automatic calculating machine failure and empirical data with J-shaped histogram as 

powered band tool failures. The Topp-Leone distribution has been studied by Nadarajah 

and Kotz (2003), Ghitany et al. (2005), Zhou et al. (2006), van Dorp and Kotz (2006), 

Kotz and Seier (2007), Nadarajah (2009), and Genç (2012). 
 

 The cumulative distribution function (CDF) and probability density function (PDF) 

of the TL distribution, Nadarajah and Kotz (2003), are 
 

 ( ) 2 ;0 1; 0,
TL

F y y y y


                     (1) 

and 

     
11( ) 2 2 1 .

TL

f y y y y
                  (2) 

 

 Generally, when parameter values cannot be determined or known perfectly, even  

if the true distribution 𝑓(𝑥; ·) is known, it is defined as the identification problem and 

𝑓(𝑥; ·) is called a non-identified distribution. Obviously, any nested distribution by a 
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non-identified distribution is non-identified, on the other hand, a parametric distribution 

is assumed to be identified if all its parameters values are identified, so that imposing 

constraints on the parameters can solve several problems, such constraints are said to be 

identifying. 
 

 The main goal of this manuscript is to present the new IPTL distribution and to study 

the impact of parameters identification problem on the new IPTL distribution, also it 

objects to impose constraints on parameters to solve that problem. 
 

 This manuscript is constructed as follows: In section 1, the introduction of the paper 

is presented. In section 2, the IPTL distribution will be proposed, its special cases are 

presented and its asymptotes are given. In section 3, some properties are obtained. In 

section 4, the Hazard function is obtained. In section 5, the Rényi entropy is obtained. In 

section 6, the stress strength model is proposed. In section 7, order statistics are 

presented. In Section 8, the distribution parameters are estimated by the MLE method. In 

Section 9, a simulation study is presented. Finally, in Section 10, an application is used to 

show the features of the identified distribution. 

 

2. THE NEW IDENTIFIED IPTL DISTRIBUTION 
 

 In this section, the IPTL distribution will be presented as follows: setting 
1

1
1,x

y 

   

then substituting it into (1) and using the complement gives 
 

     ( ) 1 1 2 1 ;0 ; , 0.F x x x x


            
  

 

 

 One can see that when 𝛼 𝛽 = 1 the IPTL distribution will be non-identified, on the 

other hand, to avoid identification problem, in the IPTL distribution, the joint product of 

𝛼 𝛽 must be constrained in the following CDF of the identified IPTL distribution 
 

     ( ) 1 1 2 1 ;0 ; , 0; 1,
IPTL

F x x x x


              
  

    (3) 

 

differentiating (3), w.r.t. 𝑥, leads to the following PDF of the identified IPTL distribution 
 

       
1

1
( ) 2 1 1 1 2 1 ,

PTL

f x x x x


           
      

       (4) 

 

when 𝛽 = 1, the IPTL distribution reduces to the new inverted Topp-Leone (ITL) 

distribution, presented for the first time, some density functions shapes for the identified 

IPTL distribution are indicated in Figure 1. 
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Figure 1: Some Identified IPTL Density Functions 

 

2.1 Expansions for the CDF and PDF  

 In this section, expansions for the CDF and PDF of the IPTL distribution will be 

obtained 

 

2.1.1 An Expansion for the CDF 

 Since, 
 

   
0

2 1 2 ,
c j c j j

j

c
z z

j






 
    

 
               (5) 

 

then, using (5) into (3) gives 
 

   
0

( ) 1 1 ,
i

i
iIPTL

F x w x
  



                 

 (6) 
 

where, 
 

   1 2 .
i i

iw
i

  
   

 
 

 

2.1.2 An Expansion for the PDF 

 Differentiating (6) with respect to 𝑥 gives 
 

     
1

1

( ) 1 ,
i

i
iPTL

f x w i x
  



     

 

shifting 𝑖 leads to 
 

       1 1

1
0

( ) 1 1 ,
i

i
iPTL

f x w i x
   




       
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where, 
 

 
1 1

1 1 2 ,
1

i i
iw

i

  


 
   

 
 

 

then, 

   
1

0

( ) 1 ,
i

i
iIPTL

f x m x
  



                 (7) 

 

where, 

    
1 11 1 2 .

1

i i
im i

i

    
      

 
 

 

The Expansion Condition for the PDF 
  

 Since, 
 

   
1

0 0

1 1,
i

i
i

m x dx
  



     

 

based on the following integration, Gradshteyn and Ryzhik (2000), 
 

   1

0

(1 ) , ,s ax x dx B s a s


                  (8) 

 

using (8) gives 
 

   
0

1, 1,i
i

m B i




                    (9) 

 

where  .,.B  is the beta function. 

 

2.2 The Asymptotes of the CDF and PDF  

 In this section, the CDF and PDF asymptotes of the IPTL distribution will be given. 

 

2.2.1 The CDF Asymptotes  

 First: as 𝑥 converges to zero 
 

Since, 

     1 ( ) 1 2 1 ,
IPTL

F x x x


      
  

 

 

then, using binominal expansion first and second terms yields 
 

     1 ( ) 1 2 1 ,
IPTL

F x x x
     

  
 

 

since, 
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   
0

lim 1 1,
x

x



 

 
 

then, 

   1 ( ) 2 1 .
IPTL

F x x
   

  
 

 

 Second: as 𝑥 converges to   
 

 Since, 
 

   lim 2 1 2 ,
x

x


 



   
  

 

 

then, 
 

  1 ( ) 1 2 .
IPTL

F x x
    

 

2.2.2 The PDF Asymptotes  
 

 First: as 𝑥 converges to zero 
 

 Since,
 

 
1

0
lim 1 1,
x

x



   and using binomial expansions first and second terms in 

(4) gives 
 

    ( ) 2 1 1 2 1 1 .
IPTL

f x x x
         

      
 

 

 Second: as 𝑥 converges to   
 

 Since, 

     
1

1lim 1 1 1, lim 2 1 2 ,
x x

x x


  

 
       

 

then, 

 
1 1( ) 2 1 2 .

IPTL

f x x
    

 

3. SOME PROPERTIES OF THE IPTL DISTRIBUTION 
 

 In this section: the IPTL distribution some properties will be obtained as  

follows: 

 

3.1 The r-th Moment 

 Basically, the continuous random variable 𝑋′𝑠 r-th moment, Johnson et al. (1995), is 

given by     ,r r

x

E X x f x dx   substituting (7) into last equation gives 
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   
1

0 0

1 ,
ir r

i
i

E X m x x dx
  



     

 

then, using (8) in last equation yields 
 

   
0

1, ,r
i

i

E X m B r i r




      

 

one can see that, setting 0r   leads to 
 

     0

0

1, ,i
i

E X m B i




     

 

substituting (9) into last equation gives 
 

 0 1.E X   

 

  Different values of mean, variance, coefficient of variation, skewness, and kurtosis  

of the IPTL distribution, numerically, can be calculated for 𝛼 and 𝛽 in Table 1 for the  

non-identified case and in Table 2 for the identified case. 

 

Table 1 

The Non-Identified IPTL Distribution Mean, Variance, 

Coefficient of Variation, Skewness and Kurtosis
 

Measure 
β=0.1, 

α=10 

β =0.3, 

α=3.33 

β =0.5, 

α=2 

β =0.75, 

α=1.33 

β =0.9, 

α=1.11 

β =1.5, 

α=0.66 

β =2, 

α=0.5 

Mean 0.019 0.057 0.086 0.112 0.125 0.162 0.186 

Variance 0.0004 0.0024 0.0048 0.0078 0.009 0.016 0.021 

Coefficient 

of variation 
1.062 0.861 0.812 0.79 0.783 0.777 0.776 

Skewness 0.83 0.407 0.295 0.241 0.223 0.209 0.208 

Kurtosis -0.743 -1.315 -1.398 -1.428 -1.436 -1.443 -1.443 

 

 

Table 2 

The Identified IPTL Distribution Mean, Variance,  

Coefficient of Variation, Skewness and Kurtosis
 

Measure 
β=4, 

α=10 

β=4, 

α=3.33 

β=4, 

α=2 

β=4, 

α=1.33 

β=4, 

α=1.11 

β=4, 

α=0.66 

β=4, 

α=0.5 

Mean 5.673 2.746 1.855 1.325 1.127 0.692 0.52 

Variance 7.955 1.507 0.783 0.449 0.353 0.166 0.109 

Coefficient 

of variation 
0.497 0.447 0.477 0.506 0.527 0.589 0.634 

Skewness -1.318 -0.658 -0.561 -0.468 -0.406 -0.231 -0.112 

Kurtosis 1.441 -0.835 -0.998 -1.127 -1.205 -1.362 -1.427 
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 From these two tables: As   increases with fixed α, mean, variance and kurtosis 

increase but skewness decreases. Also, as α increases with fixed
 
 , mean, variance and 

kurtosis increase but skewness decreases. An impact of identification problem appears in 

these two tables, as one can see that, at the same α, the identified distribution coefficient 

of variation is smaller than the non-identified distribution coefficient of variation.  

 

3.2 Moment Generating Function 

 Generally, the continuous random variable 𝑋′𝑠 moment generating function (MGF) is 

given by 
 

   ( ) ,tx tx
x

x

M t E e e f x dx    

 

a first representation, can be given by substituting (7) into last equation, gives 
 

 
1

0 0

( ) 1 ,
itx

x i
i

M t m e x dx
  



    

 

then, based on the integration, Gradshteyn and Ryzhik (2000), 
 

 1

0

(1 ) ; ,tx a a te x dx t e t a


                     (10) 

 

using (10) gives  

 
0

( ) ; ,i t
x i

i

M t m t e t i


 



     

 

where,  ;t a  is the incomplete gamma function. 
 

 A second representation for MGF, based on exponential expansion, can be obtained 

as follows:  
 

 Since, 
 

 ( ) ,tx
xM t E e  

 

using exponential expansion, in last equation, gives 

 

0

( ) ,
!

k

x
k

tx
M t E

k





 
 
 
 

  

then, 

 
0

( ) .
!

k
k

x
k

t
M t E x

k





 

 
 

3.3 The Quantile Function and the Median 

 The 100 u-th well-known definition is 
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( ) ( ) ; 0, 0 1,u u uu P X x F x x u       
 

equating (3) to u gives 
 

   1 1 2 1 ,u x x


      
  

 

 

obviously, the last equation
 

is a nonlinear function w.r.t. 𝑥 and needs to be solved 

numerically. 

 

3.4 The Mean Deviation 

 Generally, the random variable 𝑋′𝑠, respectively, mean deviation about mean and 

about median can be given by
  

   1
x

S x x f x dx   and    2 ,
x

S x x M f x dx   

 

it can be given by, Ali Ahmed (2019), Ali Ahmed (2020), the proof is included in  

appendix (I), 
 

     1 2 2S x F t      and    2 2 ,S x t M  
 

where    
q

T q x f x dx


  is the linear incomplete moment. 

 

Substituting (7) into 𝑇(. ) gives 
 

   
1

0 0

1 ,
q

i

i
i

T q m x x dx
  



     

 

using (8) in last equation yields 
 

   
0

;2, 1 ,i
i

T q m B q i




     

 

where  .;.,.B is the incomplete beta function. 

 

3.5 The Mode  

 The natural logarithm of (4) is 
 

     

     

log ( ) log 2 1 log 1

log 1 1 1 log 2 1 ,

IPTL

f x x

x x
 

    

         
      

 

 

differentiating the last equation, w.r.t. 𝑥, and equating it to zero gives 
 

   

 

   

 

1 1
1 1 1 1

0.
1 1 1 2 1

x x

x x x

 

 

     
   

    
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 The last equation is a nonlinear equation and needs to be solved numerically w.r.t. 𝑥, 

if 𝑥0 is a root then it must be  0log( ) 0.f x   

 

4. THE IPTL DISTRIBUTION HAZARD FUNCTION 
 

 Basically, the random variable 𝑋′𝑠 survival function, Meeker and Escobar (1998), can 

be given by 
 

  1 ( ),S x F x   
 

substituting (3) into last equation yields   
 

   ( ) 1 2 1 ;0 ; 0, 0; 1.
IPTL

S x x x x


              
  

       (11) 

 

 On the other hand, the Hazard function can be given by, Meeker and Escobar (1998),

 
 

 
 
( )

,
f x

H x
S x


 

 

substituting (4) and (11) into last equation gives 
 

 
     

   

1
1

2 1 1 1 2 1
,

1 2 1IPTL

x x x
H x

x x


  


 

        
      

   
    

 

then, 

 
 

   

2 1 1
.

1 2 1IPTL

x
H x

x x





   
  
   
  

 

 

 Some Hazard function shapes for the identified IPTL distribution are indicated in 

Figure 2. 

 
Figure 2: The Identified IPTL Hazard Functions 
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 One can see, in Figure 2, two types of Hazard functions curves of the IPTL 

distribution are described as follows: An increasing then decreasing Hazard curve and an 

increasing Hazard curve. 

 

5. THE IPTL DISTRIBUTION RÉNYI ENTROPY 
 

 The random variable 𝑋′𝑠 Rényi entropy is given by, Meeker and Escobar (1998),  
 

   
1

log ,
1

R
x

e f x dx
 

       
  

 

substituting (7) into last equation gives 

   

        
1

00

1
log 1 1 ,

1

i

R i
iIPTL

e x m x dx

    



   
          

  

 

since,    
0 0

1 1
i i

i i
i i

m x n x


    

 

 
   

 
  , Gradshteyn and Ryzhik (2000), 

 

where  0 0
10

1
, ; 1,

t

t i t i
i

n m n i t i m n t
t m






      

 

then, 
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6. RELIABILITY: THE IPTL DISTRIBUTION  

STRESS STRENGTH MODEL 
 

 Basically, the random variable 𝑋′𝑠 stress strength model can be given by, Meeker and 

Escobar (1998), 
 

   1 1 2 2; ; ,
x

R f x F x dx    

 

substituting (6) and (7) into last equation, β is common parameter, leads to 
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then, 
 

  1 2,R I I   
 

moreover, 
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furthermore, 
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7. THE IPTL DISTRIBUTION ORDER STATISTICS 
 

 The u-th order statistics density function  :u vf x  for 𝑢 = 1,2, … , 𝑣 from iid random 

variables 𝑋1, 𝑋2, … , 𝑋𝑣  following the IPTL distribution is given by, Arnold et al.(1992), 
  

 
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applying binomial expansion in last equation leads to
  

 
 

 
   

1

: 1 ,
, 1

v u u jju
u v u

j o

f x v u
f x F x

jB u v u

  



 
         

           (12) 

 

substituting (6) and (7) into (12) leads to 
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applying binomial expansion in last equation gives 
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Order Statistics r-th Moment 
 

 The IPTL distribution r-th moment of order statistics can be got by 
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substituting (13) into last equation gives 

 

     
 

:

1
1

, ,
0 0 0 0

1 ,
, 1u v

u j v u i kr r
i j k u

k j i

E X t x x dx
B u v u

      

  


 

 
     

 

then, 
 

     
 

:

1

, ,
0 0 0

1, .
, 1u v

u j v u
r

i j k
k j i

E X t B r i k r
B u v u

   

  


   

 
  

 
 

8. THE IPTL DISTRIBUTION
 
PARAMETERS  

ESTIMATION USING MLE METHOD
  

 Let 𝑋1, 𝑋2, … , 𝑋𝑛 be the iid random variables from the IPTL (𝑥; 𝛬) distribution, where

 , ,     then the likelihood function for the vector of parameter  ,    , can be 

written as, Garthwait et al. (2002), 
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the log likelihood function is given by 
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Parameters 𝛼 and 𝛽 score functions are given by 
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 Maximum likelihood estimators (MLEs) unknown parameters are got by solving the 

nonlinear likelihood (14) and (15), numerically, using statistical software. Obtaining the 

estimates is performed via an iterative technique as Newton–Raphson algorithm. 
 

 Let Λ be the vector of the unknown parameters (𝛼, 𝛽), so that elements of the 2 × 2 

information matrix 𝐼(𝛼, 𝛽) are approximated by 
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where 
1

ˆ( )i jI
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  is the unknown parameters variance covariance matrix, the asymptotic 

distributions of the IPTL parameters is 
 

    1
2

ˆ ˆ0, , 1,2,i i in N I i      

 

and the approximation 100 (1 − 𝛾) % the unknown parameters confidence intervals 

based on the IPTL (𝛼, 𝛽) distribution asymptotic distribution are given by 
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z   is the upper 
2

 th percentile of a standard normal distribution.  

 

 The derivatives in the observed information matrix 𝐼(𝛼, 𝛽) for the unknown  

parameters are 
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9. A NUMERICAL STUDY 
 

 In this experiment, obtaining MLEs of the IPTL distribution parameters is performed 

using random numbers to study the MLEs finite sample behavior. The algorithm of 

obtaining parameters estimates is illustrated in the following steps: 
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Step (1): Generating a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 of sizes 𝑛 = (10, 20, 30, 50, 

100, 300) using the IPTL distribution. 
 

Step (2): Parameters six different sets values are selected as: set(1): (𝛼 = 0.5, 𝛽 =
0.5), set(2): (𝛼 = 0.5, 𝛽 = 1.5, ), set(3): (𝛼 = 0.5, 𝛽 = 2.5), set(4): (𝛼 =
1.5, 𝛽 = 0.5), set(5): (𝛼 = 2.5, 𝛽 = 0.5), set(6): (𝛼 = 4, 𝛽 = 0.25). 

 

Step (3): Solving (14) and (15) via iteration to compute MLEs, RMSE (the root of 

mean squared error), biases and parameters estimators Pearson type, 

Pearson (1895), of the IPTL distribution.  
 

Step (4): Repeating steps, from 1 to 3, 10000 times. 

 

 Samples of random numbers are generated via Mathcad package v15 where the 

conjugate gradient iteration method is performed. All results are included in tables and 

indicated in appendix II. From study results, one can see that, in appendix II, as sample 

size increases, biases, estimators and RMSEs decrease, as expected. Moreover, ̂  

sampling distribution can be the Pearson type IV distribution in all times, ̂  sampling 

distribution differs according to sample size. As ̂  increases, mean, RMSE and bias of ̂  

decrease. An impact of identification problem acts here: When sample size increases, in 

the identified cases (set 1 - set 5), ̂  and ̂  can be consistent, but in the non-identified 

distribution  

(set 6) they cannot be consistent. 

 

10. APPLICATION 
 

 A real data set is selected to investigate the identified IPTL distribution, 

practically, using MLE method, via the Mathematica package version 10. In this 

application, different distributions are used as: the IPTL distribution, the ITL 

distribution, the Weibull distribution, the gamma (scaled) distribution, and the 

Singh-Maddala distribution, Singh and Maddala (1976), on the other hand a 

comparison between the identified and non-identified IPTL distribution is 

performed. The following data represents the strength of 1.5 cm glass fibers for 

60 devices, the data are given from the UK National Physical Laboratory, and 

more information can be available at: http://www.npl.co.uk/  
 

0.636, 0.252, 0.157, 0.187, 2.771, 0.209, 0.617, 2.078, 1.013, 0.499, 0.431, 

0.642, 0.460, 0.749, 0.205, 0.576, 0.439, 0.471, 0.262, 0.387, 0.324, 0.424, 

0.548, 1.794, 1.233, 0.915, 0.702, 0.417, 0.337, 0.435, 0.359, 0.293, 0.147, 

0.870, 0.608, 0.153, 0.098, 0.557, 0.415, 0.122, 0.912, 0.341, 0.725, 0.364, 

0.240, 0.594, 0.325, 0.416, 0.080, 0.582, 1.257, 1.575, 0.480, 0.909, 0.170, 

0.319, 0.090, 0.154, 2.248, 0.292. 
 

 Probability density functions for different distributions having similar skewness and 

kurtosis (the identified and non-identified IPTL distribution, the Weibull distribution,  

the gamma (scaled) distribution, and the Singh-Maddala distribution) are illustrated in 

Figure 3, probability density functions for nested distribution by identified IPTL 

distribution (the ITL distribution) is illustrated in Figure 4. 

http://www.npl.co.uk/
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 In Table 3, distributions parameters MLEs, parameters standard error (SEs), in 

parentheses, CAIC (the consistent Akaike Information Criterion), Kolmogorov-Smirnov 

(KS) test statistic, AIC (Akaike Information Criterion) and BIC (Bayesian information 

criterion), Merovcia and Puka (2014), are calculated for every distribution having similar 

skewness and kurtosis values (the identified and non-identified IPTL distribution, the 

Weibull distribution, the gamma (scaled) distribution, and the Singh-Maddala 

distribution). The null hypothesis that the data follow the IPTL distribution, can be 

accepted at significance level 𝛼 = 0.05. One can see that the identified IPTL distribution 

has the smallest CAIC, KS, AIC, BIC, SEs and the largest log likelihood and p-value, so 

that, the identified IPTL distribution can be the best fitted distribution to the data 

compared with other distributions having similar skewness and kurtosis. On the other 

hand, the non-identified IPTL distribution has the largest CAIC, KS, BIC, AIC, SEs and 

the smallest log likelihood and p-value, all of that reflect some effects of the 

identification problem. 
 

 In Table 4, depending on the likelihood ratio test, the null hypothesis is the data 

follow the nested distribution and the alternative is the data follow the full distribution, 

where the ITL distribution is nested by the identified IPTL distribution. Obviously, null 

hypothesis can be rejected at significance level 𝛼 = 0.05. 

 

Table 3 

Parameters MLEs with the Associated BIC and AIC Values 
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A
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α β θ 

Identified 
IPTL 

3.347 
(0.137) 

1.298 

(0.028) 
 46.8614 48.886 46.792 22.396- 0.749 0.084 7.497 2.717 ـــ

Non-
Identified 

IPTL 

0.101 
(4.799) 

10 
(0.910) 

 0.426 1.410 4.261 ـــ
3.308  
x 10–10 

-50.067 104.13 108.32 104.34 

Weibull 
1.275 

(0.161) 
0.651 

(0.039) 
 0.124 5.603 3.385 ـــ

 
0.028 

-26.193 56.387 60.575 56.597 

Gamma 
2.156 

(0.295) 
0.205 

(0.066) 
 67.483 71.462 67.273 31.636- 0.018 0.138 8.781 2.361 ـــ

Singh 
Maddala 

0.983 
(3.512) 

2.266 

(0.792) 
0.682 

(0.146) 
1.210 4.141 0.289 0.015 -31.823 69.647 75.930 70.075 

 

  



Mohamed Ali Ahmed 295 

Table 4 

The Likelihood Ratio Tests Statistic, the Log-Likelihood Function and p-Values 

Distribution 
Parameters  

(Log 

Likelihood) 

Λ 

(Likelihood 

Ratio Test 

Statistics) 

DF 

(Degrees of 

Freedom) 

p-value 

α β 

ITL 
6.592 

(0.218 ) 
 3-10×5.728 1 7.634 26.213- ـــ

*Note that the identified IPTL distribution log likelihood function = -22.396 

 

 
Figure 3: Different Distributions Probability Density Functions  

having Similar Skewness and Kurtosis 
 

 
Figure 4: Probability Density Functions for the Nested Distribution  

by Identified IPTL Distribution 
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11. CONCLUSION 
 

 The serious impact of the identification problem affects distributions estimators to be 

inconsistent causing wrong interpretations which result wrong decisions.  
 

 The inverted power Topp-Leone distribution is a useful distribution generalizing the 

new inverted Topp-Leone distribution (presented for the first time), the inverted power 

Topp-Leone distribution has flexible properties and many applications but imposing 

constrains in its parameters is a must to avoid the identification problem. 
 

 The author encourages researchers to do more researches on the identification 

problem in other cases. 
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CDF  : The cumulative distribution function 

PDF  : The probability density function 

TL  : The Topp-Leone distribution 
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MGF  : The moment generating function 

MLE  : The maximum likelihood estimation method 
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APPENDICES 

Appendix (I) 
 

The Mean Deviation about Mean and about Median 

 They can be given by, respectively,
 

     1
y

x x f x dx    and    2 ,
x

S x x M f x dx   

easily, it can be given by 
 

       1 2 2S x F t      and    2 2 ,S x t M  
 

where    
q

T q x f x dx


   is the linear incomplete moment. 

The proof: 
 First: mean deviation about mean:  
 

 Since  

  1( ) ( ) ,x x f x dx




    

then,    1( ) ( ) ( ) ,x x f x dx x f x dx


 

       

hence, 
1
( ) ( ) ( ) ( ) ( ) ,x x f x dx f x dx f x dx x f x dx

  

   

           

so    
1
( ) ( ) ( ) ,x x f x dx F F x f x dx



 

            

adding and subtracting to ( )x f x dx




 gives 

  

 1( ) ( ) 2 ( )

( ) ( ) ,

x x f x dx F x f x dx

x f x dx x f x dx



 

 

 

        

  

 

then, 1( ) ( ) 2 ( ) 2 ( ) ,x x f x dx F x x f x dx


 

       

 

hence,  1( ) 2 ( ) 2 ( ); ( ) .x F T T x f x dx




          

 

 Similarly, the mean deviation about median can be given. 
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Appendix (II) 
 

Set(1): (α=0.5, β=0.5) 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 
RMSE 

Pearson 
System 

Coefficients 

Pearson 
Type 

10 
α=0.5 39.192 38.692 

38.712 
100.254 

100.415 
-2.349 I 

β=0.5 1.752 1.252 5.688 0.316 IV 

20 
α=0.5 11.264 10.764 

10.796 
41.81 

42.043 
0.314 IV 

β=0.5 1.327 0.827 4.415 0.344 IV 

30 
α=0.5 4.048 3.548 

3.571 
19.769 

19.957 
0.364 IV 

β=0.5 0.897 0.397 2.734 0.441 IV 

50 
α=0.5 1.74 1.24 

1.283 
10.374 

10.682 
0.623 IV 

β=0.5 0.83 0.33 2.546 0.511 IV 

100 
α=0.5 0.842 0.342 

0.378 
1.356 

2.003 
0.344 IV 

β=0.5 0.662 0.162 1.475 0.752 IV 

300 
α=0.5 0.542 0.042 

0.043 
0.710 

1.012 
0.113 IV 

β=0.5 0.510 0.010 0.722 0.902 IV 

 
Set(2): (α=0.5, β=1.5) 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 
RMSE 

Pearson 
System 

Coefficients 

Pearson 
Type 

10 
α=0.5 62.749 62.249 

62.36 
149.86 

150.767 
-0.838 I 

β=1.5 5.221 3.721 16.521 0.309 IV 

20 
α=0.5 15.023 14.523 

14.788 
61.444 

63.044 
0.314 IV 

β=1.5 4.287 2.787 14.114 0.327 IV 

30 
α=0.5 4.759 4.259 

4.839 
26.752 

29.875 
0.443 IV 

β=1.5 3.797 2.297 13.298 0.342 IV 

50 
α=0.5 1.259 0.759 

1.248 
3.674 

7.69 
0.455 IV 

β=1.5 2.491 0.991 6.756 0.442 IV 

100 
α=0.5 0.91 0.41 

0.584 
2.294 

4.496 
0.713 IV 

β=1.5 1.915 0.415 3.867 0.704 IV 

300 
α=0.5 0.570 0.070 

0.094 
1.271 2.214 

 

0.913 IV 

β=1.5 1.564 0.064 1.814 0.904 IV 
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Set(3): (α=0.5, β=2.5) 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 
RMSE 

Pearson 
System 

Coefficients 

Pearson 
Type 

10 
α=0.5 66.59 66.09 

66.322 
157.106 

158.949 
-0.702 I 

β=2.5 8.038 5.538 24.138 0.299 IV 

20 
α=0.5 16.682 16.182 

17.441 
72.838 

79.026 
0.314 IV 

β=2.5 9.007 6.507 30.655 0.318 IV 

30 
α=0.5 4.284 3.784 

5.216 
27.948 

34.348 
0.545 IV 

β=2.5 6.089 3.589 19.967 0.36 IV 

50 
α=0.5 1.472 0.972 

1.843 
9.381 

13.08 
0.839 IV 

β=2.5 4.066 1.566 9.114 0.362 IV 

100 
α=0.5 0.679 0.179 

0.69 
0.619 

7.822 
0.21 IV 

β=2.5 3.166 0.666 7.797 0.908 IV 

300 
α=0.5 0.549 0.049 

0.1 
0.221 

0.846 
0.843 IV 

β=2.5 2.588 0.088 0.816 0.993 IV 

 

Set(4): (α=1.5, β=0.5) 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 
RMSE 

Pearson 
System 

Coefficients 

Pearson 
Type 

10 
α=1.5 199.406 197.906 

197.909 
418.325 

418.358 
-0.303 I 

β=0.5 1.591 1.091 5.227 0.314 IV 

20 
α=1.5 83.229 81.729 

81.732 
230.058 

230.102 
0.608 IV 

β=0.5 1.201 0.701 4.493 0.347 IV 

30 
α=1.5 37.832 36.332 

36.333 
142.567 

142.577 
0.335 IV 

β=0.5 0.767 0.267 1.686 0.417 IV 

50 
α=1.5 12.406 10.906 

10.908 
67.532 

67.554 
0.397 IV 

β=0.5 0.693 0.193 1.748 0.514 IV 

100 
α=1.5 3.398 1.898 

1.898 
16.746 

16.749 
0.678 IV 

β=0.5 0.528 0.028 0.295 0.433 IV 

300 
α=1.5 1.531 0.031 

0.039 
4.147 

4.148 
0.978 IV 

β=0.5 0.524 0.024 0.102 0.633 IV 
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Set(5): (α=2.5, β=0.5) 

Sample 
Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSE 
Total 
RMSE 

Pearson 
System 

Coefficients 

Pearson 
Type 

10 
α=2.5 365.9 363.4 

363.402 
687.582 

687.601 
-0.454 I 

β=0.5 1.658 1.158 5.163 0.327 IV 

20 
α=2.5 178.436 175.936 

175.937 
452.336 

452.348 
2.647 VI 

β=0.5 0.949 0.449 3.204 0.364 IV 

30 
α=2.5 97.837 95.337 

95.337 
308.219 

308.223 
0.409 IV 

β=0.5 0.688 0.188 1.54 0.465 IV 

50 
α=2.5 38.834 36.334 

36.334 
163.886 

163.89 
0.32 IV 

β=0.5 0.577 0.077 1.046 0.709 IV 

100 
α=2.5 8.088 5.588 

5.588 
31.391 

31.393 
0.464 IV 

β=0.5 0.517 0.017 0.315 0.368 IV 

300 
α=2.5 2.584 0.084 

0.103 
5.539 

5.540 
0.164 IV 

β=0.5 0.561 0.061 0.108 0.268 IV 
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