
© 2021 Pakistan Journal of Statistics 253 

Pak. J. Statist. 

2021 Vol. 37(3), 253-277 

 

THE TOPP-LEONE ODD EXPONENTIAL HALF LOGISTIC-G FAMILY  

OF DISTRIBUTIONS: MODEL, PROPERTIES AND APPLICATIONS 

 

Fastel Chipepa§ and Broderick Oluyede 

Department of Mathematics and Statistical Sciences 

Botswana International University of Science and Technology 

Palapye, BW, Botswana 
§Email: chipepa.fastel@studentmail.biust.ac.bw 

 

ABSTRACT 
 

 We developed a new generalized distribution referred to as the Topp-Leone Odd 

Exponential Half Logistic-G (TL-OEHL-G) distribution. The proposed distribution is an 

infinite linear combination of the exponentiated-G distribution. Some special cases from 

the TL-OEHL-G distribution are presented. The special cases of the TL-OEHL-G 

distribution apply to high skewed data and different forms of the hazard rate. Simulation 

study results for a selected special case are presented. Real data examples to demonstrate 

flexibility of the new model compared to other models are also provided. 
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1. INTRODUCTION 
 

 There is increased demand for extended distributions in reliability and lifetime data 

analysis. Great work has been done in the generalization of classical models. Generalized 

distributions are flexible in data analysis since they can model data that exhibit monotonic 

or non-monotonic hazard rates. Established generators available in the literature are 

Marshall-Olkin-G by Marshall and Olkin [21], Weibull-G by Bourguignon et al. [7], 

exponentiated-G by Gupta et al. [15], beta-G by Jones [17], Kumaraswamy-G by Cordeiro 

and de Castro [11], T-X by Alzaatreh et al. [4], Type I half-logistic-G Cordeiro et al. [8], 

gamma-G by Ristic and Balakrishnan [28], and Topp-Leone-G by Al-Shomrani et al. [3]. 
 

 Topp and Leone [31] presented an extension of the triangular distribution defined in 

the domain (0,1). The Topp-Leone distribution has a bathtub hazard rate function. The 

distribution has a closed quantile function that makes it easy to generate data. The Topp-

Leone distribution function is given by 
 

  𝐹𝑇𝐿(𝑥) = [1 − (1 − 𝑥)2]𝑏,              (1.1) 
 

for 0 < 𝑥 < 1 and 𝑏 > 0. The generalizations of the TL distribution include work by 

Nadarajah and Kotz [25], Ghitany et al. [14], Kotz and Nadarajah [18], Kotz and Seier 

[19], Vicari et al. [32], Genc [13] and Bayoud [6] and Hassan et al. [16]. 
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 Furthermore, Cordeiro et al. [8], developed the type 1 half-logistic distribution with 

cumulative distribution function (cdf) 
 

 

(1.2) 

 

where 𝐺(𝑥; 𝜓) is the cdf of the baseline distribution and 𝜆 > 0 is the shape parameter. We 

obtain a special case, namely, half-logistic-G (HL-G) model, with cdf and probability 

density function (pdf) 
 

 

(1.3) 

and 

 
(1.4) 

 

respectively, by setting 𝜆 = 1. 
 

 Afify et al. [1] generalized the HL-G distribution to develop the Exponentiated Odd 

Exponential Half Logistic-G (EOEHL-G) family of distributions. Their generalization 

exhibits interesting shapes for both the density and hazard rate function, demonstrating its 

usefulness in lifetime data analysis. Other generalizations of the HL-G distribution include 

the exponentiated half-logistic generated family by Cordeiro et al. [9], Kumaraswamy type 

1 half-logistic family of distributions with applications by El-Sayed [12], the type I 

generalized half-logistic distribution based on upper record values by Kumar et al. [20] and 

generalized half-logistic Poisson distributions by Muhammad et al. [22]. The cdf and pdf 

of the EOEHL-G distribution are 
 

 

(1.5) 

and 

 

(1.6) 

 

where 𝛼, 𝜆 > 0, 𝑔(𝑥; 𝜓) =
𝑑𝐺(𝑥;𝜓)

𝑑𝑥
 and 𝐺(𝑥; 𝜓) is the baseline distribution. When 𝛼 = 1, 

we have the Odd Exponential Half Logistic-G (OEHL-G) distribution. 
 

 We were motivated by the fact that the TL distribution has a domain that is limited  

to (0,1). We, therefore, propose a new generalization of the TL distribution with the 

following desirable properties: 

 the new distribution is flexible since the domain is not restricted to (0,1);  

 the pdf of the new distribution takes various shapes for selected parameters values 

including almost symmetric, reverse-J, right and left-skewed; 
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 the hazard rate function takes various shapes that include J-shape, reverse-J, and 

upside bathtub other than the bathtub shape. 
 

 We develop the Topp-Leone Odd Exponential Half Logistic-G (TL-OEHL-G) family 

of distributions. In Section 2, we present the TL-OEHL-G distribution. In Section 3 we 

present some special cases of the TL-OEHL-G distribution. Structural properties are 

presented in Section 4. Section 5 contain the maximum likelihood estimates of the model 

parameters. Simulation study results are presented in Section 6. Section 7 contain 

applications of the proposed model to real data examples. Section 8 contain some 

concluding remarks. 
 

2. THE MODEL 
 

 We generalize the Topp-Leone distribution using the OEHL-G distribution, to derive 

the TL-OEHL-G family of distributions. Therefore, the cdf and pdf of the TL-OEHL-G 

family of distributions are given by 
 

 

(2.1) 

and 

 

 

 

 

 (2.2) 

 

respectively, for 𝑏, 𝜆 > 0 and 𝜓 is a vector of parameters. 
 

2.1 Quantile Function 

 We invert the cdf of the TL-OEHL-G distribution to obtain the quantile function as 

follows: 
 

     
 

can be written as 
 

   
 

which reduces to 
 

   
 

so that 
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 Therefore, we obtain quantile values for the TL-OEHL-G distribution by solving the 

non-linear equation 
 

 

(2.3) 

 

via iterative methods using MATLAB or R software. 

 

2.2 Linear Representation 

 A series representation of the TL-OEHL-G pdf is provided in this section. By 

considering the following series expansions 
 

   

    
 

   

    
 

 
and 

 
 

the TL-OEHL-G pdf can be expressed as a linear combination of exponentiated-G  

(Exp-G) densities as follows: 
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(2.4) 

where 

 

 

 

(2.5) 

 

and 𝑔𝑝+𝑞(𝑥; 𝜓) = (𝑝 + 𝑞 + 1) 𝑔(𝑥; 𝜓)[𝐺(𝑥; 𝜓)]𝑝+𝑞. 

 

3. SOME SUB-MODELS 
 

 We present in this section, some sub-models of the TL-OEHL-G distribution with the 

Uniform, log-logistic and Weibull distributions as baseline distributions. 

 

3.1 Topp-Leone Odd Exponential Half Logistic-Uniform 

(TL-OEHL-U) Distribution 

 If we take the uniform distribution as the baseline distribution with pdf and cdf  

𝑔(𝑥; 𝜃) = 1/𝜃 and 𝐺(𝑥; 𝜃) = 𝑥/𝜃, respectively, we obtain the TL-OEHL-U distribution 

with cdf and pdf 
 

 

 

and 

 
 

respectively, for 𝑏, 𝛿 > 0 and 0 < 𝑥 < 𝜃. 
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(a) (b) 

Figure 3.1: Pdf and hrf Plots for the TL-OEHL-U Distribution 

 

 The TL-OEHL-U pdf exhibits various shapes for the pdf and hazard rate function. The 

hazard rate function exhibits the bathtub, J-shaped, and reverse-J shapes for selected 

parameter values. 

 

3.2 Topp-Leone Odd Exponential Half Logistic-Log-Logistic Distribution 

 By taking the log-logistic distribution as the baseline distribution, with pdf and  

cdf 𝑔(𝑥) = 𝑐𝑥𝑐−1(1 + 𝑥𝑐)−2 and 𝐺(𝑥) = 1 − (1 + 𝑥𝑐)−1, respectively, we obtain the TL-

OEHL-LLoG distribution with cdf and pdf 
 

 
and 

 

 
respectively, for 𝑏, 𝜆, 𝑐 > 0. 
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(a) (b) 

Figure 3.2: Pdf and hrf Plots for the TL-OEHL-LLoG Distribution 

 

 The pdfs for TL-OEHL-LLoG distribution take various shapes including reverse-J, 

symmetric and right, or left-skewed. The hazard rate function exhibit reverse-J, J-Shape, 

bathtub, and upside bathtub shapes. 

 

3.3 The Topp-Leone Odd Exponential Half Logistic-Weibull Distribution 

 If we take the baseline distribution to be the Weibull distribution with pdf and cdf 

𝑔(𝑥; 𝛾, 𝜔) = 𝛾𝜔𝑥𝜔−1 𝑒𝑥𝑝(−𝛾𝑥𝜔) and 𝐺(𝑥; 𝛾, 𝜔) = 1 − 𝑒𝑥𝑝(−𝛾𝑥𝜔), respectively, we 

obtain the Topp-Leone Odd Exponentiated Half Logistic-Weibull (TL-OEHLW) 

distribution with cdf and pdf 
 

 
and 

 , 
 

respectively, for 𝑏, 𝜆, 𝛾, 𝜔 > 0. 
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(a) (b) 

Figure 3.3: Pdf and hrf Plots for the TL-OEHL-W Distribution 

 

 The TL-OEHL-W pdf applies to data sets of varying skewness and kurtosis. The hazard 

rate exhibits increasing, decreasing and bathtub shapes. 

 

4. STRUCTURAL PROPERTIES 
 

4.1 Distribution of Order Statistics 

 We derive the distribution of order statistics from the TL-OEHL-G distribution using 

equation (4.1), 
 

 

(4.1) 

 

where 𝐵(. , . ) is the beta function. Using equations (2.1) and (2.2), we get 
 

. 
 

Applying the following series expansions 
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and 

 

 
 

yields 
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(4.2) 

 

 Therefore, the distribution of the ith order statistic from the TL-OEHL-G is given by 
 

 

 

 

 

 

 

 

 

 

(4.3) 

where 

 

 

 

 

 

(4.4) 

 

and 𝑔𝑝+𝑞(𝑥; 𝜓) = (𝑝 + 𝑞 + 1) 𝑔(𝑥; 𝜓)𝐺𝑝+𝑞(𝑥; 𝜓) is the Exp-G distribution with power 

parameter (𝑝 + 𝑞). 

 
4.2 Entropy 

 We derive in this section Rényi entropy [27] of the TL-OEHL-G distribution. Rényi 

entropy encompasses other entropy measures, for example Shannon entropy by Shannon 

[29]. Rényi entropy is given by 
 

 

(4.5) 

 

Substituting Equation (2.2) for 𝑓(𝑥), we get 
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. 
 

 Applying the following expansions 
 

 

 
 

 

  
 

 

 
 

 

 
 

 

 
and 
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we get 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.6) 

where 
 

 

 

(4.7) 

 

and 𝐼𝑅𝐸𝐺 = ∫ [(
𝑝+𝑞

𝑣
+ 1) 𝑔(𝑥; 𝜓)𝐺(𝑝+𝑞) 𝑣⁄ (𝑥; 𝜓)]

𝑣

𝑑𝑥
∞

0
 is the Rényi entropy of Exp-G 

distribution with power parameter (
𝑝+𝑞

𝑣
). 

 

4.3 Moments and Probability Weighted Moments 

 Ordinary moments, incomplete moments and moment generating function of  

the TL-OEHL-G distribution are derived in this section. The sth ordinary moment is  

given by 
 

𝜇𝑠
′ = 𝐸(𝑋𝑠) = ∑ 𝑣𝑝,𝑞

∞

𝑝,𝑞=0

𝐸(𝑌𝑝+𝑞
𝑠 ) (4.8) 

 

where 𝑌𝑝+𝑞
𝑠  has an Exp-G distribution and 𝑣𝑝,𝑞  is given by Equation (2.5).  

The 𝑟𝑡ℎ central moment of 𝑋 is  
 

𝜇𝑟 = ∑ (
𝑟
𝑠

) (−𝜇1
′ )𝑟−𝑠

𝑟

𝑠=0

= 𝐸(𝑋𝑠) = ∑ ∑ 𝑣𝑝,𝑞

∞

𝑝,𝑞=0

(
𝑟
𝑠

) (−𝜇1
′ )𝑟−𝑠𝐸(𝑌𝑝+𝑞

𝑟 )

𝑟

𝑠=0

. 
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The 𝑟𝑡ℎ incomplete moment of 𝑋 is given by 
 

 

(4.9) 

 

 The moment generating function (mgf) is given by 
 

 
 

where 𝑀𝑝+𝑞(𝑡) is the mgf of Exp-G distribution with power parameter (𝑝 + 𝑞). 

The (𝑗, 𝑖)𝑡ℎ probability weighted moment (PWM), say 𝜂𝑗,𝑖  of 𝑋 is derived as follows: 
 

 
 

 Using equation (4.2), 
 

 
 

so that 
 

𝑓(𝑥)𝐹(𝑥)𝑖 = ∑ 𝑧𝑝,𝑞
∗ 𝑔𝑝+𝑞(𝑥; 𝜓),

∞

𝑝,𝑞=0

 

 

where 
 

   

   
 

and 𝑔𝑝+𝑞(𝑥; 𝜓) is an Exp-G density. Thus, 
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where 𝑇𝑝+𝑞
𝑗

 is 𝑗𝑡ℎ power of a random variable with an Exp-G distribution. 
 

 We derived the distribution of order statistics, Rényi entropy, moments and probability 

weighted moments in this section. The properties were obtained directly from the 

properties of the Exp-G distribution, since the TL-OEHL-G distribution is a linear 

combination of the Exp-G distribution. 

 

5. MAXIMUM LIKELIHOOD ESTIMATION 
 

 If 𝑋𝑖 ∼ 𝑇𝐿 − 𝑂𝐸𝐻𝐿 − 𝐺(𝑏, 𝜆; 𝜓), then the total log-likelihood ℓ = ℓ(∆) from a 

random sample of size 𝑛 is given by 
 

 
 

 The score vector 𝑈 = (
𝜕ℓ

𝜕𝑏
,

𝜕ℓ

𝜕𝜆
,

𝜕ℓ

𝜕𝜓𝑘
) has elements given by: 

 

   
 

 

and 
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respectively. These partial derivatives are not in closed form and can be solved using  

R, MATLAB and SAS software by use of iterative methods. 
 

 To obtain confidence intervals for model parameters (𝑏, 𝜆, 𝜓) and the hypotheses 

concerning these parameters, the observed information matrix is required and is given by 
 

 

(5.1) 

 

where 𝐽𝑖,𝑗 =
−𝜕2ℓ(∆)

𝜕𝑖𝜕𝑗
, for 𝑖, 𝑗 = 𝑏, 𝜆, 𝜓. Under the usual regularity conditions ∆̂ is 

asymptotically normal distributed, that is ∆̂∼ 𝑁(0, 𝐼−1(∆)) as 𝑛 → ∞, where 𝐼(∆) is the 

expected information matrix. The asymptotic behavior remains valid if 𝐼(∆) is replaced by 

𝐽(∆̂), the information matrix evaluated at ∆̂. 

 

6. SIMULATION STUDY 
 

 We conducted a simulation study to evaluate the consistency of the maximum 

likelihood estimators in this section. We simulated for N=1000 times with sample of sizes 

𝑛 =50, 100, 200, 400 and 800. The results of the simulation study are shown in Table 6.1. 

The mean values approximate the true parameter values as the sample size increases. The 

results also show that the RMSE and average bias decay to zero as the sample size 

increases. Consequently, the TL-OEHL-LLoG model produces consistent model parameter 

estimates. 
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Table 6.1 

Simulation Study Results for TL-OEHL-LLoG Distribution 

Parameter 𝒏 
   

Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias 

𝑏 

50 0.6525 0.5344 0.1525 0.6401 0.5245 0.1401 2.5980 5.2701 1.0980 

100 0.5555 0.2799 0.0555 0.5597 0.2822 0.0597 1.8454 1.3166 0.3454 

200 0.5153 0.1691 0.0153 0.5187 0.1702 0.0187 1.6112 0.5932 0.1112 

400 0.5105 0.1087 0.0105 0.5123 0.1096 0.0123 1.5578 0.3644 0.0578 

800 0.5023 0.0763 0.0023 0.5057 0.0776 0.0057 1.5172 0.2526 0.0172 

𝜆 

50 0.5875 0.3684 0.0875 1.6053 0.4604 0.1053 0.6216 0.3980 0.1216 

100 0.5266 0.2652 0.0266 1.5455 0.3229 0.0455 0.5472 0.2570 0.0472 

200 0.4979 0.1867 -0.0020 1.5088 0.2240 0.0088 0.5115 0.1731 0.0115 

400 0.5027 0.1276 0.0027 1.5086 0.1507 0.0086 0.5086 0.1192 0.0086 

800 0.4991 0.0927 -0.0008 1.5052 0.1093 0.0052 0.5016 0.0869 0.0016 

𝑐 

50 1.6609 0.8061 0.1609 1.7182 0.9102 0.2182 0.5197 0.2201 0.0197 

100 1.6520 0.6322 0.1520 1.6437 0.6254 0.1437 0.5183 0.1451 0.0183 

200 1.6064 0.4387 0.1064 1.5993 0.4239 0.0993 0.5158 0.1042 0.0158 

400 1.5382 0.2518 0.0382 1.5355 0.2525 0.0355 0.5051 0.0673 0.0051 

800 1.5245 0.1816 0.0245 1.5181 0.1805 0.0181 0.5036 0.0494 0.0036 

    

𝑏 

50 2.4637 5.0401 0.9637 2.4733 1.3730 1.6283 0.3730 4.9534 0.9249 

100 1.8237 1.2476 0.3237 1.8551 1.1392 0.6708 0.1392 1.2801 0.2909 

200 1.6091 0.5893 0.1091 1.6496 1.0376 0.3566 0.0376 0.5901 0.0886 

400 1.5525 0.3630 0.0525 1.6047 1.0221 0.2236 0.0221 0.3637 0.0484 

800 1.5152 0.2467 0.0152 1.5737 1.0047 0.1542 0.0047 0.2476 0.0132 

𝜆 

50 0.5986 0.3874 0.0986 1.6028 1.5636 0.4536 0.0636 0.4884 0.0779 

100 0.5435 0.2554 0.0435 1.5538 1.5232 0.3193 0.0232 0.3323 0.0290 

200 0.5112 0.1726 0.0112 1.5259 1.4942 0.2209 -0.0057 0.2259 -0.0012 

400 0.5065 0.1184 0.0065 1.5277 1.5013 0.1453 0.0013 0.1501 0.0040 

800 0.5008 0.0844 0.0008 1.5239 1.4990 0.1035 -0.0009 0.1071 -0.0004 

𝑐 

50 1.6036 0.7061 0.1036 0.5542 1.7437 1.0202 0.2437 0.9079 0.1909 

100 1.5567 0.4419 0.0567 0.5227 1.6229 0.5628 0.1229 0.5046 0.0974 

200 1.5452 0.3101 0.0452 0.5113 1.5860 0.3789 0.0860 0.3378 0.0654 

400 1.5183 0.2008 0.0183 0.4984 1.5294 0.2177 0.0294 0.2039 0.0218 

800 1.5145 0.1446 0.0145 0.4956 1.5192 0.1540 0.0192 0.1459 0.0159 

 

7. APPLICATIONS 
 

 We present in this section, three applications of the TL-OEHL-LLoG distribution so as 

to demonstrate the versatility of the model in data fitting. Model performance was assessed 

by means of goodness-of-fit statistics; Cramer-von-Mises (𝑊∗) and Andersen-Darling 

(𝐴∗), -2loglikelihood (-2 log L), Akaike Information Criterion (AIC), Consistent Akaike 

Information Criterion (AICC), Bayesian Information Criterion (BIC), Kolmogorov-

Smirnov (K-S) statistic (and its p-value), and sum of squares (SS). The model with the 
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smallest values of the goodness-of-fit statistics and a bigger p-value for the K-S statistic is 

regarded as the best model. 
 

 Model parameters were estimated using the maximum likelihood estimation technique 

with the aid of R software. Tables 7.1, 7.2 and 7.3 shows the parameter estimates (standard 

errors in parenthesis) and the goodness-of-fit-statistics for the various models considered 

in this paper. We present in Figures 7.1(a), 7.1(b), 7.2(a), 7.2(b), 7.3(a) and 7.3(b), plots of 

the fitted densities, the histogram of the data and probability plots. 
 

 The TL-OEHL-LLoG model was compared to a variety of equi-parameter models. The 

models considered in this paper are the Marshall-Olkin extended Fréchet (MOEFr) by 

Barreto-Souza et al. [5], type II generalized Topp-Leone-Rayleigh (TIGTLR), type II 

generalized Topp-Leone-exponential (TIGTLE) and type II generalized Topp-Leone-

uniform (TIGTLU) by Hassan et al. [16], exponentiated-Fréchet (EFr) distribution by 

Nadarajah and Kotz [24], and the Marshall-Olkin extended inverse Weibull (IWMO) by 

Pakungwati et al. [26]. The pdfs of the non-nested models are given by: 
 

   
 

for 𝛼, 𝜃, 𝜆 > 0, 
 

 
 

for 𝑎, 𝛾, 𝜃 > 0, 
 

   
 

for 𝑎, 𝛾, 𝜃 > 0, 
 

, 
 

for 𝑎, 𝑏, 𝛾 > 0,  
 

   
 

for 𝑎, 𝑏, 𝛾 > 0 and  
 

 
 

for 𝑎, 𝑏, 𝛾 > 0. 

 

7.1  1.5 cm Glass Fibres Data 

 The first data set represents strengths of 1.5 cm glass fibres. The data set was also 

analyzed by Bourguignon et al. [7], and Smith and Naylor [30]. See Bourguignon et al. [7] 

for further details on the data set. 
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Table 7.1 

Estimates of Parameters and Goodness-of-Fit Statistics 
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 The estimated variance-covariance matrix is 

   
 

and the 95% confidence intervals for the model parameters are given by 𝑏 ∈ [0.9253 ± 

0.6566], 𝜆 ∈ [0.0571 ± 0.1004] and 𝑐 ∈ [5.3420 ± 2.4479]. 
 

  
(a) (b) 

Figure 7.1: Fitted Densities and Probability Plots for Glass Fibre Data 
 

 Results from Table 7.1 shows that the TL-OEHL-LLoG model performs better than the 

non-nested models since it has the lowest values for the goodness-of-fit statistics. Also, 

Figures 7.1(a) and 7.1(b) demonstrate the flexibility gained by adding some extra 

parameters to the baseline distribution. 
 

7.2 Silicon Nitride Data 

 The second data set represents fracture toughness of silicon nitride measured in MPa 

𝑚1/2 (See Nadarajah and Kotz [23], and Ali et al. [2] for details). The data are  

5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.20, 5.00, 4.70, 4.00, 4.50, 4.20, 4.10, 4.56, 5.01, 

4.70, 3.13, 3.12, 2.68, 2.77, 2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 

2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 4.10, 3.90, 4.05, 4.00, 3.95, 

4.00, 4.50, 4.50, 4.20, 4.55, 4.65, 4.10, 4.25, 4.30, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 

5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05, 5.90, 3.60, 4.10, 4.50, 5.30, 

4.85, 5.30, 5.45, 5.10, 5.30, 5.20, 5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 

3.75,3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60, 3.20, 2.50, 4.10, 3.50, 3.20, 3.30, 4.60, 

4.30,4.30, 4.50, 5.50, 4.60, 4.90, 4.30, 3.00, 3.40, 3.70, 4.40, 4.90, 4.90, 5.00. 
 

 The estimated variance-covariance matrix is 

 
 

and the 95% confidence intervals for the model parameters are given by 𝑏 ∈ [1.1509 ± 

0.7651], 𝜆 ∈ [0.0018 ± 0.0055] and 𝑐 ∈ [4.0107 ± 1.6658]. 
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Table 7.2 

Estimates of Parameters and Goodness-of-Fit Statistics 
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(a) (b) 

Figure 7.2: Fitted Densities and Probability Plots for Silicon Nitride Data 

 

 Furthermore, results shown in Table 7.2 affirms that the TL-OEHL-LLoG model 

performs better than the non-nested models considered in this paper. Also, the generalized 

model fit the silicon nitride data set better that the reduced models as shown in Figures 

7.2(a) and 7.2(b). 

 

7.3 Breaking Stress of Carbon Fibres of 50 mm Length (GPa) Data 

 The third data set is on breaking stress of carbon fibres of 50 mm length (GPa). Cordeiro 

and Lemonte [10] also analyzed the same data set. The data are as follows: 

0.39, 0.85, 1.08 ,1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 

2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 

2.79, 2.81,2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09 ,3.11, 3.11, 3.15, 

3.15,3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 

3.70,3.75, 4.20, 4.38, 4.42, 4.70, 4.90. 
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Table 7.3 

Estimates of Parameters and Goodness-of-Fit Statistics 
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 The estimated variance-covariance matrix is 
 

   
 

and the 95% confidence intervals for the model parameters are given by 𝑏 ∈ [1.1246 ± 

0.9378], 𝜆 ∈ [0.0381 ± 0.0851] and 𝑐 ∈ [2.8133 ± 1.4636]. 
 

 In addition, from the third example results shown in Table 7.3, we conclude that the 

TL-OEHL-LLoG model indeed performs better than the non-nested models considered in 

this paper. Also, the generalized model fit the carbon fibres data set better that the reduced 

models as shown in Figures 7.3(a) and 7.3(b). 

 

  
(a) (b) 

Figure 7.3: Fitted Densities and Probability Plots for Carbon Fibres Data 

 

7.3.1 Likelihood Ratio Test 
 We present likelihood ratio test results in Table 7.4. 
 

Table 7.4 

Likelihood Ratio Test Results 

Distribution 
Data Set 1 

𝝌𝟐 (p-value) 

Data Set 2 

𝝌𝟐 (p-value) 

Data Set 3 

𝝌𝟐 (p-value) 

TL-OEHL-LLoG(𝑏, 1, 𝑐) 20.2 (<0.00001) 43.3 (<0.00001) 20.1 (<0.00001) 

TL-OEHL-LLoG(𝑏, 𝜆, 1) 29.5 (<0.00001) 31.6 (<0.00001) 13.0 ( 0.00031) 

TL-OEHL-LLoG(𝑏, 1,1) 49.1 (<0.00001) 230.8 (<0.00001) 59.5 (<0.00001) 

TL-OEHL-LLoG(1, 𝜆, 1) 131.4 (<0.00001) 217.1 (<0.00001) 77.6 (<0.00001) 

TL-OEHL-LLoG(1,1, 𝑐) 162.5 (<0.00001) 551.7 (<0.00001) 211.5 (<0.00001) 

 

 Based on the results shown in Table 7.4, we conclude that the TL-OEHL-LLoG model 

performs better than its nested models. 
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8. CONCLUDING REMARKS 
 

 A new generalized distribution called the Topp-Leone-odd exponential half logistic-G 

(TL-OEHL-G) was developed. The new distribution applies to data sets with heavy tails 

and different shapes of hazard rate function. The statistical properties of the proposed 

distribution can be derived directly from those of the Exp-G distribution. The TL-OEHL-

G distribution is a flexible and versatile distribution. 
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