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ABSTRACT 
 

 In data analysis, we cannot expect the data under study to always follow a symmetric 

probability distribution; they can have a skewed probability distribution. Modeling 

skewed data is a challenging task for data scientists. A mixture of probability distributions 

is a better option for modelling skewed data. In this study, we generated a few mixtures  

of probability distributions using the exponential as the first fixed component and 

Gompertz, Lindley, and log-normal distributions as the second component for modelling 

skewed data. We also examined the characteristics of mixed probability distributions.  

The maximum likelihood method was used to estimate the unknown parameters.  

As a result, all three mixture models have a right-skewed pattern, which provides a  

better fit than existing distributions. Finally, we used real-time datasets to model skewed 

data. 
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I. INTRODUCTION 
 

 In this modern era, numerous probability distributions are available in the literature, 

and a new family of probability distributions is generated every day using various methods 

such as the transformation method, composite method, beta-generated method, method of 

adding parameters to an existing probability distribution, transformed-transformer method 

(T-X family), method of generating skewed probability distributions, and finite mixture 

models. In Statistics, data are expressed as a frequency distribution function that  

displays the range of potential values for a variable together with its frequency. Practically 

speaking, not all real datasets can be modeled well using traditional probability 

distributions. The development of a new class of flexible probability distributions is 

required for these types of datasets. We are developing a new class of distributions using a 

variety of techniques because these probability distributions are more flexible than 

traditional distributions. The finite mixture model is used by several authors to model 

skewed datasets. 
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 Let 𝑋 = {𝑥𝑖 , 𝑖 = 1,2, . . . , 𝑛} be a random sample of size 𝑛 obtained from an  

m-component finite mixture. 
 

𝑓(𝑥𝑖; 𝜃) = ∑𝑤𝑖𝑔𝑖(𝑥𝑖 , 𝜃)

𝑚

𝑖=1

 

 

where, 
 

𝑔𝑖(𝑥𝑖 , 𝜃) = probability density or mass function 
𝑤𝑖  are nonnegative quantities 
such that 𝑤1 + 𝑤2+. . . + 𝑤𝑚 = 1 
(i.e.) 0 ≤ 𝑤𝑖 ≤ 1 for i =1,2,...,m 

 

 Furthermore, the two-component finite mixing model is.  
 

𝑓(𝑥) = 𝑤1𝑔1(𝑥) + 𝑤2𝑔2(𝑥) (1.1) 
 

 The first major analyses using mixture models were carried out by Karl Pearson [30], 

a well-known biometrician; who fitted a proportional mixture of two normal probability 

density functions with different means 𝜇1 and  𝜇2 and different variances 𝜎1
2 and 𝜎2

2  

in proportions 𝜋1 and 𝜋2. The finite mixture model is also used by Lindley [22] to  

create the Lindley distribution. For the Lindley distribution, a two-component mixture 

model was used to generate the distribution. An exponential distribution with a scale 

parameter of 𝜃 and a gamma distribution with a shape parameter of 2 and a scale parameter 

of 𝜃 are the two components with proportions - 
𝜃

𝜃+1
, 

1

𝜃+1
. The Table below presents a  

list of mixed models developed using exponential and gamma distributions with various 

weights. 
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Table 1 

Two-Component Mixture of Probability Distributions 

Author(s) Model 
Component 

1 

Component 

2 

Weightage 
(𝒘𝟐 = 𝟏 − 𝒘𝟏) 

Ref. 

Rama Shanker 
(2013) 

Sushila 
Exponential 

(θ/α) 
Gamma 
(2, θ/α) 

𝑤1 =
𝜃

𝜃 + 1
 [38] 

Rama Shanker  
et al., (2013) 

Janardan 
distribution 

Exponential 
(θ/α) 

Gamma 
(2, θ/α) 𝑤1 =

𝜃

𝜃 + 𝛼2
 [39] 

Shanker (2015) Akash 
Exponential 

(θ) 
Gamma 

(3, θ) 𝑤1 =
𝜃2

𝜃2 + 2
 [40] 

Rama Shanker 
(2015) 

Shanker 
distribution 

Exponential 
(θ) 

Gamma 
(2, θ) 𝑤1 =

𝜃2

𝜃2 + 1
 [32] 

Shanker (2017) 
Rama 

distribution 
Exponential 

(θ) 
Gamma 

(4, θ) 𝑤1 =
𝜃3

𝜃3 + 6
 [35] 

Shanker and 
Shukla (2017) 

Ishita 
distribution 

Exponential 
(θ) 

Gamma 
(3, θ) 𝑤1 =

𝜃3

𝜃3 + 2
 [42] 

Shukla (2018) 
Ram Awadh 
distribution 

Exponential 
(λ) 

Gamma 
(6, λ) 𝑤1 =

𝜆6

𝜆6 + 120
 [20] 

Shukla (2018) 
Pranav 

distribution 
Exponential 

(θ) 
Gamma 

(4, θ) 𝑤1 =
𝜃4

𝜃4 + 6
 [43] 

Kamlesh Kumar 
Shukla and Rama 
Shanker (2019) 

Shukla 
distribution 

Exponential 
(θ) 

Gamma 
(α+1, θ) 

𝑤1

=
𝜃𝛼+1

𝜃𝛼+1 + 𝛤(𝛼 + 1)
 

[19] 

Shraa and Al-
Omari (2019) 

Darna 
distribution 

Exponential 
(θ/α) 

Gamma 
(3, θ/α) 𝑤1 =

2𝛼2

2𝛼2 + 𝜃2
 [7] 

Benrabia and 
Alzoubi (2022) 

Alzoubi 
distribution 

Exponential 
(β) 

Gamma 
(α-1, β) 

𝑤1 =
𝛼𝛽

𝛼𝛽 + 1
 [24] 

Mohammed 
Benrabia and Loai 

M.A. Alzoubi 
(2022) 

Benrabia 
distribution 

Exponential 
(β) 

Gamma 
(α-1, β) 

𝑤1 =
𝛼

𝛼 + 𝛽
 [25] 

 

 The three-component mixture models are presented below: 
 

Table 2 

Three-Component Mixture Distribution 

Author(s) Model 

Component 1 

with the 

corresponding 

weightage 

Component 2 

with the 

corresponding 

weight 

Component 3 

with the 

corresponding 

weight 

Ref. 

Shanker 
(2016) 

Aradhana 
distribution 

Exponential (θ) 

𝑤1 =
𝜃2

𝜃2 + 2𝜃 + 2
 

Gamma (2, θ) 

𝑤2 =
2𝜃

𝜃2 + 2𝜃 + 2
 

Gamma (2, θ) 

𝑤3 =
2

𝜃2 + 2𝜃 + 2
 

[34] 

Shanker 
(2015) 

Sujatha 
distribution 

Exponential (θ) 

𝑤1 =
𝜃2

𝜃2 + 𝜃 + 2
 

Gamma (2, θ) 

𝑤2 =
𝜃

𝜃2 + 𝜃 + 2
 

Gamma (3, θ) 

𝑤3 =
2

𝜃2 + 𝜃 + 2
 

[41] 
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 Likewise, four-component mixture models are available in the literature.  Gharaibeh 

(2021) introduced the Gharaibeh distribution using four components i.e., exponential (𝜃), 

gamma (2, 𝜃), gamma (4, 𝜃), and gamma (6, 𝜃) with proportions 𝑤1 =
𝛽6

𝛽6+𝛽4+𝛽2+1
,  

𝑤2 =
𝛽4

𝛽6+𝛽4+𝛽2+1
, 𝑤3 =

𝛽2

𝛽6+𝛽4+𝛽2+1
, and, 𝑤4 =

1

𝛽6+𝛽4+𝛽2+1
. Rama Shanker [33] also 

introduced an Amarendra distribution and the four components are exponential (𝜃), 

gamma (2, 𝜃), gamma (3, 𝜃), and gamma (4, 𝜃) with the proportions of 𝑤1 =
𝜃3

𝜃3+𝜃2+2𝜃+6
,  

𝑤2 =
𝜃2

𝜃3+𝜃2+2𝜃+6
, 𝑤3 =

2𝜃

𝜃3+𝜃2+2𝜃+6
 and, 𝑤4 =

6

𝜃3+𝜃2+2𝜃+6
 respectively. 

 

 When we change the proportion of each component, it gives different shapes to the 

models and changes the characteristics of the mixture distribution. Therefore, the key goal 

of this study is to propose a new mixture of probability distributions by changing the 

components and studying their essential characteristics. So, we fixed the first component 

as an exponential distribution with the scale parameter 𝜆 and the second component as the 

different choices of different distributions with proportions of 𝛼 and 1 − 𝛼. 
 

 This paper is structured as follows: A mixture of Exponential and Lindley  

(Exp-Lindley) distributions with some characteristics are introduced in Section 2.  

Section 3 deals with the properties of a mixture of Exponential and Gompertz  

(Exp-Gompertz). Section 4 presents a combination of exponential and log-normal  

(Exp-lognormal) distributions with their properties. Section 5 carries out simulation 

studies. Finally, real-time data are used for the proposed distributions in Section 6. 

 

II. EXP-LINDLEY 
 

 The probability density function (𝑝𝑑𝑓) of the Exp-Lindley distribution is 
 

𝑓(𝑥; 𝜃, 𝜆, 𝛼) =
𝜃2(1 − 𝛼)(𝑥 + 1)𝑒−𝜃𝑥

𝜃 + 1
+ 𝛼𝜆𝑒−𝜆𝑥, 𝑥 ≥ 0,  𝜃 ≥ 0, 𝜆 ≥ 0, 𝛼 ≥ 0 

 (2.1) 
 

 Equation (2.1) is a mixture of exponential distribution with scale parameter 𝜆 and 

Lindley distribution with scale parameter 𝜃, and their mixing proportions are 𝛼 and 1 − 𝛼. 
 

 The corresponding cumulative distribution function (𝑐𝑑𝑓) of the Exp-Lindley is 
 

𝐹(𝑥) =
((𝜃 + 1)(𝑒𝜆𝑥 − 𝛼)𝑒𝜃𝑥 + (𝛼 − 1)𝜃(𝑥 + 1)𝑒𝜆𝑥 + (𝛼 − 1)𝑒𝜆𝑥) 𝑒−(𝜃+𝜆)𝑥

𝜃 + 1
 

 (2.2) 
 

 Figure 1 shows the possible shapes of the 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of the Exp-Lindley distribution 

for various parameter values. The Lindley and Exponential distributions are special cases 

of the Exp-Lindley distribution. 
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Figure 1: Various Shapes of 𝒑𝒅𝒇 and 𝒄𝒅𝒇 of the Exp-Lindley Distribution  

with Different Parameter Values 

 

 Let 𝑋 be a continuous random variable with 𝑝𝑑𝑓 𝑓(𝑥) and  𝐹(𝑥). The survival function 

(𝑠𝑓) and Hazard Function (ℎ𝑓) of 𝑋 are. 
 

𝑆(𝑥) =
𝜃 + 1 − ((𝜃 + 1)(𝑒𝜆𝑥 − 𝛼)𝑒𝜃𝑥 + (𝛼 − 1)(𝜃𝑥 + 𝜃 + 1)𝑒𝜆𝑥) 𝑒−(𝜃+𝜆)𝑥

𝜃 + 1
 

 (2.3) 
 

ℎ(𝑥) =
𝜃2(1 − 𝛼)(𝑥 + 1)𝑒−𝜃𝑥 + 𝛼𝜆𝑒−𝜆𝑥(𝜃 + 1)

(𝜃 + 1) − ((𝜃 + 1)(𝑒𝜆𝑥 − 𝛼)𝑒𝜃𝑥 + (𝛼 − 1)(𝜃𝑥 + 𝜃 + 1)𝑒𝜆𝑥)𝑒−(𝜃+𝜆)𝑥
 

 (2.4) 
 

 Figure 2 shows the various shapes of the survival and hazard functions of the  

Exp-Lindley distribution for various parameter values.  
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Figure 2: Various Shapes of the Survival and Hazard Functions of the  

Exp-Lindley Distribution for Different Parameter Values 

 

 The 𝑟𝑡ℎ moment about the origin (raw moments) has been obtained as 
 

𝐸(𝑋𝑟) =
𝜃2(1 − 𝛼)

𝜃 + 1
[
𝛤(𝑟 + 1)

𝜃𝑟+1
+

𝛤(𝑟 + 2)

𝜃𝑟+2
] + 𝛼

𝛤(𝑟 + 1)

𝜆𝑟
 (2.5) 

 

 When 𝑟 = 1,2,3,4 then we obtain the first four moments as follows: 
 

 The first four moments of Exp-Lindley distribution 
 

𝑀𝑒𝑎𝑛(𝜇) = 𝐸(𝑋) =
(1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃

(𝜃 + 1)𝜃𝜆
 

 

𝜇2
′ = 𝐸(𝑋2) =

2(𝛼𝜃3 + 𝛼𝜃2 + (1 − 𝛼)𝜆2𝜃 + (3 − 3𝛼)𝜆2)

(𝜃 + 1)𝜃2𝜆2
 

 

𝜇3
′ = 𝐸(𝑋3) =

6(𝛼𝜃4 + 𝛼𝜃3 + (1 − 𝛼)𝜆3𝜃 + (4 − 4𝛼)𝜆3)

(𝜃 + 1)𝜃3𝜆3
 

 

𝜇4
′ = 𝐸(𝑋4) =

24(𝛼𝜃5 + 𝛼𝜃4 + (1 − 𝛼)𝜆4𝜃 + (5 − 5𝛼)𝜆4)

(𝜃 + 1)𝜃4𝜆4
 

 

 The variance of the Exp-Lindley distribution is obtained as 
 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

(𝜃 + 1)(𝜆2(1 − 𝛼)(2𝜃 + 6) + 2𝛼(𝜃 + 1)𝜃2)

−((1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃)
2

(𝜃 + 1)2𝜃2𝜆2
 

 

 Using the above moments, the coefficient of variation and index of dispersion of the 

Exp-Lindley distribution were obtained using closed-form expressions. The index of 

dispersion (DI) is defined as the variance-to-mean ratio. If the DI value is less than one, 
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the model is suitable for under-dispersed datasets. If the DI value is greater than 1, the 

model is suitable for over-dispersed datasets. 
 

 The coefficient of variation and index of dispersion for the Exp-Lindley distribution is 

obtained as  
 

𝐶𝑉 =
𝜎

𝜇
=

(𝜃 + 1)𝜃𝜆

(

 
 

(𝜃 + 1)(𝜆2(1 − 𝛼)(2𝜃 + 6) + 2𝛼(𝜃 + 1)𝜃2)

−((1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃)
2

(𝜃 + 1)2𝜃2𝜆2

)

 
 

1
2

(1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃
 

 

DI(𝛾) =
𝜎2

𝜇
=

(𝜃 + 1)𝜃𝜆

(

 
 

(𝜃 + 1)(𝜆2(1 − 𝛼)(2𝜃 + 6) + 2𝛼(𝜃 + 1)𝜃2)

−((1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃)
2

(𝜃 + 1)2𝜃2𝜆2

)

 
 

(1 − 𝛼)(𝜃 + 2)𝜆 + 𝛼(𝜃 + 1)𝜃
 

 

 The 𝑟𝑡ℎ incomplete moment for Exp-Lindley distribution is given as 
 

𝜙𝑟(𝑥) =
(𝛼 − 1)𝛤(𝑟 + 2, 𝜃𝑦) − (𝛼 − 1)𝛤(𝑟 + 2,0)

𝜃𝑟(𝜃 + 1)

+
(𝛼 − 1)(𝛤(𝑟 + 1, 𝜃𝑦) − 𝛤(𝑟 + 1,0))𝜃1−𝑟

𝜃 + 1

−
𝛼(𝛤(𝑟 + 1, 𝜆𝑦) − 𝛤(𝑟 + 1,0))

𝜆𝑟
 

 

 

 

 

(2.6) 

 

 The first incomplete moment of the Exp-Lindley distribution is  
 

𝜙1(𝑥) =

[

((𝛼𝜆𝜃2 + 𝛼𝜆𝜃)𝑦 + 𝛼𝜃2 + 𝛼𝜃)𝑒𝜃𝑦 +

(
(1 − 𝛼)𝜆𝜃2𝑦2 + ((1 − 𝛼)𝜆𝜃2 + (2 − 2𝛼)𝜆𝜃)𝑦

+(1 − 𝛼)𝜆𝜃 + (2 − 2𝛼)𝜆
) 𝑒𝜆𝑦

] 𝑒−𝜃𝑦−𝜆𝑦

                                               +𝛼𝜃2 + ((1 − 𝛼)𝜆 + 𝛼)𝜃 + (2 − 2𝛼)𝜆

𝜆𝜃(1 + 𝜃)
 

 

 The moment-generating function of the Exp-Lindley distribution is 
 

𝑀𝑋(𝑡) = ∑
𝑡𝑖

𝑖!

∞

𝑖=0

(
𝜃2(1 − 𝛼)

𝜃 + 1
[
𝛤(𝑖 + 1)

𝜃𝑖+1
+

𝛤(𝑖 + 2)

𝜃𝑖+2
] + 𝛼

𝛤(𝑖 + 1)

𝜆𝑖
) (2.7) 

 

 The characteristic function of the Exp-Lindley distribution is 
 

𝜙𝑋(𝑡) = ∑
𝑖𝑡𝑘

𝑘!

∞

𝑖=0

(
𝜃2(1 − 𝛼)

𝜃 + 1
[
𝛤(𝑘 + 1)

𝜃𝑘+1
+

𝛤(𝑘 + 2)

𝜃𝑘+2
] + 𝛼

𝛤(𝑘 + 1)

𝜆𝑘
) (2.8) 

 

 The cumulant generating function of the Exp-Lindley distribution is 
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𝐾𝑋(𝑡) = ∏𝑙𝑜𝑔𝑒 (
𝑡𝑖

𝑖!
(
𝜃2(1 − 𝛼)

𝜃 + 1
[
𝛤(𝑖 + 1)

𝜃𝑖+1
+

𝛤(𝑖 + 2)

𝜃𝑖+2
] + 𝛼

𝛤(𝑖 + 1)

𝜆𝑖
))

∞

𝑖=0

 (2.9) 

 

 The first and nth-order statistics of the Exp-Lindley distribution are given by 
 

𝑓𝑋(1)
(𝑥) = 𝑛𝑓𝑋(𝑥)[1 − 𝐹𝑋(𝑥)](𝑛−1) =

𝑛[𝜃2(1 − 𝛼)(𝑥 + 1)𝑒−𝜃𝑥 + 𝛼𝜆𝑒−𝜆𝑥(𝜃 + 1)]

(𝜃 + 1)
 

[
 
 
 
 
 (𝜃 + 1) − ((

(𝜃 + 1)(𝑒𝜆𝑥 − 𝛼)𝑒𝜃𝑥 +

   (𝛼 − 1)𝜃(𝑥 + 1)𝑒𝜆𝑥 + (𝛼 − 1)𝑒𝜆𝑥
) 𝑒−(𝜃+𝜆)𝑥)

𝜃 + 1

]
 
 
 
 
 
(𝑛−1)

 

 

𝑓𝑋(𝑛)
(𝑥) = 𝑛𝑓𝑋(𝑥)[𝐹𝑋(𝑥)](𝑛−1) =

𝑛[𝜃2(1 − 𝛼)(𝑥 + 1)𝑒−𝜃𝑥 + 𝛼𝜆𝑒−𝜆𝑥(𝜃 + 1)]

(𝜃 + 1)
 

[
 
 
 
 (

(𝜃 + 1)(𝑒𝜆𝑥 − 𝛼)𝑒𝜃𝑥 +

   (𝛼 − 1)𝜃(𝑥 + 1)𝑒𝜆𝑥 + (𝛼 − 1)𝑒𝜆𝑥
) 𝑒−(𝜃+𝜆)𝑥

𝜃 + 1

]
 
 
 
 
(𝑛−1)

 

 Parameters 𝜃, 𝜆, and 𝛼 are estimated using the Maximum Likelihood Estimation (MLE) 

method. Let 𝑥1, 𝑥2, . . . , 𝑥𝑛 be a random sample from the Exp-Lindley distribution. Then  

the log-likelihood function is given by 
 

𝒈(𝑥) =
𝜃2(1 − 𝛼)(𝑥 + 1)𝑒−𝜃𝑥

𝜃 + 1
+ 𝛼𝜆𝑒−𝜆𝑥

 

 

𝑳(𝑥𝑖 , 𝜃, 𝜆, 𝛼) = ∏𝑔(𝑥𝑖 , 𝜃, 𝜆, 𝛼)

𝑛

𝑖=1

 

                    = ∏(
𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖

𝜃 + 1
)

𝑛

𝑖=1

 

                     = (
𝑛

𝜃 + 1
∏[𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖]

𝑛

𝑖=1

) 

 

 The respective sample log-likelihood function is 
 

𝑙𝑜𝑔 𝐿 (𝑥𝑖 , 𝜃, 𝜆, 𝛼) = 𝑙𝑜𝑔 𝑛 − 𝑙𝑜𝑔( 𝜃 + 1)

+ ∑𝑙𝑜𝑔[𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖]

𝑛

𝑖=1

 

 

 Now, by differentiating w.r.t. 𝜃, 𝜆, and 𝛼, we can write 
 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝛼
= ∑

𝜆(𝜃 + 1)𝑒−𝜆𝑥𝑖 − 𝜃2(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖

[𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖]

𝑛

𝑖=1

= 0 
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𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜃
=

−1

(𝜃 + 1)
∑

−𝑥𝑖𝜃
2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖

+2(1 − 𝛼)(𝑥𝑖 + 1)𝜃𝑒−𝜃𝑥𝑖 + 𝛼𝜆𝑒−𝜆𝑥𝑖

𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖

𝑛

𝑖=1

= 0 

 

𝜕 𝑙𝑜𝑔 𝐿

𝜕𝜆
= ∑

𝛼(𝜃 + 1)𝑒𝜃𝑥𝑖(𝑥𝑖𝜆 − 1)

[𝜃2(1 − 𝛼)(𝑥𝑖 + 1)𝑒−𝜃𝑥𝑖 + (𝜃 + 1)𝛼𝜆𝑒−𝜆𝑥𝑖]

𝑛

𝑖=1

= 𝟎 

 

 The above nonlinear system of equations needs to be solved to obtain the ML  

estimates of the unknown parameters. Nonlinear optimization procedures are frequently 

more convenient for the numerical optimization of the sample likelihood function.  

R programming can be used to numerically solve these equations. 
 

III. EXP-GOMPERTZ 
 

 The 𝑝𝑑𝑓 for the Exp-Gompertz distribution is 
 

𝑓(𝑥) = 𝜃𝜆𝑒−𝜆𝑥 + (1 − 𝜃)𝑏𝜂 𝑒𝑥𝑝(𝜂 + 𝑏𝑥 − 𝜂𝑒𝑏𝑥) (3.1) 
 

 The mixture of exponential distribution with scale parameter 𝜆 and Gompertz 

distribution with scale parameter 𝑏 and shape parameter 𝜂 with their mixing proportions of 

𝜃 and 1 − 𝜃 is given in Equation (3.1). The corresponding 𝑐𝑑𝑓 of the Exp-Gompertz 

distribution is 
 

𝐹(𝑥) = (𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃) (3.2) 

 

For 𝑥 > 0, 𝜃 > 0, 𝜆 > 0, 𝑏 > 0, 𝜂 > 0 
 

 Figure 3 displays the possible shapes of the 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of the Exp-Gompertz 

distribution for various parameter values. The Gompertz distribution is a special case of 

the Exp-Gompertz distribution when 𝜃 = 0; and when 𝜃 = 1 it becomes an exponential 

distribution. 

 

   
Figure 3: Various Shapes of 𝒑𝒅𝒇 and 𝒄𝒅𝒇 of Exp-Gompertz Distribution  

for Different Parameter Values 
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 Let 𝑋 be a continuous random variable with 𝑝𝑑𝑓 𝑓(𝑥) and  𝐹(𝑥). The survival function 

and hazard Function of 𝑋 is  
 

𝑆(𝑥) = 1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃)) (3.3) 

 

ℎ(𝑥) =
𝜃𝜆𝑒−𝜆𝑥 + (1 − 𝜃)𝑏𝜂 𝑒𝑥𝑝(𝜂 + 𝑏𝑥 − 𝜂𝑒𝑏𝑥)

1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))

 (3.4) 

 

   
Figure 4: Various Shapes of 𝒔𝒇 and 𝒉𝒇 of Exp-Gompertz Distribution  

for Different Parameter Values  

 

 Figure 4 displays the various shapes of the 𝑠𝑓 and ℎ𝑓 of the Exp-Gompertz distribution 

for various parameter values. The hazard function of the Exp-Gompertz distribution can 

have different shapes: decreasing ℎ𝑓, increasing ℎ𝑓, decreasing ℎ𝑓, and increasing ℎ𝑓.  
 

 The cumulative hazard function is given by 
 

𝐻(𝑥) = − 𝑙𝑜𝑔 (1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))) (3.5) 

 

 The reversed hazard rate is given by 
 

𝜏(𝑥) =
𝜃𝜆𝑒−𝜆𝑥 + (1 − 𝜃)𝑏𝜂 𝑒𝑥𝑝(𝜂 + 𝑏𝑥 − 𝜂𝑒𝑏𝑥)

(𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃)

 (3.6) 

 

 Wang et al. (2003) offered a log-odds rate-based model for time to failure, as well as 

some characterization of failure time distributions. The model can be used to study the 

distribution of time to failure by modeling the failure process in terms of the log odds rate. 

The odds function is expressed as 
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𝜋𝑂(𝑥) =
(𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥

+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃)

1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))

 (3.7) 

 

 The log-odds function is given by 
 

𝐿𝑂(𝑥) = 𝑙𝑜𝑔
(𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥

+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃)

1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))

= 𝑙𝑜𝑔 ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))

− 𝑙𝑜𝑔 (1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃))) 

 

 

 

 

(3.8) 

 

 The log-odds rate is defined as 
 

𝐿𝑂𝑅(𝑥) =
𝜃𝜆𝑒−𝜆𝑥 + (1 − 𝜃)𝑏𝜂 𝑒𝑥𝑝(𝜂 + 𝑏𝑥 − 𝜂𝑒𝑏𝑥)

(1 − ((𝑒𝜂𝜃 − 𝑒𝜂)𝑒−𝜂𝑒𝑏𝑥
+ 𝑒−𝜆𝑥(𝑒𝜆𝑥 − 𝜃)))

2 
(3.9) 

 

 The MLE method is utilized to estimate unknown parameters 𝜃, 𝜆, 𝑏, and 𝜂 as we used 

in Section 3. 

 

IV. EXP-LOGNORMAL 
 

 The Exp-lognormal distribution is the mixture of Exponential distribution with scale 

parameter 𝜆 and lognormal distribution having location parameter µ and scale parameter  

𝜎 with their mixing proportions of 𝜃 and 1 − 𝜃 is given in Equation (4.1). The 𝑝𝑑𝑓 and 

𝑐𝑑𝑓 of the Exp-lognormal distributions are 
 

𝑓(𝑥) = 𝜃𝜆𝑒−𝜆𝑥 +
(1 − 𝜃)𝑒

−(𝑙𝑛(𝑥)−𝜇)2

2𝜎2

𝑥𝜎√2𝜋
 

(4.1) 

 

𝐹(𝑥) =

(𝜃 − 1)𝑒𝑟𝑓 (
√2𝜇 − √2 𝑙𝑛(𝑥)

2𝜎
) + 𝜃 + 1

2
− 𝜃𝑒−𝜆𝑥 

(4.2) 

 

For 𝑥 > 0, 𝜃 > 0, 𝜆 > 0, 𝜇 > 0, 𝜎 > 0 
 

 Figure 5 displays the possible shapes of the 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of the Exp-lognormal 

distribution for the various parameter values. 
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Figure 5: Various Shapes of 𝒑𝒅𝒇 and 𝒄𝒅𝒇 of Exp-Lognormal Distribution  

for Different Parameter Values 

 

 Let 𝑋 be a continuous random variable with 𝑝𝑑𝑓 𝑓(𝑥) and  𝐹(𝑥). The survival function 

and hazard Function of 𝑋 is given as 
 

𝑆(𝑥) =

2 − ((𝜃 − 1)𝑒𝑟𝑓 (
√2𝜇 − √2 𝑙𝑛(𝑥)

2𝜎
) + 𝜃 + 1) + 2𝜃𝑒−𝜆𝑥

2
 

(4.3) 

 

ℎ(𝑥) =

2 (𝜃𝜆𝑒−𝜆𝑥 +
(1 − 𝜃)𝑒

−(𝑙𝑛(𝑥)−𝜇)2

2𝜎2

𝑥𝜎√2𝜋
)

2 − ((𝜃 − 1)𝑒𝑟𝑓 (
√2𝜇 − √2 𝑙𝑛(𝑥)

2𝜎
) + 𝜃 + 1) + 2𝜃𝑒−𝜆𝑥

 (4.4) 

 

 Figure 6 shows the different forms of the survival and hazard functions of the  

Exp-lognormal distribution for the different parameter values. The hazard function of the 

exp-lognormal distribution can have a decreasing and constant shape. 
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Figure 6: Various Shapes of the Survival Function and Hazard Function of  

Exp-Lognormal Distribution for Different Parameter Values 

 

 Let a random variable X~Exp-lognormal (𝜃, 𝜆, µ, 𝜎) then Renyi entropy of 𝑋 is  

defined as 
 

𝐼𝑅(𝜂) =
1

1 − 𝜂
𝑙𝑜𝑔 ∫ 𝑓𝜂(𝑥)𝑑𝑥;     𝜂 > 0, 𝜂 ≠ 1

∞

0

 

=
1

1 − 𝜂
𝑙𝑜𝑔 ∫ (

𝜃𝜆𝑥𝜎√2𝜋𝑒−𝜆𝑥 + (1 − 𝜃)𝑒
−(𝑙𝑛(𝑥)−𝜇)2

2𝜎2

𝑥𝜎√2𝜋
)

𝜂

𝑑𝑥
∞

0

 

=
1

1 − 𝜂
𝑙𝑜𝑔 (

1

(𝜎√2𝜋)
𝜂 ∫ (𝑥−1 (𝜃𝜆𝑥𝜎√2𝜋𝑒−𝜆𝑥

∞

0

+ (1 − 𝜃)𝑒
−(𝑙𝑛(𝑥)−𝜇)2

2𝜎2 ))

𝜂

𝑑𝑥) 

 

 

 

 

 

 

 

 

(4.5) 

 

 The application of stochastic ordering to compare the behaviors of positive continuous 

random variables is quite beneficial. If a random variable 𝑋 is less than a random variable 

𝑌 then  
 

(𝑖) Stochastic order (𝑋 ≤𝑠𝑡 𝑌) if F𝑋(𝑥) ≥ 𝐹𝑌(𝑦) for all 𝑥 
(ii) Hazard rate order (𝑋 ≤ℎ𝑟 𝑌) if h𝑋(𝑥) ≥ ℎ𝑌(𝑦) for all 𝑥 
(iii) Mean residual life order (𝑋 ≤𝑚𝑟𝑙 𝑌) if m𝑋(𝑥) ≥ 𝑚𝑌(𝑦) for all 𝑥 

(iv)Likelihood ratio order(𝑋 ≤𝑙𝑟 𝑌) if 
𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
decreases in 𝑥. 

 

 The stochastic ordering of distributions was discovered by Shaked and Shanthi Kumar 

(1994), who reached the following findings. 
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𝑋 ≤𝑙𝑟 𝑌 ⇒ 𝑋 ≤ℎ𝑟 𝑌 ⇒ 𝑋 ≤𝑚𝑟𝑙 𝑌 
                       ⇓ 
                   𝑋 ≤𝑠𝑡 𝑌 

 

 The Exp-lognormal distribution was sorted according to the strongest 'likelihood ratio'. 

Let X~Exp-lognormal (𝜃1, 𝜆1, 𝜇1, 𝜎1) and Y~Exp-lognormal (𝜃2, 𝜆2, 𝜇2, 𝜎2). If, 𝜃1 ≥ 𝜃2 , 

then 𝑋 ≤𝑙𝑟 𝑌 hence 𝑋 ≤ℎ𝑟 𝑌, 𝑋 ≤𝑚𝑙𝑟 𝑌 and 𝑋 ≤𝑠𝑡 𝑌. We have  
 

𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
=

𝜎2 (𝜃1𝜆1𝑥𝜎1√2𝜋𝑒−𝜆1𝑥 + (1 − 𝜃1)𝑒
−(𝑙𝑛(𝑥)−𝜇1)2

2𝜎1
2 )

𝜎1 (𝜃2𝜆2𝑦𝜎2√2𝜋𝑒−𝜆2𝑦 + (1 − 𝜃2)𝑒
−(𝑙𝑛(𝑦)−𝜇2)2

2𝜎2
2 )

 (4.6) 

 

𝑙𝑜𝑔
𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
= 𝑙𝑜𝑔

[
 
 
 
 𝜎2 (𝜃1𝜆1𝑥𝜎1√2𝜋𝑒−𝜆1𝑥 + (1 − 𝜃1)𝑒

−(𝑙𝑛(𝑥)−𝜇1)2

2𝜎1
2 )

𝜎1 (𝜃2𝜆2𝑦𝜎2√2𝜋𝑒−𝜆2𝑦 + (1 − 𝜃2)𝑒
−(𝑙𝑛(𝑦)−𝜇2)2

2𝜎2
2 )

]
 
 
 
 

 (4.7) 

 

𝑙𝑜𝑔
𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
= 𝑙𝑜𝑔 (𝜎2 (𝜃1𝜆1𝑥𝜎1√2𝜋𝑒−𝜆1𝑥 + (1 − 𝜃1)𝑒

−(𝑙𝑛(𝑥)−𝜇1)2

2𝜎1
2 ))

− 𝑙𝑜𝑔 (𝜎1 (𝜃2𝜆2𝑦𝜎2√2𝜋𝑒−𝜆2𝑦 + (1 − 𝜃2)𝑒
−(𝑙𝑛(𝑦)−𝜇2)2

2𝜎2
2 )) 

 

𝑑

𝑑𝑥
𝑙𝑜𝑔

𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
=

𝜎2 ( −
(1 − 𝜃1)𝑒

−(𝑙𝑛(𝑥)−𝜇1)2

2𝜎1
2 (− 𝑙𝑛( 𝑥) − 𝜇1)
𝜎2𝑥

−𝜃1𝜆
2
1𝑥𝜎1√2𝜋𝑒−𝜆1𝑥 + 𝜃1𝜆1𝜎1√2𝜋𝑒−𝜆1𝑥

)

[𝜎2 (𝜃1𝜆1𝑥𝜎1√2𝜋𝑒−𝜆1𝑥 + (1 − 𝜃1)𝑒
−(𝑙𝑛(𝑥)−𝜇1)2

2𝜎1
2 )]

 

−

𝜎1 ( −
(1 − 𝜃2)𝑒

−(𝑙𝑛(𝑦)−𝜇2)2

2𝜎2
2 (− 𝑙𝑛( 𝑦) − 𝜇2)
𝜎2

2𝑦

−𝜃2𝜆
2
2𝑦𝜎2√2𝜋𝑒−𝜆2𝑦 + 𝜃2𝜆2𝜎2√2𝜋𝑒−𝜆2𝑦

)

[𝜎1 (𝜃2𝜆2𝑦𝜎2√2𝜋𝑒−𝜆2𝑦 + (1 − 𝜃2)𝑒
−(𝑙𝑛(𝑦)−𝜇2)2

2𝜎2
2 )]

 
(4.8) 

 

 Now if 𝜆1 = 𝜆2 = 𝜆, 𝜇1 = 𝜇2 = 𝜇, 𝜎1 = 𝜎2 = 𝜎, 𝜃1 ≥ 𝜃2, then it implies  
𝑑

𝑑𝑥
𝑙𝑜𝑔

𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
≤ 0. This means that 𝑋 ≤𝑙𝑟 𝑌 and hence 𝑋 ≤ℎ𝑟 𝑌, 𝑋 ≤𝑚𝑙𝑟 𝑌 and 𝑋 ≤𝑠𝑡 𝑌.  

 

 The maximum likelihood estimation approach is used to estimate the parameters  

𝜃, 𝜆, µ, and 𝜎 as we mentioned in section 3. 
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V. SIMULATION STUDY 
 

 The performance of certain estimates over predetermined replications at different 

sample sizes is assessed in this section using simulation analysis. To do this, a simulation 

procedure is performed 1000 times with various sample sizes (𝑛 = 25, 50, 75, 100, 200, 

and 500). The purpose of this study is to assess how well the MLEs perform for the  

Exp-Lindley, Exp-Gompertz, and Exp-Lognormal distribution parameters. The inversion 

approach for creating random data from the suggested distributions fails because the 

equation 𝐹(𝑥) = 𝑢, where u is an observation from the uniform distribution on (0,1), 

cannot be solved explicitly in 𝑥. We therefore used Monte Carlo simulation to generate the 

samples. R programming language is used to create samples from the proposed 

distributions. For the generated samples, we calculated the mean value, average biases 

(BIAS), and root-mean-square errors (RMSEs). 
 

 The results of the simulations are shown in Tables 3–5, along with the mean, bias, and 

root mean square error (RMSE) for the parameters of the Exp-Lindley, Exp-Gompertz, and 

Exp-Lognormal distributions, respectively. According to Tables 3–5, when sample size 𝑛 

grows, both bias and RMSE often decrease. 

 

Table 3 

Simulation Analysis: Mean, Bias, and RMSE Values for  

Exp-Lindley Distributions with various Sample Sizes 

 Case (i): α=0.5, λ=0.9, θ=1.2 Case (ii): α=0.2, λ=0.5, θ=1 

n Parameters Mean 
Average 

Bias 
RMSE Mean 

Average 
Bias 

RMSE 

25 

𝛼 0.500194 0.181623 0.223342 0.499814 0.687172 0.257297 

𝜆 0.643842 0.316382 1.031072 0.871461 0.274705 2.678434 

𝜃 0.048155 0.023231 0.164498 0.053211 0.040089 0.078601 

50 

𝛼 0.498073 0.133598 0.160337 0.482685 0.237683 0.159649 

𝜆 0.583805 0.170427 1.000245 0.556491 0.063526 1.132306 

𝜃 0.037649 0.004239 0.122779 0.052229 0.029515 0.053315 

75 

𝛼 0.490104 0.075959 0.100396 0.405336 0.039511 0.103186 

𝜆 0.530404 0.098556 0.675153 0.539146 0.019419 0.345243 

𝜃 0.018821 0.004147 0.054381 0.050584 0.024524 0.046207 

100 

𝛼 0.482748 0.055871 0.015065 0.399839 0.015992 0.089874 

𝜆 0.520125 0.037979 0.358396 0.524768 0.013950 0.272702 

𝜃 0.014824 0.001554 0.030165 0.046579 0.006415 0.035376 

200 

𝛼 0.458752 0.049522 0.004258 0.301578 0.015179 0.041455 

𝜆 0.503649 0.015480 0.246597 0.506076 0.005527 0.084405 

𝜃 0.009854 0.000564 0.001269 0.003805 0.003714 0.005197 
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Table 4 

Simulation Analysis: Mean, Bias, and RMSE Values for  

Exp-Gompertz Distributions with various Sample Sizes 

 
Case (i): θ=0.5, λ=0.8, 

η =1, β =1.5 

Case (ii): θ=0.1, λ=0.5,  

η =1,   β =0.5 

𝒏 Parameters Mean 
Average 

Bias 
RMSE Mean 

Average 
Bias 

RMSE 

25 

𝜃 1.040784 0.697213 1.135451 0.257801 0.255498 0.299511 

𝜆 14.40554 6.701684 7.738910 7.432411 7.264812 6.079522 

𝜂 0.674863 0.257596 1.365579 0.158241 0.054871 0.475635 

𝛽 6.541210 2.149390 7.367740 5.114866 0.851141 2.902813 

50 

𝜃 0.773491 0.455551 0.608552 0.222767 0.150769 0.239547 

𝜆 8.833386 5.204027 5.296060 5.049495 6.444535 5.435474 

𝜂 0.436487 0.222420 1.018249 0.092305 0.026607 0.207198 

𝛽 4.800180 1.811460 6.946020 4.100889 0.690195 2.486313 

75 

𝜃 0.503769 0.165611 0.375133 0.273765 0.140879 0.200128 

𝜆 8.548397 2.965199 2.357460 4.790583 5.613676 4.921408 

𝜂 0.279290 0.175145 0.980084 0.076895 0.014509 0.120236 

𝛽 2.141877 0.884752 1.130480 3.93403 0.599944 1.218631 

100 

𝜃 0.334439 0.096434 0.348335 0.211156 0.027315 0.164801 

𝜆 4.404348 1.133457 1.653921 2.686431 4.192153 1.910273 

𝜂 0.196789 0.153904 0.551145 0.069269 0.004441 0.119125 

𝛽 1.296303 0.516518 0.736998 3.510842 0.484854 1.092859 

200 

𝜃 0.177295 0.057267 0.170949 0.148723 0.015485 0.157342 

𝜆 2.849778 0.159136 0.852861 1.347856 3.094763 0.130019 

𝜂 0.037758 0.035116 0.062074 0.057672 0.003054 0.109089 

𝛽 0.809634 0.027483 0.322992 3.423885 0.228846 0.986079 
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Table 5 

Simulation Analysis: Mean, Bias, and RMSE Values for  

Exp-Lognormal Distributions with Various Sample Sizes 

 
Case (i): θ=0.1, λ=0.1,  

µ =1, σ =1.5 

Case (ii): θ=0.1, λ=0.5,  

µ =2.5, σ =0.5 

𝒏 Parameters Mean 
Average 

Bias 
RMSE Mean 

Average 
Bias 

RMSE 

50 

𝜃 0.515175 0.073546 0.078325 0.513665 0.006336 0.070306 

𝜆 3.758278 3.249234 0.899263 0.351814 0.090877 0.291851 

µ 2.131613 0.055316 0.321229 3.121311 0.001874 0.025949 

𝜎 0.062528 0.062421 0.349985 0.008551 0.008477 0.046100 

75 

𝜃 0.513458 0.035129 0.062996 0.505919 0.005252 0.057799 

𝜆 0.633478 0.528866 0.708708 0.350501 0.080426 0.245596 

µ 2.131593 0.000313 0.000481 3.022693 0.000131 0.000373 

𝜎 0.000154 0.000104 0.000141 9.80E-05 0.000194 0.000199 

100 

𝜃 0.510654 0.023315 0.054371 0.500819 0.001919 0.052781 

𝜆 0.234908 0.163217 0.124418 0.300584 0.057832 0.237483 

µ 2.131542 0.000148 0.000199 3.022311 0.000121 0.000277 

𝜎 9.58E-05 3.17E-05 7.47E-05 9.30E-05 3.09E-05 5.16E-05 

200 

𝜃 0.510301 0.022738 0.049393 0.500494 0.001451 0.037098 

𝜆 0.113242 0.076996 0.010288 0.270768 0.015535 0.200898 

µ 2.131521 6.39E-05 0.000157 3.022119 1.13E-04 0.000238 

𝜎 6.73E-05 1.14E-05 1.46E-05 8.46E-05 2.63E-05 4.02E-05 

500 

𝜃 0.506501 0.010282 0.036466 0.405002 0.001051 0.015745 

𝜆 0.030371 0.004695 0.000199 0.252151 0.007832 0.187451 

µ 2.076166 4.63E-05 6.62E-05 3.001258 8.05E-05 1.58E-04 

𝜎 5.80E-05 5.31E-06 1.34E-05 7.46E-05 1.63E-05 3.17E-05 
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VI. APPLICATION 
 

 In this section, two real-time datasets are used to illustrate the flexibility of the proposed 

distribution. These conclusions can be strengthened by a graphical study. You may analyze 

how well our datasets fit our distribution using the empirical 𝑐𝑑𝑓 plots and 𝑝𝑑𝑓 plots. 
 

 Dataset 1: It represents the uncensored data set corresponding to remission times (in 

months) of a random sample of 128 patients with bladder cancer patients. This data was 

previously used by Lee and Wang [21].  
 

 For this dataset, we compared the modeling fit of the proposed distribution with the 

existing mixture probability distributions. As we said in Section I, the Akash, Lindley, and 

Exp-Gamma distributions are a combination of the exponential and gamma distributions. 

Our proposed models are a combination of the exponential and Lindley distributions and a 

combination of the exponential and Gompertz distributions, and Table 7 shows that the 

proposed models have lower criteria values than the existing models and Figure 7 shows 

that the proposed model fits the data better than existing models. 
 

 The list of the distribution we have taken for comparison is (i) Exp-Lindley, (ii) Exp-

Gompertz, (iii) Lognormal, (iv) Akash, (v) Exp-Gamma (Generalized Akash), and (vi) 

Lindley distribution. To compare the goodness of fit, we used Akaike Information Criteria, 

corrected Akaike information criteria, Bayesian information criteria, Kolmogorov-

Smirnov, CVM, and Anderson Darling. The measures are computed and presented below 

in Table 6.  

 

Table 6 

Parameter Estimates of the Distributions 

Model Parameter Estimate -2LL 

Exp-Gompertz 
𝛼̂ = 0.9600, 𝜆̂ = 0.1123 

𝜂̂ = 0.03496, 𝑏̂ = 7.8525 
803.0369 

Exp-Lindley 
𝛼̂ = 0.9674, 𝜆̂ = 0.1131 

𝜃̂ = 2.5257 
805.1309 

Lognormal 𝜇̂ = 1.5109, 𝜎̂ = 1.2819 813.605 

Akash 𝜃̂ = 0.3375 903.990 

Exp-Gamma 

(Generalized Akash) 
𝜃̂ = 3.9329, 𝜆̂ = 0.1114 

𝛽̂ = 0.5557 
805.1486 

Lindley 𝜃̂ = 0.2129 835.8477 
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Table 7 

Information Criteria for Model Selection 

Model AIC AICc BIC CVM AD KS 

Exp-Gompertz 811.04 811.12 820.22 
0.0886 

(0.6446) 

0.5364 

(0.7097) 

0.05832 

(0.7767) 

Exp-Lindley 811.13 811.99 819.69 
0.1282 

(0.464) 

0.7363 

(0.529) 

0.0695 

(0.5664) 

Lognormal 817.60 818.56 823.309 
0.3132 

(0.1241) 

1.8173 

(0.1161) 

0.0999 

(0.155) 

Akash 905.99 906.52 908.84 
2.1502 

(0.000) 

17.867 

(0.000) 

0.2097 

(0.000) 

Exp-Gamma  

(Generalized Akash) 
811.15 811.342 819.70 

0.0901 

(0.6363) 

0.7236 

(0.5391) 

0.0567 

(0.8055) 

Lindley 837.85 838.24 840.70 
0.8098 

(0.0068) 

5.8689 

(0.0011) 

0.1336 

(0.0207) 

 

 

    
Figure 7: Model Fitting of Probability Distributions under Study 

 

 Dataset 2: It represents the waiting times (in minutes) before service for 100 bank 

customers. (Refer Ademola et al. [2]). For this dataset, we have compared the proposed 

model with existing mixture distributions like Akash, Exp-Gamma, and Janarthan 

distributions and with some other common distributions like Weibull, lognormal, and 

gamma distributions. The list of distributions we have taken for comparison is (i) Exp-

Lognormal, (ii) Exp-Gamma, (iii) Lognormal, (iv) Akash, (v) Gamma, (vi) Weibull, and 

(vii) Janardan distributions. The estimated parameter values are tabulated and presented in 

Table 8 and the measures are computed and presented below in Table 9. 

 

  



An Empirical Study on Modeling Skewed Data Using a Mixture… 100 

Table 8 

Parameter Estimates of the Distributions 

Model Parameter Estimate LL 

Exp-lognormal 
𝜃̂ = 0.1829, 𝜆̂ = 0.1180 

𝜇̂ = 2.1005, 𝜎̂ = 0.6823 
623.655 

Exp-Gamma  

(Generalized Akash) 
𝜃̂ = 0.85595, 𝜆̂ = 0.0864,  

𝛽̂ = 0.3241 
637.332 

Lognormal 𝜇̂ = 2.0211, 𝜎̂ = 0.7811 638.348 

Akash 𝜃̂ = 0.2953 641.9292 

Gamma 𝜆̂ = 2.0089, 𝛽̂ = 0.2034 634.6002 

Weibull 𝑘̂ = 1.4585, 𝜆̂ = 10.9553 637.4614 

Janardan 𝜃̂ = 3.6588, 𝛼̂ = 18.1497 634.7764 

 

Table 9 

Information Criteria for model selection 

Model AIC BIC AICc CVM AD KS 

Exp-lognormal 628.655 628.655 628.234 
0.0226 

(0.9941) 

0.1605 

(0.9977) 

0.0453 

(0.9865) 

Exp-Gamma 

(Generalized Akash) 
643.3321 651.1476 643.5821 

0.0380 

(0.9439) 

0.2557 

(0.9673) 

0.0535 

(0.9372) 

Lognormal 642.348 647.558 642.4717 
0.05422 

(0.8514) 

0.4088 

(0.8396) 

0.0564 

(0.9078) 

Akash 643.9292 646.5344 643.97 
0.2168 

(0.2373) 

1.3789 

(0.2082) 

0.10023 

(0.2676) 

Gamma 638.6002 643.8103 638.724 
0.0288 

(0.9805) 

0.1856 

(0.9939) 

0.0425 

(0.9936) 

Weibull 641.4614 646.6717 641.5851 
0.0610 

(0.8086) 

0.4056 

(0.8428) 

0.0578 

(0.8921) 

Janardan 638.7764 643.9868 638.9001 
0.0272 

(0.9847) 

0.1835 

(0.9943) 

0.0413 

(0.9956) 
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Figure 8: Model Fitting of Probability Distributions under Study 

 

CONCLUSION 
 

 In this study, a few mixed probability distributions are developed to model  

lifetime data. The developed distributions can cover right-skewed and left-skewed 

unimodal data at specific parameter values. Proposed mixture models have better flexibility 

than existing mixture distributions like Lindley, Akash, and Janardhan distributions.  

In light of this, we can conclude that changing the component has positive effects  

rather than altering the proportions of the mixed distribution. And we develop the 

formulations for essential statistical quantities, including mean, variance, moments, 

moment-generating functions, etc. Further, a simulation study was also conducted  

for all the proposed models, and the parameter estimation of the proposed probability 

distributions was estimated using the method of maximum likelihood estimation. A  

real-time dataset was utilized to show the usefulness of the proposed mixture of 

distributions for modeling skewed data. 
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