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ABSTRACT

In data analysis, we cannot expect the data under study to always follow a symmetric
probability distribution; they can have a skewed probability distribution. Modeling
skewed data is a challenging task for data scientists. A mixture of probability distributions
is a better option for modelling skewed data. In this study, we generated a few mixtures
of probability distributions using the exponential as the first fixed component and
Gompertz, Lindley, and log-normal distributions as the second component for modelling
skewed data. We also examined the characteristics of mixed probability distributions.
The maximum likelihood method was used to estimate the unknown parameters.
As a result, all three mixture models have a right-skewed pattern, which provides a
better fit than existing distributions. Finally, we used real-time datasets to model skewed
data.
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I. INTRODUCTION

In this modern era, numerous probability distributions are available in the literature,
and a new family of probability distributions is generated every day using various methods
such as the transformation method, composite method, beta-generated method, method of
adding parameters to an existing probability distribution, transformed-transformer method
(T-X family), method of generating skewed probability distributions, and finite mixture
models. In Statistics, data are expressed as a frequency distribution function that
displays the range of potential values for a variable together with its frequency. Practically
speaking, not all real datasets can be modeled well using traditional probability
distributions. The development of a new class of flexible probability distributions is
required for these types of datasets. We are developing a new class of distributions using a
variety of techniques because these probability distributions are more flexible than
traditional distributions. The finite mixture model is used by several authors to model
skewed datasets.
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Let X ={x;,i =12,...,n} be a random sample of size n obtained from an
m-component finite mixture.

f(x;;0) = Z w; g;(x;,0)
im1

where,

gi(x;, 8) = probability density or mass function
w; are nonnegative quantities

such that wy; + wyo+...+w,, =1

(le)0<w; <1fori=12,.m

Furthermore, the two-component finite mixing model is.

f(x) = wig1(x) + w2 g2(x) (1.1

The first major analyses using mixture models were carried out by Karl Pearson [30],
a well-known biometrician; who fitted a proportional mixture of two normal probability
density functions with different means u; and u, and different variances o2 and o7
in proportions m; and m,. The finite mixture model is also used by Lindley [22] to
create the Lindley distribution. For the Lindley distribution, a two-component mixture
model was used to generate the distribution. An exponential distribution with a scale
parameter of 8 and a gamma distribution with a shape parameter of 2 and a scale parameter

of 6 are the two components with proportions - L ﬁ. The Table below presents a
list of mixed models developed using exponential and gamma distributions with various

weights.
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Table 1
Two-Component Mixture of Probability Distributions
Author(s) Model Component | Component Weﬂghtage Ref.
1 2 (wy, =1—wy)
Rama Shanker . Exponential | Gamma 0
(2013) Sushila (/) 2, 0/a) wy =g | 138
Rama Shanker Janardan | Exponential | Gamma b [39]
etal., (2013) distribution (6/a) (2, 6/a) 1= o142
Exponential | Gamma 62
Shanker (2015 Akash = 40
( ) (9) (3, 9) Wy 92 1 2 [ ]
Rama Shanker Shanker | Exponential | Gamma _ 62 [32]
(2015) distribution 0) (2, 0) W1=592 1
Rama Exponential Gamma 63
Shanker (2017) | gistribution | (6) (@, 0) wi =z | B
Shanker and Ishita Exponential | Gamma _ 63 [42]
Shukla (2017) | distribution 0) (3, 0) W1=595 15
Ram Awadh| Exponential Gamma 28
Shukla (2018) | gicribution | (A ©n | Mi=wr0 | Y
Pranav Exponential Gamma 6*
Shukla (2018) | yicribution | (6) @, 0) w =z |43
Kamlesh Kumar Shukla | Exponential | Gamma | "* a1
Shukla and Rama distribution (0) (a+1, 0) LS )
Shanker (2019) ’ et (a4 1)
Shraa and Al- Darna Exponential |  Gamma 2a? [7]
Omari (2019) distribution (8/a) (3, 6/a) Wi = 202 + 92
Benrabia and Alzoubi | Exponential | Gamma __aB [24]
Alzoubi (2022) | distribution (B) (a-1, B) T B+
Mohammed
Benrabia and Loai | Benrabia | Exponential | Gamma - a [25]
M.A. Alzoubi | distribution B) (a-1, B) T a+p
(2022)
The three-component mixture models are presented below:
Table 2
Three-Component Mixture Distribution
Component 1 Component 2 Component 3
Author(s) Model with the_ with the_ with the_ Ref.
corresponding | corresponding | corresponding
weightage weight weight
Shanker | Aradhana Exponential (6) Gamma (2, 0) Gamma (2, 0)
(2016) | distribution | w, = — ___ % -2 [34]
T 912042 " "0 +20 42| T 67 42042
Shanker Sujatha Exponential (6) Gamma (2, 0) Gamma (3, 0)
(2015) | distribution | w, = — % | w=— % |, -2 |[4]
MiTgrier2 | "2 T 024042 | T 071012
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Likewise, four-component mixture models are available in the literature. Gharaibeh

(2021) introduced the Gharaibeh distribution using four components i.e., exponential (8),
6

gamma (2,0), gamma (4,6), and gamma (6,0) with proportions w; = B

B* B? 1

w, = W, W3 = W, and, W, = W. Rama Shanker [33] also

introduced an Amarendra distribution and the four components are exponential (8),
93

gamma (2, 8), gamma (3, 8), and gamma (4, 8) with the proportions of w; = FERVIICYIvE

_ 62 _ 20

= 9316242046’ V3 T 9316242046
When we change the proportion of each component, it gives different shapes to the
models and changes the characteristics of the mixture distribution. Therefore, the key goal
of this study is to propose a new mixture of probability distributions by changing the
components and studying their essential characteristics. So, we fixed the first component
as an exponential distribution with the scale parameter A and the second component as the
different choices of different distributions with proportions of ¢ and 1 — «.

Wy and, w, = respectively.

63+62+20+6

This paper is structured as follows: A mixture of Exponential and Lindley
(Exp-Lindley) distributions with some characteristics are introduced in Section 2.
Section 3 deals with the properties of a mixture of Exponential and Gompertz
(Exp-Gompertz). Section 4 presents a combination of exponential and log-normal
(Exp-lognormal) distributions with their properties. Section 5 carries out simulation
studies. Finally, real-time data are used for the proposed distributions in Section 6.

Il. EXP-LINDLEY
The probability density function (pdf) of the Exp-Lindley distribution is

6%2(1 — a)(x + 1)e %
0+1

+ale™ x>0 60=>01=>0,a=0
(2.1)

Equation (2.1) is a mixture of exponential distribution with scale parameter 1 and
Lindley distribution with scale parameter 8, and their mixing proportions are « and 1 — a.

fG0,4,a) =

The corresponding cumulative distribution function (cdf) of the Exp-Lindley is

((9 +D(e™ —a)e®™ + (a — 1DO(x + De™ + (a — 1)6’1") e~ (0+Dx
6+1

F(x) =
22)
Figure 1 shows the possible shapes of the pdf and cdf of the Exp-Lindley distribution

for various parameter values. The Lindley and Exponential distributions are special cases
of the Exp-Lindley distribution.
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Figure 1: Various Shapes of pdf and cdf of the Exp-Lindley Distribution
with Different Parameter Values

Let X be a continuous random variable with pdf f(x) and F(x). The survival function
(sf) and Hazard Function (hf) of X are.

0+1— ((e +1)(e™ — a)e®™ + (@ — 1)(Ox + 0 + 1)e’1x) e~ (0+x
Sx) =

6+1
(2.3)
B = 02(1 —a)(x + De % + ale™ (0 + 1)
) = 0 +1)—((0+ D(e™ — a)et + (a — 1)(0x + 0 + 1)e?x)e~@+Mx
(2.4)

Figure 2 shows the various shapes of the survival and hazard functions of the
Exp-Lindley distribution for various parameter values.
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Figure 2: Various Shapes of the Survival and Hazard Functions of the
Exp-Lindley Distribution for Different Parameter Values
The rt* moment about the origin (raw moments) has been obtained as
’l—-a)[IF'(r+1) I'(r+2) rr+1)
9+1 [ 9r+1 9r+2 a yia
When r = 1,2,3,4 then we obtain the first four moments as follows:

EX") = (2.5)

The first four moments of Exp-Lindley distribution
1-a)@+2)1+a(0+1)6
(6 +1)62

2(a83 + ab? + (1 — a)2?0 + (3 — 3a)2?)
CEENEE

6(ab*+ af®+ (1 —a)230 + (4 — 4a)23)
0+ 1)o313

24(af® + ab* + (1 — a)2*6 + (5 — 5a)1%)
(6 + 1)6*2*

The variance of the Exp-Lindley distribution is obtained as
@+1DA - )26 +6) + 2a(6 +1)6?)
—((1 = a)(0 + 2)A + a(6 + 1)6)"

(6 + 1)26222

Using the above moments, the coefficient of variation and index of dispersion of the
Exp-Lindley distribution were obtained using closed-form expressions. The index of
dispersion (DI) is defined as the variance-to-mean ratio. If the DI value is less than one,

Mean(u) = E(X) =

pp = E(X?) =

ps = E(X?) =

we=EX") =

Variance =
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the model is suitable for under-dispersed datasets. If the DI value is greater than 1, the
model is suitable for over-dispersed datasets.

The coefficient of variation and index of dispersion for the Exp-Lindley distribution is
obtained as

/(9 + 1)(2(1 — ) (26 + 6) + 2a(6 + 1)92)\%
—((1 =)0 + 2)A + a(6 + 1)6)" |

(6 +1)62| 6+ 1)2672 /

CcV =

1-a)@+2)1+ a6 +1)6
0+ 1D(A*(1 —a)(260 + 6) + 2a(6 + 1)6?)

—((1 = &) (0 + 2)A + a(8 + 1)8)°
@ + 126272

6 + 1)

2

DI(y) = = =
n=-r=

Q-a)@+2)A+a(6+1)0
The rt" incomplete moment for Exp-Lindley distribution is given as
(a—Dr@r+20y)—(a—1)r+20)
076+ 1)
(a—1)(r(r+1,0y) —I'(r+10)6"
+
0+1
a(l(r+1,4y) = I'(r+1,0)) (2.6)
AT'
The first incomplete moment of the Exp-Lindley distribution is
((a26? + a28)y + ab? + ad)eb +
<(1 — )A0%y? + ((1 — )26 + (2 — 2a)w)y> N Gt
+(1 - )26 + (2 - 2a)A
+a0? + (1 - )1+ )8 + (2 — 2a)2
20(1 + 6)
The moment-generating function of the Exp-Lindley distribution is

¢r(x) =

¢1(x) =

[oe]

tt(02(1—a)[r(i+1) TI@i+2) rdi+1
My (©) = ZF( 5+1 | g1 g |TYT x ) 27
i=0
The characteristic function of the Exp-Lindley distribution is
Stk (02(1—a)[T(k+1) T'(k+2)] Tk+1)
Px(0) = Z F( 6 +1 [ g1 I BT ) 28)

i=0

The cumulant generating function of the Exp-Lindley distribution is
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= t (021 —a)[I(i+1) TG+2)7 Ti+1)
5@ = [ toge (7( 6+ 1 [ i T givz ] e ) @9)
i=0
The first and n"-order statistics of the Exp-Lindley distribution are given by
n[02(1 — a)(x + 1)e % + ale ™ (6 + 1)]

fxy () = nfy(0)[1 - Fy(x)]®™ D = e

I[(Q +1) - <(9 + (e ~a)e™ + >e—(9+/1)x ]I
| (@ —1)0(x + Ve + (a — De* |

6+1

(n-1)

n[62(1 — a)(x + 1)e ™% + ale (0 + 1)]

fxom ) = nfy () [Fx(x)]®V =

@+1)
(n-1)
<(9 + D(e™ —a)e + )e_(9+,1)x "
(@ —1)8(x + De™ + (a — 1e™
6+1

Parameters 6, A, and « are estimated using the Maximum Likelihood Estimation (MLE)
method. Let x,, x,,...,x, be a random sample from the Exp-Lindley distribution. Then
the log-likelihood function is given by

6%2(1 — a)(x + 1)e %

—-Ax
0 +1 ate

glx) =

n
L(x, 0,4, @) = 1_[ 9(x;, 0,1, @)
i=1

L TT/(02 = ) (x; + De®i + (6 + Dare™
B ﬂ( 6+1 >

= (6)"?1_[[92(1 —@)(x; + 1e~0% + (0 + l)a)le"lxi]>

The respective sample log-likelihood function is
logL(x;,0,4,a) =logn—1log(6+1)
n
+ Z log[6%(1 — a)(x; + 1)e™%%i + (6 + 1)are *i]
i=1

Now, by differentiating w.r.t. 8, 1, and a, we can write

dloglL i A0 + e i — 0%(x; + 1)e 0%
[0%(

= =0
oa L 1—a)(x; + De % + (0 + 1)ate ]
i=



Sakthivel and Vidhya 89

., —x;02(1 — a)(x; + 1)e 0%
Ologh -1 +2(1 - a)(x + Dhe P +ate ™t
0  (0+1)s ; 02(1 — a)(x; + De=9% + (6 + Date—*xi
i=

dlogLl i a6 + Deb>i(x;1 — 1)
oA [

= =0
02(1 — a)(x; + Ve 9% + (0 + 1)ate ]

i=1
The above nonlinear system of equations needs to be solved to obtain the ML
estimates of the unknown parameters. Nonlinear optimization procedures are frequently
more convenient for the numerical optimization of the sample likelihood function.
R programming can be used to numerically solve these equations.

IHHI.LEXP-GOMPERTZ
The pdf for the Exp-Gompertz distribution is
f(x) = 61e ™ + (1 — O)bnexp(n + bx — ne) (3.1)

The mixture of exponential distribution with scale parameter A and Gompertz
distribution with scale parameter b and shape parameter n with their mixing proportions of
6 and 1 — 6 is given in Equation (3.1). The corresponding cdf of the Exp-Gompertz
distribution is

F(x) = (€70 — eMe ™ + e~ (eM — 9) (32)
Forx > 0,6 >0,1>0,b>0,7>0

Figure 3 displays the possible shapes of the pdf and cdf of the Exp-Gompertz
distribution for various parameter values. The Gompertz distribution is a special case of
the Exp-Gompertz distribution when 6 = 0; and when 6 = 1 it becomes an exponential
distribution.
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Figure 3: Various Shapes of pdf and cdf of Exp-Gompertz Distribution
for Different Parameter Values
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Let X be a continuous random variable with pdf f(x) and F(x). The survival function
and hazard Function of X is

Sy =1- ((e"e —eMe e 4 M (e — 6)) (3.3)

6de=** + (1 — )by exp(n + bx — neP~)
1- ((e’79 —eM)e e 4 g=Ax(eAx — 9))

h(x) =

(3.4)

Survival Function HazardFunction

j'3/!1!):00515375 — 821nb=03051535
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x x

Figure 4: Various Shapes of sf and hf of Exp-Gompertz Distribution
for Different Parameter Values

Figure 4 displays the various shapes of the sf and hf of the Exp-Gompertz distribution
for various parameter values. The hazard function of the Exp-Gompertz distribution can
have different shapes: decreasing hf, increasing hf, decreasing hf, and increasing hf .

The cumulative hazard function is given by

H(x) = —log (1 — <(e’79 —eMNeme™ 4 e (e — 9))) (3.5)

The reversed hazard rate is given by
6le=™* + (1 — 0)bn exp(n + bx — ne’®)
(eng — eM)e e + e=2x(edx — @)

Wang et al. (2003) offered a log-odds rate-based model for time to failure, as well as
some characterization of failure time distributions. The model can be used to study the
distribution of time to failure by modeling the failure process in terms of the log odds rate.
The odds function is expressed as

T(x) =

(3.6)
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(€"9 — eMe 1™ + e ™ (e?* - 0)

1-— ((e"Q — eM)e—me 4 g—Ax(glx 9))

To(x) = (3.7

The log-odds function is given by
(e"g — e”)e‘”ebx + e"lx(e“ — 9)
1- ((3”9 —eM)e e 4 g=Ax(eAx — 9))

= log ((eng — e”)e—neb" n e—/lx(e/lx _ 9)>
— lOg <1 — ((3779 — en)e—nebx + e—,lx(elx _ 0))) (38)

The log-odds rate is defined as
6le ™ + (1 — )by exp(n + bx — ne’®)

LO(x) = log

LOR(x) =

(1 a ((e779 —eMe ™ + e~ Mx(ehr — 9))>2 9

The MLE method is utilized to estimate unknown parameters 6, 4, b, and i as we used
in Section 3.

IV.EXP-LOGNORMAL

The Exp-lognormal distribution is the mixture of Exponential distribution with scale
parameter A and lognormal distribution having location parameter p and scale parameter
o with their mixing proportions of 8 and 1 — 0 is given in Equation (4.1). The pdf and
cdf of the Exp-lognormal distributions are

—(In(x)-p)?
(1-6)e 27 (4.1)

xam
V2u —+2 ln(x))
20

f(x) = 61e ™ +

CE 1)erf< t0+1 (4.2)

F(x) = — Qe

2
Forx >0,6 >0,A>0,u>0,0>0

Figure 5 displays the possible shapes of the pdf and cdf of the Exp-lognormal
distribution for the various parameter values.
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Figure 5: Various Shapes of pdf and cdf of Exp-Lognormal Distribution
for Different Parameter Values

Let X be a continuous random variable with pdf f(x) and F(x). The survival function
and hazard Function of X is given as

2 - ((9 — Derf <\/§,u—2—\§ln(x)) +6+ 1) + 20

(4.3)
S(x) = >
1-0) —(ln(X)Z—u)2
2( re—r 4 =227
¢ xoV2n
h(x) = (4.4)

2— ((9 — Derf <ﬁ“_2—‘/fl"(x)) +6+ 1) + 20ex

Figure 6 shows the different forms of the survival and hazard functions of the
Exp-lognormal distribution for the different parameter values. The hazard function of the
exp-lognormal distribution can have a decreasing and constant shape.
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Figure 6: Various Shapes of the Survival Function and Hazard Function of
Exp-Lognormal Distribution for Different Parameter Values

Let a random variable X~Exp-lognormal (6,4, ,0) then Renyi entropy of X is
defined as
1

Ix(n) = -7

logj f1(x)dx; n>0n+1
0

—(n)-w>\ "
1 ® [ OAxo\2me ™ + (1 — 0)e” 202
logj
0

1-7 xo\2m

1 1 @
= log 7 j x~1 (9/1xm/ 2me™H*
I-n (ov2m)" Jo

—(n-w?\\"
+(1—-60)e 202 )) dx) (4.5)

The application of stochastic ordering to compare the behaviors of positive continuous
random variables is quite beneficial. If a random variable X is less than a random variable
Y then

dx

(i) Stochastic order (X < Y) if Fx(x) = Fy(y) forall x

(ii) Hazard rate order (X <, Y) if hy(x) = hy(y) for all x

(iii) Mean residual life order (X <,,,; Y) if mx(x) = my(y) forall x
fx()

()

The stochastic ordering of distributions was discovered by Shaked and Shanthi Kumar
(1994), who reached the following findings.

(iv)Likelihood ratio order(X <;, Y) if decreases in x.
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X<, VYo2X<,V=>X<nY

X<g7Y

The Exp-lognormal distribution was sorted according to the strongest 'likelihood ratio'.
Let X~Exp-lognormal (64,44, 14, 0¢) and Y~Exp-lognormal (6,,1,, u,,0,). If, 6; = 8,
then X <. Yhence X <, Y, X <, Yand X <, Y. We have

—(n()-py)?
o, (Glllxalx/ZHe_’ll" +(1—-0)e 207 )

fx(x) _ 45)
) —nG)-1)? :
0 <9212y0'2V27T€_12y +(1-6,)e 202° >
[ —(n(x)-p)* ]
f (X) | 0'2 <9111x0'1 VZTL'e_Alx + (1 b 91)3 20’1 |
X —
fog ) fog —nO)- Hz)z .7
01 (92/12310'2\/ 2me=42Y + (1 —6,)e  202°
—(n(x)— u1)2
X
log fx () =log| o, (91/11x01v 2me™M* 4+ (1 —6,)e 201°
&)
—(In(y)-uz)?
—log| oy <92/12y0'2V me2Y + (1 —60,)e 2027 )
—(In(x)-p41)?
A-6e 27 (=In(x) —w)
2| o%x
i 0g fx(x) —0,7%,x0,\2me ™ M* + 0, 1,0,V 2meM*
RN N —(InG)—p)?
o, | 014, x0V2me~M* + (1 — 60 )e 201
—(In()-pp)?
(A —-06y)e 292"  (=In(y)—u)
% B 0%y
_92/122)’0'2 Zne_lzy + 92).20_2 27‘[6_’123’ (48)

—(In()—p,)?
[01 <92/12yo'2\/2ne"12y +(1—6,)e 202? >]

Now if A, =4, =4, uy=u,=u, o,=0,=a, 0;=0, then it implies

E 1’:’(((’6; < 0. This means that X <, Y and hence X <, ¥V, X <., Yand X <, Y.

The maximum likelihood estimation approach is used to estimate the parameters
6, 4, 1, and o as we mentioned in section 3.
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V. SIMULATION STUDY

The performance of certain estimates over predetermined replications at different
sample sizes is assessed in this section using simulation analysis. To do this, a simulation
procedure is performed 1000 times with various sample sizes (n = 25, 50, 75, 100, 200,
and 500). The purpose of this study is to assess how well the MLEs perform for the
Exp-Lindley, Exp-Gompertz, and Exp-Lognormal distribution parameters. The inversion
approach for creating random data from the suggested distributions fails because the
equation F(x) = u, where u is an observation from the uniform distribution on (0,1),
cannot be solved explicitly in x. We therefore used Monte Carlo simulation to generate the
samples. R programming language is used to create samples from the proposed
distributions. For the generated samples, we calculated the mean value, average biases
(BIAS), and root-mean-square errors (RMSES).

The results of the simulations are shown in Tables 3-5, along with the mean, bias, and
root mean square error (RMSE) for the parameters of the Exp-Lindley, Exp-Gompertz, and
Exp-Lognormal distributions, respectively. According to Tables 3-5, when sample size n
grows, both bias and RMSE often decrease.

Table 3
Simulation Analysis: Mean, Bias, and RMSE Values for
Exp-Lindley Distributions with various Sample Sizes

Case (i): a=0.5, 2=0.9, 6=1.2 Case (ii): a=0.2, 2=0.5, 6=1

A‘ge.’age RMSE | Mean | AYerage | pusp
ias Bias

0.500194| 0.181623 | 0.223342 | 0.499814 | 0.687172 |0.257297
0.643842| 0.316382 | 1.031072 | 0.871461 | 0.274705 |2.678434
0.048155| 0.023231 | 0.164498 | 0.053211 | 0.040089 |0.078601
0.498073| 0.133598 | 0.160337 | 0.482685 | 0.237683 |0.159649
0.583805| 0.170427 | 1.000245 | 0.556491 | 0.063526 |1.132306
0.037649| 0.004239 | 0.122779 | 0.052229 | 0.029515 |0.053315
0.490104| 0.075959 | 0.100396 | 0.405336 | 0.039511 |0.103186
0.530404| 0.098556 | 0.675153 | 0.539146 | 0.019419 |0.345243
0.018821| 0.004147 | 0.054381 | 0.050584 | 0.024524 |0.046207
0.482748| 0.055871 | 0.015065 | 0.399839 | 0.015992 |0.089874
0.520125| 0.037979 | 0.358396 | 0.524768 | 0.013950 |0.272702
0.014824| 0.001554 | 0.030165 | 0.046579 | 0.006415 |0.035376
0.458752| 0.049522 | 0.004258 | 0.301578 | 0.015179 |0.041455
0.503649| 0.015480 | 0.246597 | 0.506076 | 0.005527 |0.084405
0.009854| 0.000564 | 0.001269 | 0.003805 | 0.003714 |0.005197

n |Parameters| Mean

25

50

75

100

200

ol ol ||| ||y |||
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Table 4
Simulation Analysis: Mean, Bias, and RMSE Values for
Exp-Gompertz Distributions with various Sample Sizes

Case (i): 6=0.5, 2=0.8, Case (ii): 6=0.1, 2=0.5,
n=1p=15 n=1, p=05

Average RMSE Mean Average

Bias Bias RMSE

n | Parameters Mean

1.040784 | 0.697213 | 1.135451 | 0.257801 | 0.255498 | 0.299511

- 14.40554 | 6.701684 | 7.738910 | 7.432411 | 7.264812 | 6.079522

0.674863 | 0.257596 | 1.365579 | 0.158241 | 0.054871 | 0.475635

6.541210 | 2.149390 | 7.367740 | 5.114866 | 0.851141 | 2.902813

0.773491 | 0.455551 | 0.608552 | 0.222767 | 0.150769 | 0.239547

50 8.833386 | 5.204027 | 5.296060 | 5.049495 | 6.444535 | 5.435474

0.436487 | 0.222420 | 1.018249 | 0.092305 | 0.026607 | 0.207198

4.800180 | 1.811460 | 6.946020 | 4.100889 | 0.690195 | 2.486313

0.503769 | 0.165611 | 0.375133 | 0.273765 | 0.140879 | 0.200128

- 8.548397 | 2.965199 | 2.357460 | 4.790583 | 5.613676 | 4.921408

0.279290 | 0.175145 | 0.980084 | 0.076895 | 0.014509 | 0.120236

2.141877 | 0.884752 | 1.130480 | 3.93403 | 0.599944 | 1.218631

0.334439 | 0.096434 | 0.348335 | 0.211156 | 0.027315 | 0.164801

100 4.404348 | 1.133457 | 1.653921 | 2.686431 | 4.192153 | 1.910273

0.196789 | 0.153904 | 0.551145 | 0.069269 | 0.004441 | 0.119125

1.296303 | 0.516518 | 0.736998 | 3.510842 | 0.484854 | 1.092859

0.177295 | 0.057267 | 0.170949 | 0.148723 | 0.015485 | 0.157342

200 2.849778 | 0.159136 | 0.852861 | 1.347856 | 3.094763 | 0.130019

0.037758 | 0.035116 | 0.062074 | 0.057672 | 0.003054 | 0.109089

DS (> | DR[| DS | > DS ||| DI | >

0.809634 | 0.027483 | 0.322992 | 3.423885 | 0.228846 | 0.986079
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Table 5
Simulation Analysis: Mean, Bias, and RMSE Values for
Exp-Lognormal Distributions with Various Sample Sizes
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Case (i): 0=0.1, 2=0.1,

u=1,6=15

Case (ii): 0=0.1, 2=0.5,
p=256=05

Parameters

Mean

Average
Bias

RMSE

Average

Bias RMSE

Mean

50

0.515175

0.073546

0.078325

0.513665 | 0.006336 | 0.070306

3.758278

3.249234

0.899263

0.351814 | 0.090877 | 0.291851

2.131613

0.055316

0.321229

3.121311 | 0.001874 | 0.025949

0.062528

0.062421

0.349985

0.008551 | 0.008477 | 0.046100

75

0.513458

0.035129

0.062996

0.505919 | 0.005252 | 0.057799

0.633478

0.528866

0.708708

0.350501 | 0.080426 | 0.245596

2.131593

0.000313

0.000481

3.022693 | 0.000131 | 0.000373

0.000154

0.000104

0.000141

9.80E-05 | 0.000194 | 0.000199

100

0.510654

0.023315

0.054371

0.500819 | 0.001919 | 0.052781

0.234908

0.163217

0.124418

0.300584 | 0.057832 | 0.237483

2.131542

0.000148

0.000199

3.022311 | 0.000121 | 0.000277

9.58E-05

3.17E-05

7.47E-05

9.30E-05 | 3.09E-05 | 5.16E-05

200

0.510301

0.022738

0.049393

0.500494 | 0.001451 | 0.037098

0.113242

0.076996

0.010288

0.270768 | 0.015535 | 0.200898

2.131521

6.39E-05

0.000157

3.022119 | 1.13E-04 | 0.000238

6.73E-05

1.14E-05

1.46E-05

8.46E-05 | 2.63E-05 | 4.02E-05

500

0.506501

0.010282

0.036466

0.405002 | 0.001051 | 0.015745

0.030371

0.004695

0.000199

0.252151 | 0.007832 | 0.187451

2.076166

4.63E-05

6.62E-05

3.001258 | 8.05E-05 | 1.58E-04

Q |E (| |Q (|9 |E (> |9 |E|>|Dd|[QQ | | >

5.80E-05

5.31E-06

1.34E-05

7.46E-05 | 1.63E-05 | 3.17E-05
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VI.APPLICATION

In this section, two real-time datasets are used to illustrate the flexibility of the proposed
distribution. These conclusions can be strengthened by a graphical study. You may analyze
how well our datasets fit our distribution using the empirical cdf plots and pdf plots.

Dataset 1: It represents the uncensored data set corresponding to remission times (in
months) of a random sample of 128 patients with bladder cancer patients. This data was
previously used by Lee and Wang [21].

For this dataset, we compared the modeling fit of the proposed distribution with the
existing mixture probability distributions. As we said in Section I, the Akash, Lindley, and
Exp-Gamma distributions are a combination of the exponential and gamma distributions.
Our proposed models are a combination of the exponential and Lindley distributions and a
combination of the exponential and Gompertz distributions, and Table 7 shows that the
proposed models have lower criteria values than the existing models and Figure 7 shows
that the proposed model fits the data better than existing models.

The list of the distribution we have taken for comparison is (i) Exp-Lindley, (ii) Exp-
Gompertz, (iii) Lognormal, (iv) Akash, (v) Exp-Gamma (Generalized Akash), and (Vi)
Lindley distribution. To compare the goodness of fit, we used Akaike Information Criteria,
corrected Akaike information criteria, Bayesian information criteria, Kolmogorov-
Smirnov, CVM, and Anderson Darling. The measures are computed and presented below
in Table 6.

Table 6
Parameter Estimates of the Distributions
Model Parameter Estimate -2LL
Exp-Gompertz @ =0.9600,4 = 01123 | g5 4359
7 = 0.03496,b = 7.8525
, @ = 0.9674,1 = 0.1131
Exp-Lindl a =170/ 1
xp-Lindley 5 = 25957 805.1309
Lognormal 4 =15109,6 = 1.2819 813.605
Akash 6 = 0.3375 903.990
Exp-Gamma 6 =3.9329,1=0.1114
(Generalized Akash) B = 0.5557 805.1486
Lindley 6 =0.2129 835.8477
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Table 7
Information Criteria for Model Selection
Model AIC AlCc BIC CVM AD KS
0.0886 | 0.5364 | 0.05832
Exp-Gompertz 811.04 | 811.12 | 820.22 (0.6446) | (0.7097) | (0.7767)
. 0.1282 | 0.7363 | 0.0695
Exp-Lindley 811.13 | 811.99 | 819.69 (0.464) | (0.529) | (0.5664)
0.3132 1.8173 | 0.0999
Lognormal 817.60 | 818.56 | 823.309 (0.1241) | (0.1161) | (0.155)
2.1502 17.867 | 0.2097
Akash 905.99 | 906.52 | 908.84 (0.000) | (0.000) | (0.000)
Exp-Gamma 0.0901 | 0.7236 | 0.0567
(Generalized Akash) | 81115 | 811342/ 819.70 | ) 6363y | (0.5301) | (0.8055)
. 0.8098 | 5.8689 | 0.1336
Lindley 837.85 | 838.24 | 840.70 (0.0068) | (0.0011) | (0.0207)
Density function Distribution Function
g 1 — Exp-Gompertz e 4 =
Exp-Lindiey
Log ﬁhcrnu\
§ 5 E:E:Gan\md :;
C © = Empincal
z ° = 1| Eotmte |
° i 4 S cuve ?Esgdmnm
C‘) 20 4; 60 8‘0 26 46 8‘0

data

x

Figure 7: Model Fitting of Probability Distributions under Study

Dataset 2: It represents the waiting times (in minutes) before service for 100 bank
customers. (Refer Ademola et al. [2]). For this dataset, we have compared the proposed
model with existing mixture distributions like Akash, Exp-Gamma, and Janarthan
distributions and with some other common distributions like Weibull, lognormal, and
gamma distributions. The list of distributions we have taken for comparison is (i) Exp-
Lognormal, (ii) Exp-Gamma, (iii) Lognormal, (iv) Akash, (v) Gamma, (vi) Weibull, and
(vii) Janardan distributions. The estimated parameter values are tabulated and presented in
Table 8 and the measures are computed and presented below in Table 9.



100 An Empirical Study on Modeling Skewed Data Using a Mixture...

Table 8
Parameter Estimates of the Distributions
Model Parameter Estimate LL
6 =0.1829,1 = 0.1180
Exp-lognormal 1= 2.1005,5 = 0.6823 623.655
Exp-Qamma 6= 0.8!}595,1 = 0.0864, 637.332
(Generalized Akash) f =0.3241
Lognormal 4 =2.0211,6 = 0.7811 638.348
Akash 6 = 0.2953 641.9292
Gamma 1=2.0089,5 =0.2034 | 634.6002
Weibull k = 1.4585,1 = 10.9553 | 637.4614
Janardan 6 = 3.6588,& = 18.1497 | 634.7764
Table 9
Information Criteria for model selection
Model AlIC BIC AlCc CVM AD KS

0.0226 | 0.1605 | 0.0453
Exp-lognormal 628.655 | 628.655 | 628.234 (0.9941) | (0.9977) | (0.9865)

Exp-Gamma 0.0380 | 0.2557 | 0.0535
(Generalized Akash) | 843-3321 | 651.1476 1 643.5821 | (y 9459 | (0.9673) | (0.9372)

0.05422 | 0.4088 | 0.0564

Lognormal 642.348 | 647558 | 6424717 | (o0 | R0 | O o0rey
Akash 643.9202 | 646.5344 | 643.97 (8:%?2) ((1):3(7)22) (()6.1206072633
Gamma 638.6002 | 643.8103 | 638.724 (8:8532) (823328) (8:8352)
Weibull 641.4614 | 646.6717 | 6415851 (828;2) (822232) (8:;’3;%
Janardan 638.7764 | 643.9868 | 638.9001 | 00272 | 0-1835 | 0.0413

(0.9847) | (0.9943) | (0.9956)
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Figure 8: Model Fitting of Probability Distributions under Study

CONCLUSION

In this study, a few mixed probability distributions are developed to model
lifetime data. The developed distributions can cover right-skewed and left-skewed
unimodal data at specific parameter values. Proposed mixture models have better flexibility
than existing mixture distributions like Lindley, Akash, and Janardhan distributions.
In light of this, we can conclude that changing the component has positive effects
rather than altering the proportions of the mixed distribution. And we develop the
formulations for essential statistical quantities, including mean, variance, moments,
moment-generating functions, etc. Further, a simulation study was also conducted
for all the proposed models, and the parameter estimation of the proposed probability
distributions was estimated using the method of maximum likelihood estimation. A
real-time dataset was utilized to show the usefulness of the proposed mixture of
distributions for modeling skewed data.
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