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ABSTRACT 
 

 In Ken Brewer's book, Brewer(2002), he made a strong argument for the ubiquitous 
presence of a specific range of the coefficient of heteroscedasticity when modeling for 
'survey populations.' Basically, if each y-value were a cluster of smaller ones, the variance 
within the cluster would generally increase with larger predicted-y-values, in a systematic 

fashion. Thus the variance of 𝑌𝑖, or of 𝜀𝑖, tends to be larger for larger predicted-y-values. 

(Here we often use 𝑒𝑖 as a substitute for 𝜀𝑖.) So why don't we always see or discuss this 
heteroscedasticity? Here it is argued that there are several reasons: (1) Often it is not 
obvious, but it is there. (2) Often there is heteroscedasticity in the estimated residuals, but 
it is not considered important to the application. (3) It may be countered by model and/or 
data issues, which effectively reduce the coefficient of heteroscedasticity. Or (4) you may 
be looking at an example using artificial data designed to be homoscedastic. The point is 
that the dominance of OLS regression may be largely due to habit. Some informal papers 
have been placed on ResearchGate, under a "project" covering various issues related to 
this, as well as the estimation of the coefficient of heteroscedasticity in regression, which 
is another topic that was of interest to Ken Brewer, and sometimes may be used to 
definitively determine when there is heteroscedasticity and approximately to what degree. 
These issues are discussed here.  
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1. INTRODUCTION 
 

 Brewer(2002), mid-page 111, discussed in Knaub(2017b), shows predicted-y, and 
consequently y, as a conglomerate of small elements of predicted-y, plus their “errors,” so 

that each y, and predicted-y-value, 𝑦𝑖
∗,1 is a cluster, and the resulting variance of the total 

                                                 
1 y* is chosen here, as G.S. Maddala appeared to relatedly use it for the weighted least square 

predicted-y. See Maddala(2001). However, in practice here, it is used for different levels of 

heteroscedasticity, including 𝛾=0, which would be for homoscedasticity, usually written as �̂�. 

Also, when estimating the coefficient of heteroscedasticity, 𝛾, a preliminary predicted-y must  

be used, and the homoscedastic one is convenient. This is a size measure, and it is often  

referred to as z.  

mailto:jamesRknaub@gmail.com
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for the within cluster error of 𝑌𝑖 is approximately 𝑒0
2𝑦𝑖

∗2𝛾
,2 corresponding to equation 9.16, 

page 243 in Cochran(1977), 𝑆𝑤
2 =𝐴𝑀𝑔, discussed below, where g is twice 𝛾 (gamma), and 

𝛾 is the coefficient of heteroscedasticity. 𝑀 in Cochran(1977) is a cluster size. Here, 𝑀, 

𝑦𝑖
∗, or 𝑧𝑖, may be used as a size measure. Ken Brewer showed why gamma ranges from 0.5 

to 1.0, as historically observed (Cochran(1953), page 212). For the ratio estimator, which 
Ken and the author discussed, in practice you see this holds up very well. (At that point in 
the 1990s, the author tested this for electric power official statistics and found this range to 
generally be correct. Often, however, lower quality data for smaller establishments tended 

to artificially bring 𝛾 closer to 0.5, when sampling on a frequent basis, as it inflated the 
estimated residuals for those smaller respondents. See Knaub(2017a), slide 19.)  
 

 But for multiple regression, it appears that complexity makes it more difficult for 
predicted-y, as a size measure, to behave as predicted-y should with regard to 

heteroscedasticity of the 𝑌𝑖, or the estimated residuals, 𝑒𝑖, as a substitute for the 𝑌𝑖. Even 
the need for an intercept term can be problematic. Any model and/or data issue might 
impact heteroscedasticity, sometimes to enhance the effect, and sometimes to dampen it. 
Perhaps over-complexity might hide heteroscedasticity (Longley example in Section 8), 
and under-complexity might dampen it (arm strength example in Section 8). That would 
fall under point number 3 in the abstract. Model-unbiasedness might enter into 
consideration. However, there are other possibilities, as noted in points numbered 1, 2, and 
4. Points 1 and 2 indicate that we often may just not notice it if it isn't glaringly obvious. 
Some examples are explored in Knaub(2019), and here we explore further.  
 

 Here is an excerpt from a response on March 13, 2021 to a question on ResearchGate:  
https://www.researchgate.net/post/What_is_the_best_way_of_selecting_predictors_for_a
_regression_model_and_is_it_good_to_use_many_predictors_in_a_regression_model:  
"So, more predictors is not necessarily better or worse. The best set of predictors, working 
together, is best. (By the way, I think that when you have the best set of predictors, that 
you are also most likely to observe heteroscedasticity....)"  
 

 Knaub(2017b) and Knaub(2019) discuss the nature and magnitude of 

heteroscedasticity for regressions of form 𝑌𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾

′, where 𝛾′ is for 𝑉(𝑒𝑖), where 𝛾 

is for 𝑉(𝑌𝑖), and written informally and approximately here as 𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾
, as a follow 

up to Brewer(2002), mid-page 111. Heteroscedasticity in regression is to be expected. Here 
we look at some examples to see where we find it, and speculate as to why it occurs, or 
does not occur.  

                                                 
2 The general regression forms 𝑌𝑖 = 𝑦𝑖

∗ + 𝑒0𝑖
𝑦𝑖

∗𝛾
 and 𝑌𝑖 = 𝑦𝑖

∗ + 𝑒0𝑖
𝑧𝑖

𝛾
 will follow, the simplest 

case being 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, model-based ratio estimation. But this form will be approximate in 

an interesting way. Gamma, 𝛾, is the coefficient of heteroscedasticity. Weisberg(1980), pages 

100 and 101, notes the difference between 𝑉(𝛆) and 𝑉(𝐞). 𝛾 actually is for heteroscedasticity of 

𝑉(𝐘). When we do not have model misspecification, 𝑉(𝐘) = 𝑉(𝛆), as illustrated in an example 

in Thompson(2012), on page 106. When part of the variance of 𝑉(𝐘) is for the model, the 

coefficient of heteroscedasticity estimated for 𝑉(𝐞), say, 𝛾′, is slightly different from 𝛾. Then 

𝑌𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾′

. However, the approximate form is usually employed here: 𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾

, 

dropping the “prime” mark, but it usually should be there. Note that the difference between 𝛾 and 

𝛾′ may generally be too small to distinguish.  
 

https://www.researchgate.net/post/What_is_the_best_way_of_selecting_predictors_for_a_regression_model_and_is_it_good_to_use_many_predictors_in_a_regression_model
https://www.researchgate.net/post/What_is_the_best_way_of_selecting_predictors_for_a_regression_model_and_is_it_good_to_use_many_predictors_in_a_regression_model


James R. Knaub, Jr. 317 

2. STATEMENT OF THE ISSUE: RETAIL EXAMPLE  

BY KEN BREWER 
 

 In the middle of page 111, in Brewer(2002), he provides an example, illustrating why 

we can expect that 0.5 ≤ 𝛾 ≤ 1.0. (There appears to have been an editorial confusion at 

the end of the page with a comment about an exercise, but this is after the example and not 

needed.) Brewer’s succinct example illustrates that not only should we see 

heteroscedasticity, but that an empirical form found for what Cochran(1977) calls 

“agricultural surveys,” seen on page 243, is appropriate. The within cluster or within 

agricultural/crop plot variance shown there as equation 9.16, the “empirical formula” given 

as 𝑆𝑤
2 =𝐴𝑀𝑔, is approximately equivalent to 𝑒0

2𝑦∗2𝛾, or 𝑒0
2𝑧2𝛾 as noted in the introduction. 

Brewer(2002), page 111 states that 𝜎𝑖
2 ∝ 𝑥𝑖

2𝛾
 where 0.5 ≤ 𝛾 ≤ 1 (to be explained below), 

and points out that possible values of gamma were given at the end of section 5.2 (actually 

5.3), where it said that “…for most business populations…,” 𝛾 = 0.75 was often useful. 

For official energy statistics, the author found that would often be close, except that for a 

great many populations dealt with simultaneously, and frequently published, data quality 

problems from the smallest responders could artificially reduce the coefficient of 

heteroscedasticity (gamma, or 𝛾) to 0.5 or even smaller, because estimated residuals were 

artificially inflated near the origin by the data quality issues. At the end of section 5.3, page 

87, Brewer also said that for tree populations, 𝛾 = 1 appeared to be useful. He also 

encouraged very large sample sizes when trying to find an estimate of 𝛾. However, one can 

imagine that to do better than the default most people use, 𝛾 = 0, when we should have 

0.5 ≤ 𝛾 ≤ 1, should not be difficult.  
 

 Knaub(2017b) goes through some detail to discuss why 0.5 ≤ 𝛾 ≤ 1, and notes that in 

general, instead of 𝑥 as the size measure, 𝑧, we can use predicted-y. In the case of a ratio 

estimator, predicted-y is 𝑏𝑥. Because 𝑏 is a constant, we can use 𝑥. But in general, we 

should use predicted-y, the closest to the best predicted-y that we can obtain. This expands 

the notion that heteroscedasticity should be “the rule” beyond just “sample survey 

populations,” though that is not always apparent. Brewer(2002), page 111 shows how he 

explains his idea, which definitely is demonstrable for sample survey populations, and he 

writes further about this on pages 87, 126, 137, 142, 200, 201, and 203. This paper 

addresses when this might be expanded to other applications, but first, let us consider 

Brewer’s illustration of his idea on page 111 as to why 𝛾 falls in the range that it does, 

which does not include 0, i.e. homoscedasticity is not an option:  
 

 Brewer said to consider retail stores of various sizes, where a larger unit (store) could 

be considered to be an aggregation of smaller elements (stores). If all the smaller elements 

acted independently within a larger unit, then Brewer argues that the variances would be 

additive, so 𝜎𝑖
2 ∝ 𝑋𝑖, where 𝑋𝑖 represents the size of the cluster of smaller, independent 

stores. Brewer noted that 0.5 ≤ 𝛾 ≤ 1 for 𝜎𝑖
2 ∝ 𝑋𝑖

2𝛾
 is “commonly used” (page 111, 

referring to page 87), so this implies that the lower bound is 𝛾 = 0.5, since Brewer noted 

that no smaller value for 𝛾 could be reached unless the elements within the cluster differ 

from each other more than from elements of other clusters. Brewer also argues, all in the 

middle of page 111, that an upper bound would be 𝛾 = 1. Included in his argument is the 

thought that a case where 𝜎𝑖 increases faster than 𝑋𝑖 does not seem plausible. (Consider 

𝜎𝜖0
2 𝑥𝑖

2𝛾
. From Knaub(2017b), on page 3, we have approximately 𝜎𝑒0

2 𝑥𝑖
2𝛾

= 𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) =
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𝑉𝑎𝑟[∑ 𝑦𝑖,𝑗
𝑥𝑖
𝑗=1 ], and an argument for the two bounds is explained from there, though the 

argument for the upper bound is somewhat different.) Thus we think of each 𝑦-value as 

coming from a predicted-y sized cluster with accompanying estimated residual, where 

𝜎𝑖
2 = 𝜎𝑒0

2 𝑥𝑖
2𝛾

. (Consider the “gamma population model” in Chambers and Clark(2012), 

page 49.3) This paper considers extension to more complex models, where size measure 𝑧𝑖 

is no longer just 𝑏𝑥𝑖  or just 𝑥𝑖, but we strive for the best predicted-y or a good 

approximation to it, for our size measure. Note that when considering cluster sampling on 

page 243 of Cochran(1977), 𝑧𝑖= 𝑀 is the size measure in 𝑆𝑤
2 =𝐴𝑀𝑔. On page 111 in 

Brewer(2002), 𝑍𝑖 = 𝑋𝑖. Here 𝑍𝑖 = 𝑦𝑖
∗ where 𝑦𝑖

∗ is predicted-y. It should be the best 

weighted least squares predicted-y, but there are some problems with that. In the  

process of estimating 𝛾, we first use the homoscedastic predicted-y. (See Knaub(2019).) 

Further, below we will argue that one reason for not finding 𝛾 ≥ 0.5 may be a problem 

with the selected model, and thus we distinguish the achieved predicted-y from the ideal 

predicted-𝑦.  

  

3. IMPLICATIONS 
 

 Ironically, using the homoscedastic predicted-y to find an estimate of 𝛾 (gamma) is 

usually going to make little difference, as the coefficient of heteroscedasticity does not 

usually change the predicted-y values very much, especially with larger sample sizes where 

there is better symmetry for y-values about the regression. Changes for some individual 

predictions could be substantial, but will have less impact on 𝛾-estimation. However, it is 

proposed here that changes in the number and makeup of independent variables used, as 

well as other complexities in the model selection, may very well influence the value found 

for 𝛾. That will be discussed. For now, consider the simplest case of a proportional 

relationship between 𝑦 and one independent variable, 𝑥, with no intercept, a ratio-type 

model, where we will write, 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
. Here predicted-y is 𝑏𝑥𝑖 , and since only 

relative size matters, we use 𝑥𝑖 as the size measure. Cochran(1953), page 205, discusses 

measures of size in surveys. For a household survey, the cluster size, 𝑀𝑖, may be the 

number of people in a household. But for “Farms, banks, and restaurants ...,” in other 

words, establishments, and perhaps other cases, Cochran notes that the best measure of size 

may be the same data “item” on a previous census survey. Thus 𝑥𝑖 may be the same data 

item as measured by 𝑦𝑖, where the former is from a “previous census” and the latter is from 

a current sample. This works very well for 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, as demonstrated in cases 

found in Knaub(2017a). In such ratio model cases, 𝛾 is clearly in the range 0.5 ≤ 𝛾 ≤ 1, 

except in the most extreme cases of data quality issues for the smaller respondents, which 

increase estimated residuals near the origin. But when data quality is good, having a size 

measure, 𝑥𝑖, to function in the role of the predicted-y-values, as 𝑏𝑥𝑖, is nearly a perfect/ideal 

                                                 
3 Chambers and Clark(2012), pages 49-52, discusses the “gamma population model,” where we 

assume proportionality “…between Y and the size variable, Z…,” and independent y-values. 

There, equations 5.2a and 5.2b, respectively are 𝐸(𝑦𝑖|𝑧𝑖) = 𝛽𝑧𝑖  and 𝑉𝑎𝑟(𝑦𝑖|𝑧𝑖) = 𝜎2𝑧𝑖. When 

𝛾 = 0.5 we have the “ratio population model.” 𝛽 would then be such that we have the model-based 

classical ratio estimator, CRE, as reflected on page 126 in Brewer(2002). In Särndal, Swensson, and 

Wretman(1992), on pages 255-258, we see the general gamma population model presented as 

“alternative ratio models,” of which the (classical) ratio model is one case (with 𝛾 = 0).  
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predicted-y. Then 𝛾 is often in the range of 0.7 to 0.9. Using 𝛾 = 0.5 appeared robust for 

many cases found in Knaub(2017a). Results were generally not the best, but good, and in 

cases where data quality became problematic, useful when a great many small populations 

with small samples were considered on a frequent basis, using establishment surveys for 

purposes of producing official energy statistics. (It is very useful, as noted in 

Cochran(1953), at the bottom of page 205, to be able to use a different size measure, 𝑥𝑖, 

for each 𝑦𝑖, as opposed to a “general size measure,” which makes prediction so much better 

than unequal probability sampling for a multipurpose sample survey.) This is the type of 

situation where we have highly visible evidence that indeed it is true that 0.5 ≤ 𝛾 ≤ 1. So 

why would anyone assume homoscedasticity, i.e., 𝛾 = 0, for some other situation, when 

clearly we should have heteroscedasticity any time that predicted-y values vary? That is, 

we should have heteroscedasticity unless our model is the common mean model, as in 

Särndal, Swensson, and Wretman(1992), page 258-260, and also shown in Chambers and 

Clark(2012), page 20, “A Model for a Homogeneous Population,” where the y-values are 

independent, and equations 3.1a and 3.1b show that 𝐸(𝑦𝑖) = 𝜇, and 𝑉𝑎𝑟(𝑦𝑖) = 𝜎2. There 

𝛾 = 0 because the predicted-y are all identical, but elsewhere, it makes no sense.4 Yet 

homoscedasticity is often insisted upon, and may exist. How can that be? We will look at 

some examples later.  

 

4. SUMMARY OF REASONING FOR ESSENTIAL  

HETEROSCEDASTICITY 
 

 In Brewer(2002), on page 111, Ken Brewer showed why there should not be 

homoscedasticity in “sample survey populations,” but instead we should have 0.5 ≤ 𝛾 ≤

1, and 𝜎𝑖
2 ∝ 𝑥𝑖

2𝛾
. Cochran(1953), page 205 says that “…the best measure of size…” is 

often the same “item” from a previous census survey, 𝑥𝑖. The efficacy of this is certainly 

supported by Knaub(2017a), where this is and has been applied to massive numbers of 

small populations for the production of official energy statistics. Here we wish to show that 

the same logic extends to more complex regression, in general, but that certain other issues 

may arise. Examples will be considered to demonstrate these issues. The logic which Ken 

Brewer produced, which works well for 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, also extends to the more general 

case5 𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑦𝑖
∗𝛾

, whose better working form might be 𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾
. 

Heteroscedasticity here is such that every predicted-y value, being a cluster of infinitesimal 

elements, is ‘essential,’ owing only to the difference in sizes of predicted-y-values. See 

Knaub(2017b) regarding “essential heteroscedasticity,” and Knaub(2018) with regard to 

other influences on heteroscedasticity, data quality issues, and model issues, some 

enhancing and some degrading for 𝛾. Here we will discuss how model issues can actually 

                                                 
4 Särndal, Swensson, and Wretman(1992), Section 7.3.3. "Optimal Sampling Design for the 𝜋 

Weighted Ratio Estimator," on page 254 tells us that simple random sampling with a ratio 

estimator is most efficient if 𝛾 = 0, not the classical ratio estimator, where 𝛾 = 0.5 here. Thus, if 𝑥 

is a good predictor, we should not use simple random sampling with a classical ratio estimator, 

yet that has historically been the norm.  
5 Note that 𝑒0𝑖

𝑥𝑖
𝛾
, 𝑒0𝑖

𝑦𝑖
∗𝛾

, and 𝑒0𝑖
𝑧𝑖

𝛾
, would each be divided by √1 − ℎ𝑖, with the appropriate hat-

value, ℎ𝑖, in each case, depending upon the term representing the model variance part of 𝑉(𝑌𝑖). 

See hat-values, Section 5.7.  
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impact the quality of predicted-y regarding its ability to cause the associated estimated 

residuals to mimic the behavior that they ideally should. Thus they actually impact essential 

heteroscedasticity as well.  
 

Accordingly – remembering that 𝛾 𝑠ℎ𝑜𝑢𝑙𝑑 𝑟𝑒𝑎𝑙𝑙𝑦 𝑏𝑒 𝛾′:  
 

 For all population y-values for a given item, consider  
 

   𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑦𝑖
∗𝛾

  
 

  𝑦𝑖
∗ would be the “ideal” predicted value. It is a measure of size.  

 

 In practice, however, we may have inferior measures of size, but in any case, the 

measure of size is often designated as z. Thus,  
 

   𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾
  

 

 For the simplest case,  
 

   𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
  

 

 In that case, 𝑏 is absorbed in the 𝑒0 in the estimated residuals. We can say 𝑧 = 𝑥 instead 

of 𝑧 = 𝑏𝑥 here, because size is only relative.  
 

 Any predicted 𝑦, say 𝑦∗, size measure can be considered to be a cluster of smaller parts, 

and thus within cluster variance accounts for the variance behavior of 𝑌𝑖, and 

approximately that of the estimated residuals. The size measure corresponds to M when 

looking at cluster variance behavior.6 Therefore, any time there is more than one 

predicted-y value, thus more than one measured size, which would be the norm, there is 

heteroscedasticity.  
 

Note: A single predicted-y is compared here to a cluster in cluster sampling, or an entire 

agricultural crop plot. That is an interesting transfer of application, but one that has 

long been known. See Cochran(1953), pages 199 and 212.  

 

 

5. OTHER CONSIDERATIONS 
 

 There are various interactions between variables in multiple regression, and model and 

data complexities, which might interfere with the straightforward interpretation of 

predicted-y as a cluster of small elements. Here we will mention some thoughts on this. 

The examples will demonstrate some of them. Some or all of these issues may possibly 

change the variance related nature of predicted-y, as in the case of omitted variables in the 

“arm strength” example in Section 8.  

 

 

 

                                                 
6 In Cochran(1977), on page 234, under “Single-Stage Cluster Sampling” for clusters of equal size, 

he lets “𝑀𝑢 = relative size of unit.” Then on page 238 he says that one may divide a “survey 

unit” “…into 𝑀 smaller units….” When he gets to unequal size cluster, he uses 𝑀𝑖, starting on 

page 249. Here we use 𝑥𝑖, or 𝑦𝑖
∗, or 𝑧𝑖, in place of 𝑀𝑖.  
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5.1 𝒆 Not Independent of 𝒙  

 Because we should expect essential heteroscedasticity, the estimated residuals are a 

function of the predicted-y values, so for any 𝑥, 𝑒 is not independent of 𝑥, contrary to the 
usual assumption. This has implications. For example, the way that omitted variables may 
bias coefficients. On pages 111 and 112 of Fox(2008), we see bias in a regression 
coefficient possible when a correlated variable is omitted. However, the argument is 
written assuming homoscedasticity, but the residuals are not independent of the 
'independent' variables. Results there are then altered.  
 

5.2 Omitted Variables  
 In Fox(2008), at the top of page 274, Fox notes that an omitted variable which is 
categorical, such as urban versus rural, could mean a different interaction with another 
variable which has a different slope for urban as opposed to rural, and without that 
categorical variable, there would be the appearance of heteroscedasticity. That would be 
an example of nonessential heteroscedasticity. However, another concern regarding 
omitted variables that would mean a dampening rather than enhancement of 
heteroscedasticity is a concern for one of the examples to be shown below (Penn 
State(2021a), alcohol-arm strength).  
 

 In that example, given later, the dependent variable is arm strength, and the only 
independent variable, aside from an intercept term, is a certain measure of alcohol 
consumption among alcoholics. But the independent variable hardly seems adequate. As 
Brewer(2002) points out on pages 109 and 110, and is a considerable topic in Hastie, 
Tibshirani, and Friedman(2009), adding variables can increase variance. Brewer(2002) 
noted that if added, such a variable should have high "explanatory power." Here it would 
seem that too much is unexplained just by the independent variable used, and ideally, more 
information is required. Age of the person whose alcoholism is being measured, as well as 
how long it took to reach that level, i.e. years as an alcoholic, might vary more greatly for 
the middle levels of the size measurement. That could explain why, if anything, sigma of 
estimated residuals seems larger in the middle of the graph, horizontally speaking, than at 
the ends, where sigma is considered in the vertical direction. Thus, the predicted-y here 
does not behave as the gold standard. Because the predicted-y, as a size measure, could be 
improved, the natural (essential) heteroscedasticity that should occur has been masked. 
Thus the absence of heteroscedasticity of the estimated residuals is problematic. Generally, 
it is proposed here that if the predicted values are good enough, one should have 
heteroscedasticity. (Note: This example, borrowed with permission, was only intended as 
a simple exercise for students to first learn regression analysis. We take it a step further 
here.)  
 

5.3 Model-Unbiasedness  
 At the bottom of page 158 in Cochran(1977), he states that in Brewer(1963) and 
Royall(1970), the concept of 'model-unbiasedness' is considered. This means that the 
expected sum of the estimated residuals should be zero. (In Särndal, Swensson, and 
Wretman(1992), on pages 231 and 232, they show under what conditions we will have the 
sum of the estimated residuals be exactly zero, not just in expectation. Also see 
Brewer(2002), near the top of page 111.) One might think that an intercept term is always 
needed to have model-unbiasedness, but that thought may implicitly assume OLS 
(homoscedastic) regression. This is an example of how the assumption of homoscedasticity 
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permeates statistical (economic, and perhaps other) literature, but here we note that that is 
not always a good idea, and actually should generally be incorrect. When we allow 
heteroscedasticity, there is much more flexibility.  
 

Please see my last response (March 7, 2021) to  

https://www.researchgate.net/post/What_to_do_In_Linear_regression_model_intercept_i

s_not_coming_significant_residual_error_mean_is_non_zero_for_no_intercept_model 

 

5.4 Beyond Collinearity 

 Moderator, confounding, and suppressor variables, any correlation between 

"independent" variables in multiple regression, complicates how they work together to 

arrive at the predicted-y. Suppressor variables seem particularly interesting, as no one 

would use a variable uncorrelated with the dependent variable as a sole predictor, but when 

it enhances another predictor's relationship to y, that sounds useful. In Ludlow and 

Klein(2014), they consider the usefulness of introducing a suppressor variable based on 

theoretical considerations, as opposed to just discovering that one of your variables 

performs that way.  

 

5.5 Stratification (Chambers and Clark, Section 5.5)  

 This is when one needs to be careful that results from regression do not appear 

heteroscedastic, or more heteroscedastic than they really are, because you have data that 

should have been considered in separate groups, strata, or subpopulations, depending on 

whether you are looking at small area estimation, overall results, or subpopulation results. 

Therefore, instead of one regression for the entire data set, we could have separate 

regressions by region, as in Chambers and Clark(2012), pages 49-58. In Knaub(2012), 

pages 12 and 13, we see that if we are unsure that separate regressions should be used, we 

can put prediction interval bands about the regression lines. Figure 3 from page 13 is shown 

here. Note that the estimated slopes, 21.5 and 11.8, are quite different, but there is not 

enough data to be sure of that, as the 90-percent prediction intervals strongly overlap, with 

one set of bounds almost completely within the other.  
 

 Excerpted from Knaub(2012): 

 
 

https://www.researchgate.net/post/What_to_do_In_Linear_regression_model_intercept_is_not_coming_significant_residual_error_mean_is_non_zero_for_no_intercept_model
https://www.researchgate.net/post/What_to_do_In_Linear_regression_model_intercept_is_not_coming_significant_residual_error_mean_is_non_zero_for_no_intercept_model
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 (Notice also that near the origin, the prediction intervals dip below zero for 𝑦, which 

indicates the need for asymmetric prediction intervals.)  
 

 Also, see the graph in the example, “Kenya,” in Section 8.  

 

5.6 Autocorrelation (Aside) 

 This paper is not about time series, but rather finite populations, and basically does not 

consider autocorrelation, though spatial autocorrelation could be possible. (See the end of 

this subsection for a comment regarding the Spanish shops example of Section 8.) 

However, one of the examples in Section 8, the Longley employment data example, is one 

where OLS is assumed, but the y-data do come from different years. One might assume 

year does not matter, that the mechanism which produces the y-data is identical to one 

producing a finite population, but the full model does specifically have a small contribution 

by year, and Faraday(2002) below, does consider autocorrelation, even for a reduced model 

that does not include the one independent variable specifically about the year. We do take 

an ancillary glance at this, knowing that the Longley data are at least technically a short 

time series.  
 

 Faraway(2002), pages 59-62, used the Longley data, but the only predictors used were 

GNP, population, and the intercept. These variables are said to be highly correlated, 

adjusting the large intercept up and down, in a reduced view of the up and down 

adjustments we see in the full linear regression model. There is high variability in 

coefficients, and when also considering autocorrelation, that makes a substantial difference 

as well. Further rho is highly variable, so there may be substantial autocorrelation in that 

reduced model, or none at all. The residual standard error is very uncertain and grows with 

autocorrelation. He shows a 95-percent confidence interval for “residual standard error” 

from 0.24772 to 1.91748, with a point estimate of 0.68921. Previously, without 

autocorrelation, the point estimate was 0.546. (Apparently Faraway worked in different 

units, perhaps by a factor of 1000. A check of the data showed this to make sense.)  
 

 When you look at the estimated residuals in the full model, OLS example below, their 

absolute values range from 16 to 440. The sigma (residual standard error) is about 169. 

Thus we are comparing 169 in the full model to 546 in the reduced model, as we are likely 

fitting the full model too tightly to a sample of only 16 data points. 
 

 The y-values range, from highest to lowest, by a factor of only about 1.17. One would 

expect a similar range for predicted-y, whatever model was used. So instead of a constant 

residual standard error, one would expect it to range (on a graphical residual analysis 

scatterplot, from left to right) by a factor as little as 1.17^0.5 = 1.08, to as much as 1.17, if 

𝑒 = 𝑒0𝑦∗𝛾. Among 16 data points, with so much relative variability, a tendency for a 10- 

to 15-percent change from left to right may not be apparent when we have estimated 

residuals ranging from 16 to 440.  
 

 Whether or not there is autocorrelation here, which is not specifically considered in this 

paper, adherence to the range for the coefficient of heteroscedasticity given by Brewer for 

sample survey populations may be partially hidden due to the relatively small impact for 

the short y-range, and may be partially dampened by the substantial difference between 

achieved predicted-y and ideal predicted-y, possibly at least partially due to too few 

degrees of freedom.  
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 As for spatial autocorrelation, the example of Spanish shops, Guadarrama, Molina, and 

Tille(2020), used a random intercept in an attempt to accommodate regional differences. 

However, since what was being measured was estimated by use of a ratio, perhaps a 

random slope would be better. But if we could obtain a different slope in each region, we 

could stratify that way. At any rate, that example showed substantial heteroscedasticity, 

adjusting for the intercept terms so that all estimated residuals could be considered 

together. The article is quite interesting.  

 

5.7 Hat-values Used to Adjust Graphical Residual Analyses  

 For estimation of the coefficient of heteroscedasticity, 𝛾, one suggestion which Ken 

Brewer made was basically something this author later found suggested independently in 

Carroll and Ruppert(1988). Further, Ken suggested obtaining a standard error for 𝛾. Ken 

Brewer noted to the author that by taking the log of both sides of 𝑦𝑖 − 𝑦𝑖
∗ = 𝑒0𝑖

𝑦𝑖
∗γ′

, one 

could estimate and find a standard error for 𝛾′. If we plot 𝑙𝑜𝑔|𝑦𝑖 − 𝑦𝑖
∗| on the y-axis and 

𝑙𝑜𝑔𝑦𝑖
∗ on the x-axis, then a simple linear regression will have slope 𝛾′, and one can even 

estimate the standard error of 𝛾′, as suggested by Dr. Brewer. (Actually, this author had 

previously only written 𝑦𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑦𝑖
∗γ

, and Ken may have thought studentized residuals 

were meant, or that it mattered little because he suggested very large sample sizes were 

needed.) Note that there are examples, such as the one on pages 49 and 50, in Carroll and 

Ruppert(1988), where they considered leverages, not considered in Knaub(2019), to 

account for the sample size and its distribution, with regard to a model, when estimating 𝛾. 

Similarly Carroll and Ruppert(1988), on page 49, for instance, have a scatterplot with “Log 

Absolute Residual” on the y-axis, and “Logarithm of Predicted Value” on the x-axis. They 

justify this on pages 12 and 89 by noting that when variability is a ‘function of the mean,’ 

it is usual to give a ‘standard deviation’ as 𝜎𝜇𝑖(𝛽)𝜃 , where 𝜃 is our 𝛾, and 𝜇𝑖 is size 

measure, 𝑧𝑖 (or 𝑦𝑖
∗).7 Taking logs, they get 𝑙𝑜𝑔𝜎𝑖 = 𝜃𝑙𝑜𝑔𝜇𝑖 + 𝑙𝑜𝑔𝜎, where again the slope 

is 𝜃 = 𝛾. However, the label “Log Absolute Residual” used in Carroll and Ruppert(1988) 

apparently means log absolute studentized residual. They use studentized residuals, as is 

also used in graphical residual analyses in Fox(2008), on page 273, to account for the 

sample size and predictor(s) distribution(s) impact on estimated residuals, and to make 

their distributions more like a t-distribution. The hat-value is used to account for leverage. 

However, in the large sample sizes Ken was considering, as large as the forestry example 

in Section 8 below, this would not have been necessary. In some cases, however, the hat-

value will have a greater presence. However, it seems unlikely that use of the hat-value 

will make a practical difference in estimating 𝛾, and could be messy for some applications. 

Though situations will differ, see Section 8.6 for an example with a sample size of 𝑛 = 9. 

                                                 
7 To complete the comparison: The within cluster variance from Cochran(1977), page 243, and 

Cochran(1953), page 199 is 𝑆𝑤
2 =𝐴𝑀𝑔. (In scatterplot labels, g will mean 𝛾, not this 𝑔.) In 

regressions here 𝜎𝑖
2 is (𝑒0𝑖

𝑧𝑖
𝛾

)
2
 or (𝑒0𝑖

𝑦𝑖
∗𝛾

)
2
. From Carroll and Ruppert(1988), page 12, equation 

2.5, the model declared “most common” when “variance depends on the mean,” gives us the 

following variance: (𝜎𝜇𝑖(𝛽)𝜃)
2
. Therefore, 𝐴𝑀𝑔 ≡  (𝑒0𝑖

𝑧𝑖
𝛾

)
2

≡ (𝜎𝜇𝑖(𝛽)𝜃)
2
, so 𝑔 ≡ 2𝛾 ≡ 2𝜃. 

𝛾 is the coefficient of heteroscedasticity, so 𝜃 is also, and 
𝑔

2
 is equivalent. The size measures are 

𝑀, 𝑧𝑖, 𝑦𝑖
∗, and 𝜇𝑖.  
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For small sample sizes it could be problematic to ignore the hat-value, but it was not really 

a problem there.  
 

 For simple linear regression, the hat-value, ℎ𝑖𝑖  or ℎ𝑖, is, from Fox(2008), page 245,  
 

ℎ𝑖 =  
1

𝑛
+  

(𝑋𝑖−�̅�)2

∑ (𝑋𝑗−�̅�)
2𝑛

𝑗=1

  

 

 Leverage is usually discussed, as in Penn State(2021c), as a diagnostic tool. It helps 

determine where an extreme y-value would be most influential, were you to have one, 

based solely on the model predictor (x) values, and the intercept value. One might compare 

the hat-value, ℎ𝑖, pages 244 and 245 in Fox(2008), for simple linear regression, to the 

square root of the estimated variance of the prediction error such as that found in Penn 

State(2021b), also for simple linear regression, with 𝛾 =  0, which they call the “standard 

error of the prediction error,” and they write it as follows:  

 

√𝑀𝑆𝐸 (1 +
1

𝑛
+ 

(𝑥ℎ − �̅�)2

∑(𝑥𝑖 − �̅�)2
)  

 

 Here they have MSE = �̂� as an estimate of 𝜎, using the estimated (raw) residuals. The 

estimated variance of the prediction error becomes the “expected prediction error,” EPE, 

if you add the square of the bias due to any model misspecification. Penn State(2021c) 

notes the difference between 𝑀𝑆𝐸 (1 +
1

𝑛
+  

(𝑥ℎ−�̅�)2

∑(𝑥𝑖−�̅�)2), the estimated variance of the 

prediction error, and 𝑀𝑆𝐸 (
1

𝑛
+ 

(𝑥ℎ−�̅�)2

∑(𝑥𝑖−�̅�)2), the variance of the means. The difference 

involves only MSE, as an estimate of 𝜎2. Therefore (𝑀𝑆𝐸) ℎ𝑖  accounts, approximately,8 

for the variance due to the model, for the given sample. Recall that this is for one predictor, 

an intercept term, and homoscedasticity. (The middle of the one page of notes found at 

Lind(2004), for simple linear regression, may add clarity.)  
 

 Both the standardized and studentized residuals (see Penn State(2021d,e)) result from 

dividing the raw residuals by a measure of standard error which is the square root of an 

estimate of the variance of 𝑌, from which was subtracted an estimate of the variance due 

to the model. This seems odd, but is the result of the variance of the estimated residuals 

being an underestimate of 𝜎2. Here we see it is underestimated by the amount assigned 

above to the model variance: 𝜎2ℎ𝑖, estimated as (𝑀𝑆𝐸) ℎ𝑖, also an underestimate with a 

finite sample. Also note that the studentized residuals delete the 𝑖𝑡ℎ case to better achieve 

a t-distribution.  
 

 Here is some reasoning: A derivation comparing 𝒆 and �̂� is given in Weisberg(1980), 

pages 100 to 103. There he used 𝐕, apparently before 𝐇 came into use, as well as the name, 

“hat matrix.” As noted in Weisberg(1980) and elsewhere, this means that our estimated 

residuals have different variances, even when 𝑉(𝐘) is homoscedastic, and also are 

                                                 
8 By including the estimated variance due to the estimated regression coefficients in the estimated 

variance of the prediction error, we multiply the expression for the estimated variance of the 

means by a factor of (1 + ℎ𝑖). However, using MSE could be corrected by dividing by (1 − ℎ𝑖). 

Note that multiplying by (1 + ℎ𝑖) is slightly less of a factor than dividing by (1 − ℎ𝑖).  
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correlated. In place of his 𝑒𝑖 and �̂�𝑖,
9 we will use 𝜀𝑖 and 𝑒𝑖, respectively. On page 100 

Weisberg has 𝐘 = 𝐗𝛃 + 𝛆, and var(𝛆) = σ2𝐈𝑛, and from page 100 and 101, and using 𝐇 

for 𝐕, we can see that 𝑉(𝐞) = 𝑉(𝐘) − 𝑉(𝐗�̂�) = 𝜎2(𝐈 − 𝐇). In Thompson(2012), on page 

106, we see a special case, for a ratio estimator, where he has E(𝑌𝑖) = 𝛽𝑥𝑖 , that var(𝑌𝑖) =

 𝜐𝑖𝜎𝑅
2. (We can use 𝜐𝑖 = 𝑥𝑖

2𝛾
.) In general then, for 𝛾 = 0, 𝑉(𝐘) = σ2𝐈𝑛 = var(𝛆), and the 

variance due to the estimated model coefficients, 𝑉(𝐗�̂�) = 𝑉(�̂�), is subtracted from 𝑉(𝐘) 

to obtain 𝑉(𝐞).  
 

 Using 𝑌𝑖 = 𝛽𝑥𝑖 + 𝜀𝑖 as Thompson(2012) does on page 105 for a ratio estimator, we 

have 𝑣𝑎𝑟(𝑌𝑖) = 𝜎𝑖
2. Then for 𝑌𝑖 = 𝛽∗𝑥𝑖 + 𝑒𝑖, 𝑣𝑎𝑟(𝑌𝑖) = 𝑣𝑎𝑟(𝑌𝑖

∗) + 𝑣𝑎𝑟(𝑒𝑖), so 𝜎𝑖
2 =

 𝑣𝑎𝑟(𝑌𝑖
∗) + 𝑣𝑎𝑟(𝑒𝑖), which means that 𝑣𝑎𝑟(𝑒𝑖) =  𝜎𝑖

2 − 𝑣𝑎𝑟(𝑌𝑖
∗) =  𝜎𝑖

2(1 − ℎ𝑖). Thus 

𝜎𝑖
∗2 =  𝜎𝑖

2(1 − ℎ𝑖), and 𝜎𝑖 = 𝜎𝑖
∗/√1 − ℎ𝑖.  

 

 𝑉(𝐘) = var(𝛆) is for 𝐘 = 𝐗𝛃 + 𝛆 where there is a fixed 𝐗𝛃, which is “correct.” When 

we have 𝐘 = 𝐗�̂� + 𝐞, we have an estimate for the model parameters, so now there is a 

variance contribution from the model.  
 

 To examine the use of the hat-value, ℎ𝑖, here, let us look for a moment at 𝐘 = 𝐗𝛃 + 𝛆, 

and 𝐘 = 𝐗�̂� + 𝐞. Let us say 𝐘𝐈 = 𝐗𝛃 + 𝛆 and 𝐘𝐈𝐈 = 𝐗�̂� + 𝐞. So when is 𝑉(𝐘𝐈) = 𝑉(𝐘𝐈𝐈)? 

That would mean 𝑉(𝛆) = 𝑉(𝐗�̂�) + 𝑉(𝐞), so 𝑉(𝐞) = 𝑉(𝛆) − 𝑉(𝐗�̂�) means that 𝑉(𝐞) =

𝜎2(𝐈 − 𝐇). Therefore, for any adjustment such as 𝜎𝑖 = 𝜎𝑖
∗/√1 − ℎ𝑖 to hold, the model 

must be perfectly specified.  
 

 Consider the model-based approach to survey sampling (see Royall(1992) for an 

overview), where we often may use 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
′ for model-based ratio estimation. 

See, for example, Thompson(2012), pages 105-109, where predictions are based on 

var(𝑌𝑖) =  𝑥𝑖
2𝛾

𝜎𝑅
2, and an unbiased10 estimate is given as �̂�𝑅

2 =
1

𝑛−1
∑

(𝑌𝑖−�̂�𝑥𝑖)
2

𝑥
𝑖
2𝛾

𝑛
𝑖=1  . 

(Technically, it becomes nearly unbiased with large enough n.) More complex models are 

used for surveys, but the idea is that the 𝜎2 for the 𝑌𝑖, or better, the 𝜎𝑖
2 for the 𝑌𝑖, are for 𝑌𝑖, 

not 𝑒𝑖. So, for example, for ratio estimators, when we estimate 𝜎𝑅
2 by using �̂�𝑅

2, say for 𝛾 =
0.5, we underestimate, as seen in pages 131-133 in Valliant, Dorfman and Royall(2002). 

However, note that besides the leverages shown in factors in alternatives provided there, 

1

𝑛−1
∑

(𝑌𝑖−�̂�𝑥𝑖)
2

𝑥𝑖

𝑛
𝑖=1  is not the same as 

1

𝑛�̅�𝑠
 ∑ (𝑌𝑖 − �̂�𝑥𝑖)

2𝑛
𝑖=1 , where �̅�𝑠 is the mean of the 𝑥𝑖’s 

associated with the sample, so there is that alteration (see footnote 14). Using 

1

𝑛−1
∑

(𝑌𝑖−�̂�𝑥𝑖)
2

𝑥𝑖

𝑛
𝑖=1  with the hat-value adjustment would be more exact.  

 

                                                 
9 Also, instead of 𝑢𝑖 and �̂�𝑖, as in Maddala(2001), pages 64 and 65.  
10 That this is an unbiased estimate is confirmable from pages 70 and 76 in Maddala(2001). The 

plot in Penn State(2021f) helps as a reminder of when we are looking at the conditional 

distribution of 𝑌𝑖|𝑋𝑖, and when we are considering the unconditional distribution. Here we have 

𝑌𝑖 − �̂�𝑥𝑖 , where we consider the conditional distribution, with often relatively little variance from 

the estimated model coefficient.  
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 It should be noted that Carroll and Ruppert(1988), page 31, states that it is possible, 

without the adjustment due to leverage, for these graphs to appear heteroscedastic, even 

when there is homoscedasticity.11 At any rate, a comparison is made in an example in 

Section 8.6, on a segment of residential electric sales, where leverage and 

heteroscedasticity are considered, with a very small sample where it should matter if 

leverage is going to matter, but it made little difference to the estimate of 𝛾. Also, what 

appeared to be a large, possible "outlier" was completely removed, as an experiment, in the 

example of Section 8.12 on baseball payrolls, where there was again a small sample size 

such that it could matter, and again, conclusions about 𝛾, for practical purposes, were barely 

altered. Potential outliers could matter, however, especially ones with larger leverage. 

When estimating 𝛾, perhaps they should be removed to better capture a likely more 

accurate estimate of 𝛾, though actually deleting the data should take a thorough review. 

One should be careful not to easily completely throw away inconvenient data that may be 

from the tails of a distribution, or may tell us something about the distribution that we did 

not know.  
 

 On page 31 of Carroll and Ruppert(1988), we see their decision to use studentized 

residuals. (They noted that Cook and Weisberg12 suggested studentized residuals in 

graphical residual analysis scatterplots as an improvement.) In Penn State(2021d), we see 

that the square of the standardized residuals, using �̂�2 for 𝑀𝑆𝐸, are 
𝑒𝑖

2

�̂�2(1−ℎ𝑖)
 , so we divide 

the 𝑒𝑖 by �̂�√(1 − ℎ𝑖) to standardize in such a way that the “design,” as noted by Carroll 

and Ruppert(1988), page 31, is given consideration. Using ℎ𝑖 =  
1

𝑛
+ 

(𝑋𝑖−�̅�)2

∑ (𝑋𝑗−�̅�)
2𝑛

𝑗=1

 for 

simple linear regression, and thus 𝛾 = 0, and there is an intercept term, does this. The 
1

𝑛
 

part is in deference to the intercept term, and 
(𝑋𝑖−�̅�)2

∑ (𝑋𝑗−�̅�)
2𝑛

𝑗=1

 is due to the single predictor term.  

 

 However, in general, i.e., when 𝛾 can vary (i.e., when we can have heteroscedasticity, 

whereas 𝛾 = 0, homoscedasticity, is just a special case), and when we can have any number 

of predictors, we can think of the hat-value as the factor of the variance due to the design 

that is multiplied by 𝜎𝑖
2 to thus represent the variance due to the model coefficients.  

 

 Consider the estimated variance of the prediction error for 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, for an 

individual prediction, from slide 16 in Knaub(2017a). The estimated variance due to the 

estimated model coefficients is 𝑥𝑖
2𝑉∗(𝑏). From Maddala(1977), pages 259 and 260, 

𝑉∗(𝑏) = 𝜎𝑒0
∗2/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 . We subtract that from 𝑥𝑖

2𝛾
𝜎𝑒0

∗2 to generalize √�̂�2(1 − ℎ𝑖) for 𝛾, 

                                                 
11 However, the direction of the heteroscedasticity may not be as usual. Consider Weisberg(1980), 

pages 100 – 104. For simple linear regression, the variances of the estimated residuals would 

become smaller as one travels further from the mean of x, in either direction. If the intercept term 

is removed, however, those variances are smaller with larger x, or larger predicted-y, so in the 

case of ‘true’ heteroscedasticity of 𝑌𝑖, it will be underestimated. This happened, as shown in the 

electric sales example of Section 8.6. However, the impact of ℎ𝑖
∗ was small, even though the 

sample size was only n=9, where one could expect a larger impact.  
12 Cook, R.D. and Weisberg, S.(1982), Residuals and Influence in Regression, Chapman and Hall, 

New York and London.  
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but only for 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒𝑖, to become √𝑥𝑖
2𝛾

𝜎𝑒0
∗2 − 𝑥𝑖

2𝜎𝑒0
∗2/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1  = 𝑥𝑖

𝛾
𝜎𝑒0

∗ (1 −

𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 )
0.5

. Thus we divide “𝑒𝑖” by 𝑥𝑖
𝛾

𝜎𝑒0
∗ (1 − 𝑥𝑖

2−2𝛾
/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 )

0.5
, and to 

move from those standardized residuals to studentized residuals, 𝑦𝑖
∗, and 𝜎𝑒0

∗  would need 

to be estimated deleting the current case each time. See Penn State(2021e).  
 

 For 𝛾 = 0, 𝑥𝑖
𝛾

𝜎𝑒0
∗ (1 − 𝑥𝑖

2−2𝛾
/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 )

0.5
 becomes �̂�(1 − 𝑥𝑖

2/ ∑ 𝑥𝑖
2𝑛

𝑖=1 )0.5, so for 

𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
′, when 𝛾 = 0, 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒𝑖 , which should not happen with a good 

choice of 𝑥, and good data quality,  
 

  ℎ𝑖 = 𝑥𝑖
2/ ∑ 𝑥𝑖

2𝑛
𝑖=1 , and13 for any 𝛾, ℎ𝑖

∗ =  𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 .  
 

 Below, example 8.6, Electric Sales, has a very small sample size. The data are very 

well-behaved with no potential ‘outliers’ (see Penn State(2021d)), so we are only 

concerned with leverage. We will compare the two results for this example, i.e., two 

methods for estimating 𝛾, illustrated more thoroughly in Knaub(2019), with them run again 

here, first dividing the 𝑒𝑖 by (1 − 𝑥𝑖
2/ ∑ 𝑥𝑖

2𝑛
𝑖=1 )0.5 for this new experiment. Actually it is 

√�̂�2(1 − ℎ𝑖) which should be the divisor, rather than just √1 − ℎ𝑖, but because �̂�2 is 

constant there, that will not matter here. However, if one were to want to explore the impact 

of the hat-value when applying weighted least squares (WLS) regression, which we will, 

then the use of 𝜎𝑖
∗2 in the divisor is necessary, or rather it will turn out that only a factor of 

it will be needed. Differences between results from different methods of estimating 𝛾, the 

standard error for 𝛾 suggested by Ken Brewer for the second method, consideration of 

potential outliers as discussed below for the baseball example, 8.12, which is the reason 

Carroll and Ruppert(1988) used studentized residuals, all are considerations. However, we 

see that the major issue, as noted in Brewer(2002), on page 137, is that 𝛾 = 0.75, or 1.0, 

or as in Knaub(2017a), slides 13, 14, 17, 18, and 19, we see that 𝛾 = 0.5, may be best for 

specific applications. Here we are noting that the choice of 𝛾 = 0, which is commonly used 

without any consideration, is often not a good practice. Ignoring this will usually have 

much less impact on prediction, but a large impact on variance, and may be important to 

your application. It may even be important to some of the predicted-y-values. That is 

especially possible with small sample sizes, where study of the application may help you 

determine a better default value for 𝛾 than 0. Otherwise one is automatically using perhaps 

the worst value for 𝛾 possible.  
 

 In the example on pages 49 and 50, Carroll and Ruppert(1988) estimate θ, here γ, the 

coefficient of heteroscedasticity, as 0.79, but consider that an underestimate because of 

using unweighted least squares predicted-y values (something they note on page 51 that 

they consider in other methods in their following chapter). An adjustment for weighted fits 

to this method was studied in Knaub(2019), and found not to matter very much. However, 

this would vary somewhat by application.  
 

  

                                                 
13 Although ℎ𝑖 is not shown as ℎ̂𝑖, ℎ𝑖

∗ can be used to denote heteroscedasticity of the 𝜀𝑖, or ℎ𝑖(𝛾) 

could be used in all cases.  
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 Below, example 8.6, Electric Sales, has a very small sample size. The impact of the 

hat-value, ℎ𝑖, is considered. There we use a zero intercept, which is appropriate in that case, 

where the lone predictor is the same data item from a previous census survey. The 

expression for the hat-value used first is ℎ𝑖 =  
𝑥𝑖

2

∑ 𝑥𝑗
2𝑛

𝑗=1

. That is for 𝛾 = 0. However, in 

general, i.e., when 𝛾 can vary, the variance due to the estimated regression coefficients, 

within the estimated variance of the prediction error, for the case of 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, from 

slide 16 in Knaub(2017a), for an individual prediction, is 𝑥𝑖
2𝑉∗(𝑏). From Maddala(1977), 

pages 259 and 260, 𝑉∗(𝑏) = 𝜎𝑒0
∗2/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 . Thus, ℎ𝑖 here, accounting for 

heteroscedasticity, for one predictor and no intercept term, would be ℎ𝑖(𝛾) =
𝑥𝑖

2

∑ 𝑥
𝑗
2−2𝛾𝑛

𝑗=1

. 

For the example in section 8.6, estimates without using a hat-value were 0.7 and 0.9, for 

the two methods used. Follow up estimates are shown here, dividing 𝑒𝑖 by √1 − ℎ𝑖(𝛾), 

ignoring 𝜎 as the comparison of interest there is the hat-value, and using 𝛾 = 0 for fitted 

values. A follow up is done where the fitted values use 𝛾 = 0.8, so then 𝜎𝑖 has to be used. 

Dividing by 𝑥𝑖
𝛾

𝜎𝑒0
∗ (1 − 𝑥𝑖

2−2𝛾
/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 )

0.5
 to accommodate leverage and 

heteroscedasticity,14 and dropping 𝜎𝑒0
∗  as division or multiplication by a constant will not 

change anything, means we only need to divide for this purpose by 𝑥𝑖
𝛾

(1 −

𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 )
0.5

. However, we are already dividing by 𝑦𝑖
∗𝛾

 to account for 

heteroscedasticity, and 𝑦𝑖
∗𝛾

 is just a constant multiple of 𝑥𝑖
𝛾
, so we only need to divide by 

(1 − 𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 )
0.5

 to account for the leverage.  
 

 Note that using studentized residuals would also make them approximately follow the 

t-distribution. However here we are concerned with leverage and with outliers, both of 

which were considered in one example or another and found not to interfere substantially 

with our study of when heteroscedasticity is found in regression with the magnitude range 

noted in Brewer(2002), except that a suspected outlier, though it should remain in your 

data unless there is more reason to remove it than that it may be in the tail of a distribution, 

may be removed temporarily for the purpose of estimating inherent heteroscedasticity. 

Leverage does not seem to be a large complication factor for this study. Therefore, the 

simple spreadsheet tool accompanying Knaub(2019) can be used to quickly check for the 

                                                 
14 Here, for 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖

𝑥𝑖
𝛾

′, where 𝑒𝑖=𝑒0𝑖
𝑥𝑖

𝛾′
, but in terms of the notation in Weisberg noted 

earlier, it is �̂�𝑖, we see that 𝑉(ê𝑖) is 𝑥𝑖
2𝛾

𝜎𝑒0

∗2(1 − 𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 ). Note that this is consistent 

with the case for 𝛾 = 0.5 in Valliant, Dorfman, and Royall(2000), page 131, where they have 

𝑟𝑖 = 𝑌𝑖 − �̂�𝑥𝑖, and the expected value of 𝑟𝑖
2 under this model is 𝜎2𝑥𝑖(1 − 𝑥𝑖/ ∑ 𝑥𝑘𝑠 ). There they 

are examining variance for the classical model-based ratio estimator when predicting totals, and 

how to adjust for leverage. One result using leverage, 𝜐𝐷 there, is compared with the not-

leverage-adjusted 𝜐𝑅 on pages 131-133. However, Figure 1, page 879 in Knaub(1992) does not 

show this to be particularly helpful. On pages 132 and 133 of Valliant, Dorfman, and 

Royall(2000), we see that 𝜐𝑅 regarding predicted totals there is generally an underestimate. But 

𝜐𝑅, and alternatives for it involving a hat-value adjustment, all for 𝛾 = 0.5, each make a further 

approximation by applying an average impact of the weight to each case, rather than individual 

ones, apparently prompting Thompson(2012), page 108, to comment on when there is 

overestimation or underestimation.  
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substantial heteroscedasticity one might expect, by inputting only the y-values and 

corresponding homoscedastic predicted-y-values. An effort was made to make the tool as 

easy as possible to use.  
 

 Potential outliers were considered in Knaub(2019), and in another case here. Leverage 

is considered in an example here. Two different methods for estimating the coefficient of 

heteroscedasticity are exercised. But the main emphasis for this paper is to consider when 

we may or may not see heteroscedasticity of the magnitude discussed mid-page 111 in 

Brewer(2002). It would seem that such heteroscedasticity should be a frequent occurrence. 

Is it generally a good sign? It is proposed here that it is generally an indicator of a good 

model, but model adequacy depends on various other factors as well.  

 

6. THE COEFFICIENT OF HETEROSCEDASTICITY, GAMMA,  

AND ITS ESTIMATION – A BASIC REVIEW 
 

 The format used in Cochran(1977), on page 243, and also in Cochran(1953), on page 

199, for within cluster variance, included an exponent, g: 𝑆𝑤
2 =𝐴𝑀𝑔. By using twice the 

coefficient of heteroscedasticity, two gamma (2𝛾), for that exponent, using 𝑋 in place of 

cluster size 𝑀, and using 𝜎2 for 𝑆𝑤
2 , the within cluster variance, we see that the model that 

Ken Brewer noted for variance on pages 87 and 111 in Brewer(2002), 𝜎𝑖
2 ∝ 𝑋𝑖

2𝛾
, is of the 

same structure, but designed for more than one cluster or data point. When we use variance 

for estimated residuals as an approximation in place of 𝑉(𝑌𝑖), the structure is the same: 

𝑒0𝑖

2 𝑧𝑖
2𝛾

. Thus, the estimated residuals are a product of a random factor, we will call 𝑒0𝑖
, and 

a nonrandom factor, 𝑧𝑖
𝛾
.  

 

 At the top of page 2 in Knaub(2017b) we see an argument for the simplest case, 𝑦𝑖 =

𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
, which can be applied to the general case, 𝑦𝑖 = 𝑦𝑖

∗ + 𝑒0𝑖
𝑧𝑖

𝛾
. (The 𝛾 here is an 

approximation as noted earlier.) There we see 𝑦𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑤𝑖

−0.5, 𝑒0𝑖

2 = 𝑤𝑖(𝑦𝑖 − 𝑏𝑥𝑖)
2, 

and 𝑤𝑖 = 𝑥𝑖
−2𝛾

. Note that 𝑤𝑖  is the regression weight, which your software may allow you 

to enter. In multiple linear regression, you may minimize the sum of the 𝑒0𝑖

2  to find the 

parameters (regression coefficients, including the intercept, if appropriate), using the same 

normal equation approach, employing a little calculus and solving simultaneously for all 

parameters needed, just as illustrated in Lohr(2010), on pages 430-432 (where it says 

“simple random samples,” but that is not necessary to proceed). We just have to use 𝑤𝑖 =

𝑥𝑖
−2𝛾

 or more generally 𝑤𝑖 = 𝑧𝑖
−2𝛾

 and minimize ∑ 𝑒0𝑖

2  instead of ∑ 𝑒𝑖
2 = ∑ 𝑒0𝑖

2 𝑧𝑖
2𝛾

. But to 

obtain 𝑤𝑖  we need to estimate gamma, 𝛾.  
 

 In Knaub(1992, 1993), the author estimated 𝛾 using Fortran. A simpler version is done 

in Excel in the spreadsheet that accompanies Knaub(2019). There the idea is to find a value 

for 𝛾 which will cause a simple regression line through the points |𝑒𝑖|/𝑧𝑖
𝛾
 to have a slope 

satisfactorily close to zero, where “𝛾” is a working, and changing value until it becomes an 

approximation for the actual 𝛾. In the examples in Knaub(2019), 𝑦∗ is used in the graphs 

instead of 𝑧. Another way to estimate 𝛾 used there, and suggested to this author by Ken 

Brewer, and used elsewhere, is noted in Knaub(2019), which involves taking logs of both 

sides of 𝑦𝑖 − 𝑦𝑖
∗ ≈ 𝑒0𝑖

𝑧𝑖
𝛾
, where you then have 𝛾 as a regression coefficient, and can 

estimate it and find an estimate of the standard error for 𝛾. Comparison of the two estimates 
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of 𝛾 may be helpful in considering accuracy, and in more than one example, the standard 

error for 𝛾, found by the second method, was estimated, and provided interesting 

information, as will be shown. We will call these two methods the graphical analysis 

method and the PDQ (“pretty darn quick”) method.  
 

 At the bottom of page 5, Section 3 of Knaub(2019), it is also noted that some estimate 

the impact of heteroscedasticity by simply running a regression line through the points 

(�̂�𝑖,|𝑒𝑖|), where �̂�𝑖 is the homoscedastic predicted-y, and |𝑒𝑖| is a crude estimate of 𝜎𝑖, such 

that a regression through them would smooth this out and provide predictions of 𝜎𝑖 for 

other cases, in an ad hoc manner. From comments on ResearchGate, this appears to be in 

common use in statistical software. (Also, see Penn State(2021g).) But the better method 

is to provide regression weights, 𝑤𝑖  as a ‘formula’/mathematical expression, based on the 

coefficient of heteroscedasticity, 𝛾, as above. SAS PROC REG, for example, allows entry 

of such a regression weight, 𝑤𝑖 , such as 𝑤𝑖 = 1/𝑥𝑖  for the classical ratio estimator. Note 

that both Penn State(2021g), and Särndal, Swensson, and Wretman(1992), on pages 231 

and 232 regarding exact model-unbiasedness, say that when there are multiple predictors, 

one may make calculations based on one of them, or any combination of them. But here 

we are insisting that in looking for the best size measure, if there are multiple predictors, 

that best size measure should be the ideal predicted-y, and thus a combination of predictors. 

Therefore, 𝑤𝑖 = 𝑧𝑖
−2𝛾

, where we want the 𝑧𝑖 to be the weighted least square predicted-y, 

𝑦∗, which is ideal, but in first estimating 𝛾, 𝑧𝑖 may need to first be the homoscedastic (OLS) 

predicted-y, which appears to work well in practice, but could be improved iteratively.  
 

 Section 4, “Summary of Reasoning for Essential Heteroscedasticity,” and this one, 

Section 6, “The Coefficient of Heteroscedasticity, Gamma, and its Estimation,” refer, 

respectively, to the nature and magnitude of heteroscedasticity of estimated residuals in 

regressions of form 𝑌𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾′

, for finite populations. This is covered, again 

respectively, in Brewer(2002), page 111 plus Knaub(2017b), and Knaub(2019), including the 

Excel spreadsheet tool. An ongoing project on ResearchGate, https://www.researchgate.net/ 

project/OLS-Regression-Should-Not-Be-a-Default-for-WLS-Regression, contains a number 

of project updates, in reverse chronological order, relevant here.  
 

 Please note that Knaub(1993) compared a graphical method to the iterated reweighted 

least squares (IRLS) method for estimating 𝛾. When artificial data were used, for a given 

value of 𝛾, both methods estimated 𝛾 extremely closely, but for real data, the IRLS method 

sometimes would not converge, and the graphical method might indicate a solution without 

showing it to be exactly correct. Real data of a finite sample size will have some 

randomness and perhaps model misspecifications and/or data quality issues which will 

impact different 𝛾 estimation methods differently. That occurred here and in Knaub(2019) 

as well.  

 

7. WHY HYPOTHESIS TESTS FOR HETEROSCEDASTICITY  

IN REGRESSION ARE NOT PRACTICAL 
 

Reference is again to this project:  

https://www.researchgate.net/project/OLS-Regression-Should-Not-Be-a-Default-for-

WLS-Regression. 
 

https://www.researchgate.net/project/OLS-Regression-Should-Not-Be-a-Default-for-WLS-Regression
https://www.researchgate.net/project/OLS-Regression-Should-Not-Be-a-Default-for-WLS-Regression
https://www.researchgate.net/project/OLS-Regression-Should-Not-Be-a-Default-for-WLS-Regression
https://www.researchgate.net/project/OLS-Regression-Should-Not-Be-a-Default-for-WLS-Regression
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 An update there, from August 9, 2019 is titled "No need for an hypothesis test." In there 

an excerpt from a response the author made to a question on ResearchGate was noted: 
 

 "Once you test for heteroscedasticity, then what? Heteroscedasticity is a matter of 

degree. Do you have too much of it to ignore? If so, what do you do? Heteroscedasticity is 

natural and occurs because the different predictions are not the same size. Some model 

specification problems and/or data issues can cause it to be made artificially larger or 

smaller, but it is to be expected, not a problem to be fixed, but something to be handled 

routinely. OLS is a special case of WLS, where the coefficient of heteroscedasticity is zero. 

If you estimate the coefficient of heteroscedasticity, or use a reasonable default value …, 

you can use that in the regression weight that you enter into your software. For SAS PROC 

REG, for example, you enter the regression weight ('formula'), ‘w,’ to change from OLS 

to WLS. (If you enter a constant, that means the weights are the same, and you still have 

OLS.) 
 

 "The thing is, if you test for heteroscedasticity, it does not tell you how much there is, 

or what to do about it."  

 

8. REAL DATA EXAMPLES TO CONSIDER VARIOUS REASONS FOR  

THE PRESENCE OR ABSENCE OF HETEROSCEDASTICITY 
 

 Here we look at a variety of real data examples of regression of the form  

𝑌𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾

′, where ideally 𝑦𝑖
∗ = 𝑍𝑖, and 𝑦𝑖

∗ strives to be the ideal weighted least square 

predicted-y, where one should expect to find 0.5 ≤ 𝛾 ≤ 1.  
 

 This is for finite populations, though autocorrelation for a time series is mentioned, as 

well as spatial autocorrelation, but we are really only concerned here with weighted least 

squares (WLS) regression. Ordinary least squares (OLS) regression is a special case which 

is generally taken as the default, but here we assert that heteroscedasticity of estimate 

residuals is to be expected, and try to explain what might be wrong if we do not have 0.5 ≤
𝛾 ≤ 1. The following information on real data examples varies in the level of detail 

available and/or presented, but is meant to stir discussion on various applications.  

 

8.1 Arm Strength and Alcohol Consumption  

 In Penn State(2021a) we see arm strength as our dependent variable, and alcohol use 

as a predictor. Because this is a negative relationship, an intercept term is involved and is 

quite important. The "total lifetime consumption of alcohol" is X. But two people with the 

same total lifetime consumption who are of very different ages would have an impact on 

variation. If a younger person had the same lifetime consumption as an older person, then 

the younger person would be drinking much more heavily. That may overcome or match 

the youth factor regarding strength. So another 'independent' variable might be age of the 

responder, and/or another might be number of years as an alcoholic. It might be difficult to 

determine that last variable but then it also may have been difficult to determine total 

lifetime consumption. Of those three independent variables, age would appear to be the 

easiest to accurately obtain. Also, one might expect that there would be some collinearity. 

However, with only total alcohol consumption, one may not know that the reason we do 

not see increasing sigma for estimated residuals becoming larger as we get to larger 

predicted-y, here going right to left on the scatterplot graph below, and even perhaps larger 
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sigma towards the mid-alcohol range, is that the age and rate of alcohol consumption 

related variables are missing. Since the one variable and the intercept term in predicted-y 

here must absorb this information, this increases mid-range sigma where there is more 

impact from age and rate of drinking. (The hat-value adjustment would push estimated 

residuals that way a little also.) At the largest values for predicted-y, with near zero "total 

lifetime consumption of alcohol," there is less variability of age and years as an alcoholic, 

so less variability from those factors, precisely where sigma should be greatest. That is, 

with the lowest lifetime alcohol consumption, you tend to have younger people with fewer 

years as an alcoholic. Thus we have a smaller mix of categories than we do at larger total 

lifetime consumption of alcohol values.  
 

 In summary, when we have an oversimplified model, a result may sometimes be to 

produce an inferior 'size' measure (predicted-y, the model, often “z” is used for the size 

measure) which may not support the natural/essential heteroscedasticity. Perhaps the 

negative slope, and intercept are a clue as to one situation where we might look for this.  
 

 Here is the graph (3rd party) from Penn State(2021a), reproduced with permission: 
 

 
 

 
n=50 

Penn State(2021a) 

 

8.2 Home Natural Gas Energy Use: Multiple Linear Regression Prediction 
 In Roberts, et al. (2012), on page 29, in a section on modeling, Table 8 identifies 11 
variables, 8 "numerical" and 3 binary, "significant" in multiple linear regression modeling for 

The red data points were put there to show that they are at the other 

end of the scatterplot when the predicted values are on the x-axis, and 
the estimated residuals are on the y-axis.  

Estimated residuals are measured vertically, above and below the 

regression "line." 
The original data were taken from the following: 

The Effects of Alcoholism on Skeletal and Cardiac Muscle, by Alvaro 

Urbano-Marquez,M.D., Ramon Estruch, M.D., Francisco Navarro-
Lopez, M.D., Jose Maria Grau, M.D., Lluis Mont, M.D., and Emanuel 

Rubin, M.D. 

February 16, 1989 N Engl J Med 1989; 320:409-415 
DOI: 10.1056/NEJM198902163200701 
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obtaining predictions for "Site NG" (natural gas) energy use. Many other variables had 
apparently also been considered. (There appear to have been over 100 in total.) They noted 
that collinearity is a consideration. (See the bottom of page 21.) We know that that can even 
change the sign of a coefficient when ‘independent’ variables are used together. Apparently 
good predictors were chosen. But do we know that the ideal predicted-y would have more 
predictors, or fewer predictors, or a different set of predictors? It seems that several experts 
approved 11 out of more than 100 variables, which sounds promising. The way variables 
work together makes t-values less important, but identifying three binary variables could help 
avoid nonessential heteroscedasticity (Knaub(2018)), and hopefully reducing the model to 
such a degree would leave only what is needed for a good size measure.   
 

 Consider the scatterplot below, reprinted with permission from the US National 
Renewable Energy Laboratory. The dashed line indicates a linear regression. However, 
considering that predicted-y and y should approach zero together, if one were to drop the 
intercept term, and consider the data points shown in the graph, vertically above and below 
the line marked "Line of Perfect Agreement," heteroscedasticity is apparent.  
 

 Note here a criterion proposed by this paper: If the achieved predicted-y is close enough 
to the ideal predicted-y, we should expect heteroscedasticity. It appears that this could be 
the case with this example of multiple linear regression. Suggestions: Use a regression 

weight here, and 𝑌𝑖 = 𝑦𝑖
∗ + 𝑒0𝑖

𝑧𝑖
𝛾

′, with 𝑦𝑖
∗ = 𝑍𝑖, and in the scatterplot below, switch axes 

so that predicted-y is on the x-axis. The estimated residual 𝜎𝑖
∗ values are larger than one 

would generally hope to obtain, but perhaps this is unavoidable given the complex nature 

of the contributions to natural gas use. At least the “confidence interval for 𝜇𝑌” could be 

meaningful, if not the prediction interval for a new 𝑦-value. (See the homoscedastic version 
of this at Penn State(2021b).)  
 

 
Figure 7, on page 9, n=500. (3rd party graph)  

Reprinted with permission from the National Renewable Energy Laboratory from 
https://www.nrel.gov/docs/fy12osti/54074.pdf, accessed April 24, 2021. 

https://www.nrel.gov/docs/fy12osti/54074.pdf
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8.3 Kenyan Sex Worker Example 

 In this example (Elmore-Meegan, Conroy, and Agala(2004)), the number of clients 

which sex workers in Kenya had in the previous week is predicted by the worker’s age. 

[This third-party scatterplot was separately supplied for use in this paper by one of the 

authors, Dr. Conroy.] It shows two simple linear regression lines, one for townships, and 

another for rural towns. The line for workers in rural towns has a smaller slope. Notice that 

if the range for age were restricted to 23 years and up, that that line would have been even 

flatter. Thus age is not strongly related to the response variable for that stratum or 

subpopulation. The range of predicted-y would be small, thus the size measure would vary 

little, and there would be near homoscedasticity. That is the case for rural towns. For a 

slope of zero perhaps we could have the common means model described earlier. The paper 

explains the different circumstances in the two strata. What we see here is that there is 

heteroscedasticity in the township stratum, but as age is less of a factor in the rural towns, 

especially once you move above age 23, there homoscedasticity and a common means 

model (Särndal, Swensson, and Wretman(1992), page 258-260, and Chambers and 

Clark(2012), page 20) appear more reasonable.  
 

 From the article (Elmore-Meegan, Conroy, and Agala(2004)), age does seem more 

important in the townships. Given the premise here that an achieved predicted-y that is 

nearer to the ideal will be more likely to show heteroscedasticity of the estimated residuals, 

one wonders if there are no important omitted variables, and if there are none, perhaps that 

is why we see heteroscedasticity, indicating a good model, in this stratum. Is the model 

very good there, in spite of a 𝜎𝑖 that is relatively very large? Perhaps so, or perhaps there 

are other categorical variables which are missing, and thus causing nonessential 

heteroscedasticity. (See Knaub(2018).) At any rate, the importance of age in this stratum 

is shown in the graph, which was discussed in the article. The fact that the slope is 

downward and variance is reduced is reasonable. (Note that variance is still increased for 

larger predicted-y.)  
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n = 475 (139 in Nairobi townships; 336 in rural towns) 

[Third party graph: Dr. Ronán Conroy] 

 

8.4 Spanish Shops: Example in Guadarrama, Molina, and Tillé(2020)  

 A nested error model, page 59, with random domain effects is used in an example here. 

In Section 9, the authors look at data from Spanish tobacco shops, for one particular 

"product," by province, where the size measure, “𝑧𝑖𝑗 ,” for shops by province, is the past 

three months revenue for that product, for that shop, for the population they considered. 

Further, for a sample of the largest shops, they were able to obtain “𝑣𝑖𝑗 ,” the more current 

month's revenue values, for which they wish to estimate a total. This is noted at the bottom 

of page 68. On page 69 they note that heteroscedasticity is apparent, and they use a 

transformation to ameliorate the impact. However, using the coefficient of 

heteroscedasticity, 𝛾, to account for this would be a more direct approach to the actual 

feature. (Heteroscedasticity is a not a problem to be 'fixed,' but a feature which should be 

included in the error structure of the model.) 
 

 The relationship here, data from a previous census used as a size measure variable for 

a variable representing current data on the same item, is an excellent choice. (See the 

bottom of page 205 in Cochran(1953).) This is generally the case throughout many 

applications at the US Energy Information Administration (EIA). (See Knaub(2017a).) 

However, the relationship of interest is a ratio, but a random domain effect means using a 

change in intercept to account for a change in ratio between provinces. It is unclear whether 

that is helpful. Borrowing strength by collapsing some groups of provinces, but not all, 

would mean less of a compromise on ratio estimates, but samples smaller than that from 

the entire population. If the difference in underlying province ratios in a collapsed group is 

substantial, that would increase nonessential heteroscedasticity to some extent, but may not 

be problematic. (See slide 35 in Knaub(2017a).)  
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 On page 69, 𝑣𝑖𝑗  and 𝑧𝑖𝑗  are said to have right-skewed distributions, which is also true 

of EIA establishment survey data, and establishment survey data in general. (There are 

often many small operations, and a few very large companies.) Heteroscedasticity is often 

more apparent because there is an obvious size difference. The few large companies, with 

possibly large estimated residuals, will have smaller regression weights. They are very 

important to sample when 'predicting' a total, since their part of that total is large. 
 

 At the bottom of page 69 in Guadarrama, Molina, and Tillé(2020), the estimated 

residuals are given as the difference between a sampled y-value, and the model prediction, 

which includes the random domain effect as an intercept, or adjustment to one  

already present. (There seems no reason for an intercept term here. See Brewer(2002), 

pages 109-110). 
 

 Overall, the example in Guadarrama, Molina, and Tillé, (2020) is very interesting and 

clearly presented so that results can be understood.  
 

 The first paragraph in the conclusions on page 72 note that business applications  

(say, establishment surveys) can trade higher cost for lower accuracy with cutoff samples. 

A cutoff sample may entail bias from excluding the smallest members of the population. 

However, variance is decreased tremendously. Accuracy is therefore often improved with 

a cutoff sample. (So it is often less expensive and more accurate.) The authors also note 

some data will not be available. That could be more of a problem for design-based 

(probability-of-selection-based) sampling. The key is to have good predictor data for the 

entire population. Weighted least squares regression, using a reasonable coefficient of 

heteroscedasticity, is very good for such data. See Knaub(2017a) and references there.  

(If there are a few substantial cases with no predictor data, collect them as “add-ons”).  
 

 The last paragraph of the article notes how small area estimation can be used, piecing 

parts together to cover domains. This is illustrated in Knaub(2017a) in slide number 31.  
 

 Overall sample size is n = 1842 in 48 provinces, with N = 12,791.  

  

8.5 Longley Data – Multiple Linear Regression  

 The National Institute of Standards and Technology (NIST), US Commerce 

Department, has collected some real data for use in testing statistical software for accuracy 

in producing regression results. One well-known data set was considered in NIST 

Information Technology Laboratory(2021).15 We will call this NIST ITL(2021). We will 

refer to that as the Longley data, which is employment and related data, for which they 

used multiple linear regression with six independent variables and an intercept term of very 

large relative magnitude, and only 16 data points. NIST ITL(2021) shows a graphical 

analysis, but it only involves the first predictor, which as part of the full model has an 

estimate of 15.06, and “standard deviation of estimate” of 84.91. With n = 16, one might 

visually assume homoscedasticity, but there is a great deal of variance, little data, and that 

one predictor may not be a good measure of size. However, full model predicted-y values 

may be unsatisfactory measures of size as well. Statsmodels(2021) tells us that the 

                                                 
15 The reference from which these data came is given as Longley, J. W. (1967), “An Appraisal of 

Least Squares Programs for the Electronic Computer from the Viewpoint of the User,” Journal of 

the American Statistical Association, 62, pp. 819-841.  
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variables are “highly collinear.” The data set is known for the difficulties it presents to 

computer algorithms. See Weisberg(1980), page 178, on “ill-conditioning” as a 

consequence of extreme collinearity.  

 

 
 

 
These graphs are for the two methods of estimating 𝛾 in Knaub(2019).  

n=16. 

 

 The first graph, with a negative slope, tells us that the estimated 𝛾 is less than 0. The 

second graph says it is -0.89, and the standard error for 𝛾 is the standard error of the slope 

in that graph, which is estimated from simple linear regression as 5.83. So, we cannot really 

say anything about it. Brewer(2002), page 137, called for very large sample sizes. Here, 

with apparently too many variables for a small sample size, we cannot obtain useful 

information on 𝛾, and because the range of predicted-y is small, that means there is little 

change in measure of size.  
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8.6 Residential Electric Sales by Full-Service Cooperatives in Tennessee  

 This figure is found on page 9 of Knaub(2019), where also is found an easy 

reference/reminder as to how the two methods of estimating the coefficient of 

heteroscedasticity used here can be explained. n=9.  

 

 
 

 
From page 10 in Knaub(2019) - preliminary Residual Analysis 

 

In these figures, “g” means 𝛾 

 

 Here we have a very small sample size, n=9, like many actually used for the many small 

populations of electric power and other data at the US Energy Information Administration 

(EIA). (Small area estimation is often used for "borrowing strength" at the EIA, but one 

should be very careful.)  
 

 For this example, were it used, 𝛾 = 0.5 would have been assumed during a data 

production cycle - monthly in this case - to accommodate possible data quality issues. Even 
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though the sample size is extremely small for estimating 𝛾, results were in the range Ken 

Brewer confirmed, just as census data checks, perhaps well over N=100, this author used 

for experiments in the 1990s also confirmed. This graph shows, by the first of two methods 

used, that gamma appears to be greater than zero.  

 

 
 

 
 

 The first graph shows an estimate of gamma to be a little more than 0.7, found on page 

13 of Knaub(2019).  
 

 The second graph is from page 17 in that same reference. Gamma is estimated to be 0.9 

with a standard error of 0.1. (Note that a small change in one data point might change this 

substantially). 
 

 Making an adjustment for the hat-value, we start with the following for 𝛾 = 0:  
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ℎ𝑖 = 𝑥𝑖
2/ ∑ 𝑥𝑖

2

𝑛

𝑖=1

 (1 − ℎ𝑖)0.5 

5.657E-01 0.659 

1.327E-01 0.931 

1.304E-01 0.933 

6.999E-02 0.964 

3.572E-02 0.982 

2.541E-02 0.987 

2.430E-02 0.988 

1.582E-02 0.992 

1.302E-07 1.000 

 

 For 𝛾 = 0, 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒𝑖, we have ℎ𝑖 = 𝑥𝑖
2/ ∑ 𝑥𝑖

2𝑛
𝑖=1 , used above. To adjust for 

leverage, were 𝛾 to be zero, we obtain the values above. The data point with the largest 

value for 𝑥𝑖, more than twice the second largest value for 𝑥𝑖, responsible for the values at 

the top of the two lists above, had the greatest change to the adjusted 𝑒𝑖 value in this real 

data example. Here, however, heteroscedasticity for 𝑣𝑎𝑟(𝑌𝑖) should be considered. The 

key is not 𝜎2, but rather 𝜎𝑖
2, where ℎ𝑖 (perhaps we should say ℎ𝑖

∗) considers 

heteroscedasticity. Thus the key for 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒0𝑖
𝑥𝑖

𝛾
′, when directly considering 𝛾, is not 

ℎ𝑖 = 𝑥𝑖
2/ ∑ 𝑥𝑖

2𝑛
𝑖=1 , but rather ℎ𝑖

∗ =  𝑥𝑖
2−2𝛾

/ ∑ 𝑥𝑖
2−2𝛾𝑛

𝑖=1 , which is the same thing when 𝛾 =
0. The idea of adjustment by the hat-value for ‘ordinary’ least squares (OLS) regression is 

that 𝜎 is a constant, and the estimate for it is reduced by the influence of the model part as 

determined by the sample taken. But with heteroscedasticity for var(𝛆), the actual 𝜎𝑖 

becomes larger with larger 𝑧𝑖. When studying a scatterplot of |𝑒𝑖|, “predicted” by 𝑥𝑖, or 𝑦𝑖
∗, 

or 𝑧𝑖, if there is a simple linear regression line through those points, the slope indicates 

heteroscedasticity, and thus the size measure can predict the |𝑒𝑖|, a substitute for 𝜎𝑖. In fact 

these predictions are often used. (See the second of four suggestions in Penn State(2021g), 

for estimating 𝜎𝑖, when weights are not ‘known’ (or estimated using 𝛾).) However, it is 

better, considering ‘essential heteroscedasticity,’ to estimate 𝛾, or at least consider a 

reasonable default value, preferably where 0.5 ≤ 𝛾 ≤ 1, though nonessential 

heteroscedasticity may have a roll. This fits with the nature of essential heteroscedasticity, 

following the logic of Brewer(2002), mid-page 111.  
 

 For the first method of estimating 𝛾 in Knaub(2019), adjusting for leverage, as 

suggested in Carroll and Ruppert(1988), but potential outliers will be considered in the 

baseball example, 8.12, we see below that 𝛾 is slightly larger than 0.75 now, where it had 

been approximately 0.7 for this method.  

 

Note that 𝜎 is for 𝑌𝑖|𝑋𝑖, and 𝜎∗ is for 

the estimated residuals. 

𝜎∗underestimates 𝜎 by the variance 

due to the model coefficients:  
 

𝜎 =
𝜎∗

√1 − ℎ𝑖

 

 

So if 𝛾 = 0 were the case here, from 

the lists on the left, one ‘true’ 𝜀 

would be much larger, but most 

would barely change when translating 

from e to 𝜀, if model specification is 

good.  
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 We follow up using the fitted values with 𝛾 = 0.75, and dividing |𝑒0𝑖
| =

|𝑒𝑖|/𝑦𝑖
∗0.75(𝛾 = 0.75) further by (1 − 𝑥𝑖

2−2𝛾
/ ∑ 𝑥𝑖

2−2𝛾𝑛
𝑖=1 )

0.5
, with 𝛾 = 0.75.  

 

 

 

 

 

8.904752E-01 

9.251544E-01 

9.254894E-01 

9.365908E-01 

9.466840E-01 

9.511453E-01 

9.517001E-01 

9.567260E-01 

9.977298E-01 
 

 

  Using the second method in Knaub(2019) for estimating 𝛾, including the estimate of 

standard error, all suggested by Ken Brewer, and adjusting for leverage as part of what is 

shown in Carroll and Ruppert(1988) - see pages 31, and, for example, pages 49 and 50 - 

we estimate 𝛾 = 0.93 with the standard error shown below the scatterplot, in an excerpt 
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When accounting for ‘true’ heteroscedasticity, 

i.e., for 𝑌𝑖, the impact of the new “hat-values,” 

ℎ𝑖, is shown here.  
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from a spreadsheet, as approximately 0.087 ≅ 0.1. So, as before the adjustment for 

leverage, we will still use 𝛾 = 0.9. (Note that the estimate changed from 0.91 to 0.93. This 

is because of the hat-value adjustment used, as shown in Carroll and Ruppert.)  

 

 
  

 log|y-y*| log y*    

new y new x new e e^2 (x-xmean)^2 

3.934915 5.371419 -0.11526 0.013285 0.629387558 

3.437788 5.056516 -0.3188 0.101635 0.228901667 

4.038774 5.052771 0.285676 0.081611 0.225331636 

3.494429 4.917633 -0.13268 0.017604 0.115296536 

3.846437 4.771559 0.355513 0.126389 0.037434243 

3.407584 4.697644 -0.01443 0.000208 0.014295644 

3.156254 4.68797 -0.25674 0.065916 0.012075968 

3.567518 4.594766 0.241417 0.058282 0.000278453 

0.912045 2.052437 -0.04384 0.001922 6.378867636 
     

mean x = 4.578079 RSS= 0.466852  

  sigma^2= 0.058356  

   Sxx= 7.64186934 

 var(b)=  sigma^2/Sxx= 0.007636412 

     

   se(b)= 0.087386567 

 

 The estimated standard error for 𝛾 is 0.087, but the confidence interval may be very 

skewed. See the corresponding (but not hat-value adjusted) estimates and scatterplot for 

the body fat example (for quadratic linear regression) in Section 8.8.  
 

 Estimates of 𝛾 with and without the hat-value adjustment were close above, for such a 

small sample size. Residual variance was very small. Compatible accuracy in estimating 𝛾 

is found in the forestry example, Section 8.11, where the sample size is over 1000. The 

difference in results between the residual analysis and PDQ methods might at least partially 
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be due to a change in apparent value of estimated 𝛾 across ranges of the x-axis. This may 

be more easily pictured with the forestry data, as there are more data.  

 

8.7 North Dakota Total Electric Sales  

 On page 880 in Knaub(1992), we have the following, among other graphs:  

 

    
n = 42 

 

 Here a census (N=42) of North Dakota retail sellers of total (all economic end-use 

sectors) electric sales was predicted by a previous annual census. The goal was to find 

estimates of 𝛾. These are Figures 3c and 3d. The point on the right-hand graph where the 

line touches y=0 is the point where a value for 𝛾 would satisfy the first of the two estimation 

methods explained and used above. When a cutoff sample of n=8 was used, the line curved 

and dipped well over the x-axis, y = 0 line, hovering over about the same solution, but did 

not come near it. In practice it was noted that 𝛾 = 0.5 often did well, especially to offset 

possible data quality problems from the smaller respondents. With such small sample sizes, 

𝛾 not only matters for variance, it also matters for prediction. This is part of research done 

for publication of official energy statistics on a frequent basis for a great many small 

populations. For more information, see Knaub(1992, 1993, 2017a, and 2017b).  

 

8.8 Percent Body Fat Predicted By BMI  

 The first graph in the second link in Frost(2019) is a regression for percent body fat 

predicted by a quadratic function of body mass index (BMI). There Frost provided 

parameters for that regression. In Knaub(2019), at the top of page 19, we have the following 

graphical residual analysis for this quadratic regression:  
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Top of page 19, Knaub(2019)  

n = 92 

 

 The above graph is the usual graphical residual analysis with predicted-y on the x-axis, 

and estimated residual on the y-axis. We use �̂�𝑖 for the homoscedastic predicted-y, and 𝑦𝑖
∗ 

for the heteroscedastic version to be used later, though there is usually very little difference, 

especially for purposes of this routine for estimating 𝛾. But here we often use 𝑦𝑖
∗ for any 𝛾, 

including 𝛾 = 0, as the value of 𝛾 was changed in succeeding tables used for Knaub(2019) 

until it was determined to be adequate. Meanwhile, the actual predicted-y values on the x-

axis are often left as �̂�𝑖 as it was found to make very little difference, and using �̂�𝑖 as an 

approximation to 𝑦𝑖
∗ makes it easy for anyone to use only their y-values and �̂�𝑖-values in 

the spreadsheet which goes with Knaub(2019), to look at 𝛾 for their data. That was done 

here, and in other cases. The title on the graph above from page 19 of Knaub(2019) is 

misleading in that 𝑦𝑖
∗ there is exactly �̂�𝑖. On later tables, it is usually a very close 

approximation on the x-axis, for the purpose of estimating 𝛾.  
 

 Note that the graphical residual analysis above does not have a wider range in the y-

direction for estimated residuals as we move to larger �̂�𝑖 values. The often expected “fan-

shape” is not present. However, the variance, �̂�𝑖
2, of the estimated residuals does increase 

as the density of estimated residuals in the y-direction decreases with larger predicted-y 

values, �̂�𝑖. This assessment was verified by the two methods of estimating the coefficient 

of heteroscedasticity noted earlier. Sample size is small, but both methods did agree with 

this visual analysis.  
 

 Following are two scatterplots showing those results, as before. Again, the first one was 

one of several used to find when a regression line through approximate |𝑒0𝑖
| values is closer 

to horizontal than the alternative that is different by one unit in the lowest significant digit 

considered. This graph appeared to come closest. The second scatterplot is one where logs 

were taken so that 𝛾 would be in the usual place for 𝑏, the slope, when the log of the 

homoscedastic estimated residuals is on the y-axis, and the log of �̂�𝑖 is on the x-axis.  
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Top of page 21, Knaub(2019) 

 

 To the nearest 0.01, the best estimate here is 𝛾 = 0.63. Note that g in y*(g=0) on the 

graph is gamma (𝛾), and indicates that the homoscedastic predicted-y, �̂�, is used in this 

approximation to find an estimate of 𝛾.  

 
Top of page 22, Knaub(2019).  

Note the slope is 0.7699, or about 0.77  

 

 With estimates of 0.63 and 0.77 for the coefficient of heteroscedasticity, one might use 

𝛾 = 0.7.  

 

8.9 Motor Fuel Consumption Example Multiple Linear Regressions 
On page 23 in Knaub(2019), we see “The examples to follow … are for a motor fuel 

consumption data set in Weisberg(1980), pages 32 – 47.”16 First we look at the case of two 

                                                 
16 On page 34 in Weisberg(1980), it notes that Christopher Bingham drew these data from the 

American Almanac for 1974, with the exception of total fuel consumption per State. Those data 

were from the 1974 World Almanac and Book of Facts.  
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predictors, and then we will add two more predictors, as was done in Weisberg(1980). 

However, any improvement seen is not necessarily due to the number of predictors, but 

rather which predictors are used. At the bottom of page 34 in Weisberg(1980), we see that 

motor fuel consumption per person is the y-value, and of the four regressors shown, the 

first multiple regression example there only used motor fuel tax and the proportion of the 

population holding a license to drive in each US State. Left out were highway and personal 

income data. It would seem that personal income would play a large role in the personal 

consumption of motor fuel. (Please remember that below.) Adding superfluous variables 

does not help, and can add variance, but omitting an important predictor would not appear 

to lead to the “ideal” predicted-y (model) either. (In the appendix to Shmueli(2010) there 

is an example shown where a biased model, having dropped a variable from the ideal 

model, gave better predictions. However, it would seem that we are considering the better 

explanatory case here instead.) Considering Brewer(2002), mid-page 111, it would seem 

logical then that of the two fuel consumption models in Weisberg(1980) and considered in 

Knaub(2019), that Weisberg’s two-predictor model may not show heteroscedasticity, but 

the four-predictor model might. Other factors might enter into consideration, but that is 

what seemed apparent in Knaub(2019), which we reference here. (For more information, 

see Knaub(2019) regarding the examples which are also among those used here.) In fact, 

scatterplots with y (fuel consumption) on the y-axis, and predicted-y on the x-axis, show a 

closer fit17 for the four-predictor model, versus the two-predictor model. So, the four-

predictor model had a tighter fit, and exhibited heteroscedasticity. But … actually looking 

at a scatterplot of income as a predictor for motor fuel consumption was disappointing. 

There is a large intercept from which the income term is subtracted. In both the two- and 

four-predictor cases, the intercept was a large part of the predictions, but much more so in 

the four-predictor case. These models hardly appear “ideal.” 
 

 For the case of these motor fuel consumption regressions, it is apparent that the model 

with the best fit also had heteroscedasticity. However, with the sample size n=48, a small 

number, one case for each Continental US State, and various factors which might impact 

each State differently, results may not be very meaningful. Here, as with the Longley data, 

the variables appear to be a somewhat eclectic collection, for which a subject matter theory 

describing why they should be used together appears to be missing.  
 

 On page 47 in Weisberg(1980), Table 2.4 shows the t-values for all four predictors and 

the intercept term. The apparent relative importance of predictors will change, depending 

upon relationships between them, in different combinations, but in that table, we see that, 

as with the Longley data, there are multiple variables with negative signs which tend to 

make prediction calculations bounce around the final value as you add terms. This all 

makes the four-predictor scatterplots less impressive than as was discussed in 

Knaub(2019). Perhaps the heteroscedasticity seen there, and not seen with the two-

predictor case, may not be very meaningful, or at least it is harder to explain.  
 

                                                 
17 Fitting too many variables to a small sample could be a problem, which might also be the case in 

the Longley data example. However, there it seemed it might be a reason for not having 

heteroscedasticity.  
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 Following are some of the scatterplots found in Knaub(2019) for first the two-predictor, 

plus intercept term, and then the four-predictor, plus intercept term, Weisberg fuel 

consumption models:  
 

 For the two predictor model with an intercept term:  
 

 
𝑦∗ here is just 𝑦∗(𝛾 = 0) =  �̂�  

  
 For two-predictors, the residual analysis method estimated 𝛾 ≅ 0.4, and the PDQ 

method estimated 𝛾 ≅ 0.1. About all we can say is that both estimates are less than 0.5, so 

heteroscedasticity has been dampened, or the sample size is not adequate for this 

application. Note: n = 48.  

 

Next:  For the four predictor model with an intercept term:  
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 For the graphical residual analysis method, we estimate 𝛾 > 1, and the PDQ estimate 

here is 0.97. n=48. 
 

Note: In Knaub(2019), when a potential outlier was removed as an experiment, the PDQ 

estimate of 𝛾 changed from 0.97 to 0.64.  

 

8.10 Forestry  

 Here we have tree crown width (for 1165 loblolly pines and 3 shortleaf pines) predicted 

by tree diameter, tree height, and their interaction term. The only input were y-values and 

the homoscedastic predicted-y values. For more details, see Knaub(2019), pages 30 to 33. 

(Data were provided by Dr. James A. Westfall, US Forest Service. His response to the 

author’s request for data is greatly appreciated.)  
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 The upward slope indicates heteroscedasticity. Accounting for what coefficient of 

heteroscedasticity will give us a slope of zero?  
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 𝛾 = 0.7 is just a bit more than enough to give us a horizontal line for the first method 

of estimating 𝛾 (really, 𝛾′).  

 

 
 

 The two estimates of 𝛾 here are 0.70 and 0.68.  

 

 Compare Section 8.6 on Tennessee electric cooperatives data to this, Section 8.10, on 

forestry data. Both models clearly show heteroscedasticity. We know that the former is an 

example of a case where the size measure is highly desirable, according to the bottom of 

page 205 in Cochran(1953). The latter depends upon the relationship between different 

parts of a given tree, with regard to growth. The latter has much larger 𝜎𝑖
∗, but about the 

same heteroscedasticity. It appears to be a fairly simple model. Adding a variable that is 

not very helpful should just increase variance (Brewer(2002), pages 109-110, and Hastie, 

Tibshirani, and Friedman(2009), page 223), though your sample may be good. It does not 

appear that there are any categories to distinguish, as the data are for almost all one specific 

type of pine tree (1165 loblolly pines and 3 shortleaf pines). Perhaps this is as good as the 
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model can be, and is just more useful for finding confidence of means than individual 

predictions.  (However, geographic information might be considered.)   
 

 The second gamma estimation (PDQ) method, from Knaub(2019), proposed by Ken 

Brewer, using n = 1168 trees, yielded 𝛾 = 0.6767, s.e.(𝛾) = 0.0789, or better, 𝛾 = 0.68, 

s.e.(𝛾) = 0.08. (The first method yielded greater than 0.7.) For the Tennessee electric 

cooperatives data, using n = 9 establishments, and adjusting by the hat-value, yielded 𝛾 = 

0.932, s.e.(𝛾) = 0.087, or better, 𝛾 = 0.93, s.e.(𝛾) = 0.09. (The first method yielded 

approximately 0.75 using the hat-value adjustment.) It is proposed that one would expect 

heteroscedasticity, generally such that 0.5 ≤ 𝛾 ≤ 1.0, when we have a good size 

measure/predicted-y-values/model. For the Tennessee electric cooperatives we have a very 

good size measure, the current sampled data item in a previous census (Cochran(1953), 

page 205), where 𝑍 = 𝑥, or 𝑦∗ = 𝑏𝑥, but the sample size is very small. One case of poor 

data quality, which may be expected to more likely come from among the smaller such 

establishments, could lead to a change, such that in Knaub(2017a), the general default 

when performing many such regressions on a frequent basis for purposes of publishing 

official energy statistics was/is 𝛾 = 0.5. However, for the forestry data, one can expect 

more accurate results with the large sample size, unless data should have been stratified. It 

is proposed here that it appears that relevant data were used, such that one might expect a 

good model/size measure, for a narrow category of tree, though one might wonder about 

any other factors.  
 

 It seems promising that heteroscedasticity was so undeniable. Perhaps others with data 

sets they could check for heteroscedasticity will do so, using the Excel spreadsheet tool 

made available with Knaub(2019), or something more sophisticated.  

 

8.11 Baseball  

 Samaniego and Watnik(1997) is an interesting paper on Major League Baseball player 

payroll data as predictors for number of baseball games won. The pitcher and batter/hitter 

payroll data are available for all 28 teams for the year 1995.18 The paper is with regard to 

separating the pitcher payroll data from the total player payroll data. Here, however, we 

are looking at the presence or absence of heteroscedasticity in the range Brewer justified. 

In general, ridiculously large coefficients of heteroscedasticity were indicated whether it 

was when only pitcher data were used, and an intercept term, or only the less useful ‘hitters’ 

payroll data, with an intercept term, or a multiple regression, with both payrolls and an 

intercept term. An exception was for the second (PDQ) method, for the multiple regression 

case, where 𝛾 was estimated to be -0.16 with a standard error of 2.69. For hitters with an 

intercept, the second method showed an estimate of 𝛾 = 8.97, with a standard error of 

6.10! Obviously this is problematic. The sample size is small, and the year may have been 

unusual enough to account for this. One team, Cleveland, had an unusually large 100 games 

won. Toronto had a low number of wins, 56. For heteroscedasticity, the larger predicted-y 

values have larger estimated residuals, but neither of those teams were unusual for 

predicted wins. Still, first Cleveland data, and then Cleveland and Toronto data were 

removed from use by the pitcher payroll with an intercept term model, but this did not help. 

                                                 
18 The data source for Samaniego and Watnik(1997) was given as “…the November 17, 1995, issue 

of USA Today.”  
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Results for both methods for 𝛾 were still very high, beyond reasonable. However, for 

multiple regression, removing Cleveland, the first method estimated 𝛾 = 0.75, and the 

second method yielded 𝛾 = 0.21. Thus there may be a problem with the sample size and 

perhaps volatile data, or perhaps important information is missing. By several measures, 

accounting and not accounting for heteroscedasticity, the multiple regression method was 

only slightly better at predicting wins than the pitcher model, and not by nearly enough to 

make the additional variable worthwhile, according to the AIC and BIC. For all models, 

there is a large intercept, which reduced the range of predicted values greatly, which may 

help account for heteroscedasticity not being noticeable on all scatterplots. (Perhaps the 

unusual restriction that a change from a win to a loss for one team means a change for 

another team as well indicates an even larger than usual sample size is needed.)  
 

 Here we show the basic, starting graphical residual analysis, indicating that we do have 

heteroscedasticity. The scatterplot for a simple linear regression using the pitcher payroll 

data is given, followed by one where Cleveland is left out, and then Cleveland and Toronto. 

This is not an endorsement of dropping data without better data quality review procedures, 

it is just to see what the data might be saying about heteroscedasticity.  

 

 
 

 One might think that this is all driven by the data from Cleveland, which is that largest 

point for |e|. However, please note that the predicted value is in about the middle of the 

range. The next scatterplot shows that removing that point still leaves a steep slope 

indicating increase in the absolute value of the estimated residuals with increasing values 

of predictions, i.e., heteroscedasticity.  

 

 

 

y = 0.1539x - 6.3804

0

5

10

15

20

25

0.0 20.0 40.0 60.0 80.0 100.0

|e
|

y_hat

Pitchers: Graphical Residual Analysis for Gamma = 0, 
Simple Linear Regression on All Data



When Would Heteroscedasticity in Regression Occur? 354 

 
 

Now the highest |e| belongs to Toronto, and it has a smaller predicted-y value.  
 

 This seems like a familiar, undesirable treatment of potential outliers! Throw one out, 

and another looks just like it. This could indicate none should be dropped. But more data 

would possibly be very helpful. There are two more major league teams now, but it would 

take a great deal more than that! This is a situation where the sample size is likely too small, 

and one would need to use a default, possibly 𝛾 = 1 for this application. A better predictor 

variable might help. We do not know.  

 

 
 

9. SEARCHING FOR THE IDEAL PREDICTED-Y 
 

 The ideal predicted-y, unlike that in the arm strength example, will be associated with 

estimated residuals which vary more greatly with larger predicted-y. For the arm strength 

example, perhaps mid-range values of predicted-y had larger sigma of the estimated 

residuals because variables which would tell us about the age of the person, and his/her 
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years to reach a given alcohol consumption level, and/or perhaps other such relevant 

variables, were omitted. (The principle of the hat-value adjustment tells us that a small 

increase in sigma of estimated residuals at mid-range of the predicted-y-values is to be 

expected with homoscedasticity of 𝑉(𝑌𝑖) with an intercept term.) This tendency for 

homoscedasticity is more subtle than a missing categorical variable which could cause 

nonessential heteroscedasticity, but perhaps far more prevalent, though often unnoticed. 

Statistical learning, for example, will have complex situations where the achieved 

predicted-y may not often very closely approach the ideal predicted-y, and thus estimated 

residuals might be impacted by various factors along the range of predicted-y, say in 

perhaps a more complex version of the arm strength example.   
 

 Once, when asked to comment upon some ratio models another researcher was 

considering, the estimated variance of the prediction error apparently became larger with 

larger predicted-y, even though the coefficient of heteroscedasticity had been set at zero in 

the case of that one model. (Using 𝛾 = 0 for those models is something not generally to be 

encouraged unless there is a reason such as very low data quality for the smallest 

respondents, which artificially increases sigma for 𝑒𝑖 for smaller predicted-y.) But why 

would this happen? Heteroscedasticity for 𝑒𝑖 and heteroscedasticity for 𝜀𝑖 are two different 

things, as shown by Weisberg(1980), pages 100-106,19 and it is 𝑉(𝑌𝑖) which actually 

matters when specifying the model. But this would not explain increasing estimated 

variance of the prediction error. For that, we have the variance from the model coefficients, 

and that is likely ignored when estimating sigma.  
 

 Thus, when looking for the ideal predicted-y, 𝑦𝑖
∗, we need to remember that when we 

estimate 𝑉(𝐘), it is impacted by both 𝑉(𝐞), and 𝑉(𝐗𝛃∗). So we look for an impact of 𝐗𝛃∗ 

on 𝑉(𝐞) but it also relates to 𝑉(𝐗𝛃∗).  
 

 For the Longley employment example, we are told that ill-conditioning is a problem, 

which is apparently the reason Longley choose these data when testing computer 

algorithms for precision. (See SAS(1999), and IBM Support(2021).) Such a great deal of 

collinearity might make variable selection more difficult. (See Statsmodels(2021), and 

Weisberg(1980), pages 178-179.) Further, the intercept is the largest part of the regression 

for that example, by far, which does not appear to be ideal. The predicted-y-values range 

by only about 17%, providing little change in sigma, even for an ideal situation.  
 

 It is proposed that for predicted-y to be a good size measure, there should be an increase 

in 𝑉(𝑌𝑖) as predicted-y becomes larger. Further, as we can see from the graph in Penn 

State(2021f), the coefficient of determination is based on comparing the part of the 

variance of 𝑦𝑖  within a population which can be explained by a model (the sum of squares 

of differences between predicted-y and the unconditional mean of 𝑦), with the conditional 

variance of 𝑦𝑖 , given the model (𝑉(𝑌𝑖)). Usually we just care that predicted-y is close to 𝑦𝑖 . 

A high coefficient of determination is not really a requirement, and it can be highly 

                                                 
19 This prompted a note in the ResearchGate abstract for Knaub, J. (2007). Heteroscedasticity and 

homoscedasticity. In N. Salkind (Ed.), Encyclopedia of measurement and statistics. (pp. 431-

432). Thousand Oaks, CA: SAGE Publications, Inc. doi: 

http://dx.doi.org/10.4135/9781412952644.n201 at 

https://www.researchgate.net/publication/262972023_HETEROSCEDASTICITY_AND_HOMO

SCEDASTICITY: “Erratum: ‘variances of the predictions’ should be ‘variances of the Y_i.’"  

http://dx.doi.org/10.4135/9781412952644.n201
https://www.researchgate.net/publication/262972023_HETEROSCEDASTICITY_AND_HOMOSCEDASTICITY
https://www.researchgate.net/publication/262972023_HETEROSCEDASTICITY_AND_HOMOSCEDASTICITY
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misleading by itself, but it is good to know when the conditional 𝑉(𝑌𝑖) are relatively small. 

Similarly, for the conditional 𝑉(𝑌𝑖) = 𝜎𝑖
2 =  𝑉(𝑌𝑖

∗) + 𝑉(𝑒𝑖), it would be nice if the 𝑉(𝑒𝑖) 

were not too large, but sometimes they just are large, as in the forestry example. The model, 

however, can still be good. It is proposed that the model in the forestry example behaves 

well because it does show heteroscedasticity. If another model were found with lower 𝜎𝑖
2 =

 𝑉(𝑌𝑖
∗) + 𝑉(𝑒𝑖), that would be better, but the 𝑌𝑖

∗ here are behaving as a good size measure. 

The Tennessee electric cooperatives data had a well behaved size measure and small 𝜎𝑖
2. 

However, though the model for the Longley data had tight fits to the sample data, and 

questionable heteroscedasticity, model usefulness in general there may be questionable. So 

like a high 𝑅2, heteroscedasticity, with 0.5 ≤ 𝛾 ≤ 1, is just one indication that something 

has gone well. However, without a very large sample size, or enough other experience with 

the same model and application, 𝛾 may be difficult to determine.  

 

10. MORE ON EXAMPLES 
 

 Real data examples above were considered to see if there was appreciable 

heteroscedasticity, with the baseline consideration that it was expected as long as predicted 

values differed in size, and to see what features of the models and data may have 

contributed to the appearance or disappearance of heteroscedasticity. In a thesis, 

Gelfand(2015), pages 6 through 11, it was noted that of 42 data sets representing a wide 

range of applications, 25 showed a general increase in absolute residuals from the smallest 

to the largest predicted-y values. (Note that an optimal random forest was first applied.)  
 

 There are many real data examples in which heteroscedasticity is either obvious, or 

present but not obvious. Some models are better than others. The arm strength example 

indicates that a missing variable (not categorical) can make the model miss 

heteroscedasticity. In the baseball example, an additional variable which does not clearly 

help (see Brewer(2002), pages 109 and 110) may not be justified, and there it may reduce 

heteroscedasticity, though the sample size is clearly not adequate to know this.  
 

 Considering which model is best in statistical learning: In Dalpiaz(2020), Section 6.1, 

Assessing Model Accuracy, Section 6.3, Test-Train Split, and Section 6.5, Choosing a 

Model, he uses RMSE, which he can be seen to base on sigma for the estimated residuals, 

except that he does not use the degrees of freedom of the model, but uses the sample size 

instead.  
 

 Let us consider this for a moment: As complexity of the model is increased, we can 

force a model to come closer to the training set (sample) of data points. That will reduce 

the sigma of the estimated residuals for the manifestation of the changed model, and thus 

reduce estimated RMSE for the training set. However, the sample should be 

‘representative’ of the population or subpopulation to which it is to be applied. A more 

complex model determined from the training set may be more or less well suited to the test 

data set. If increased complexity of the model using the training data set can cause lower 

RMSE for the test data set, then it seems justified. Eventually, with more complexity, 

though the RMSE for the training data set continues to be reduced, the RMSE for the test 

data set will start to increase, because there is too much complexity to handle the eligible 

data in general. This emphasizes the importance of these two data sets. Neither can be 
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atypical of the population or subpopulation to be modeled, or there is a problem of one 

kind or another. (See Dalpiaz(2020).)  
 

 There are three components of the expected [actually squared] prediction error, Err, or 

EPE, to consider: the sigma-squared of the 𝜀𝑖 (for the “irreducible”20 part), the to-be-

considered bias-squared of the model due to misspecification, and the variance of the 

estimated model due to its estimated coefficients. (See Hastie, Tibshirani, and 

Friedman(2009), page 223.) This is the variance of the prediction error, plus the unknown 

bias due to misspecification of the model. It is easy to consider one part and start to forget 

about the influence of another, and they are all estimated, the results of groping in the dark. 

There is a “bias-variance tradeoff” tendency as well. Increased complexity, such as an 

extraneous variable, tends to increase variance, but reduced complexity, such as in the 

example in the appendix to Shmueli(2010), where one predictor of two was lost, tends to 

increase bias. In that example, however, under some conditions, the biased model might 

have lower expected prediction error (EPE). In Knaub(2017a), on slides 39 and 40, a case 

was noted where increased complexity was helpful because it sometimes added a good deal 

of “explanatory power” as Brewer(2002), pages 109 and 110 noted would be a reason to 

do this.  
 

 Using RMSE is something like sigma for the estimated residuals, but without 

considering degrees of freedom. Kutner, Nachtsheim, and Neter(2004), page 424, use a 

subscript 𝑤 to indicate when they are looking at the mean of the sum of the weighted 

squared estimated residuals, 𝑀𝑆𝐸𝑤. There 𝑀𝑆𝐸𝑤 =
∑ 𝑤𝑖𝑒𝑖

2

𝑛−𝑝
, where in the case of 𝑒𝑖 =

𝑒0𝑖
𝑧𝑖

𝛾′
, 𝑒0𝑖

2 = 𝑤𝑖𝑒𝑖
2. So when we compare model results, perhaps we should compare the 

sum of weighted sigma-squared estimates. This is basically what the chi-square statistic 

essentially does, with a weight consistent with 𝛾 = 0.5.  
 

 In the baseball example, results for the simple linear regression using an intercept term 

and the payroll for only pitchers was compared to that using only hitters and an intercept 

term, and to the multiple regression using hitter payroll, and pitcher payroll separately as 

two predictors, plus an intercept term. Using both unweighted sum of squared errors and 

the chi-square, there appeared to be a big difference in each case between hitters only and 

pitchers only, and very little apparent "improvement" between the simple linear regression 

using only the pitcher payroll predictor and intercept term, and the multiple regression. 

(This seems consistent with the “separation principle” discussed in Samaniego and 

Watnik(1997).) Whether or not the multiple regression is better might be determined by 

test data, if there were any. The data set is so small that splitting it to form a training set 

and a test set would be problematic. As it is, the results of attempting to estimate gamma 

for each model using all data are dubious. Sample sizes are small, and one can surmise that 

a change to one data point might possibly have a substantial impact. As it is, it appears that 

gamma may be very large for the simple linear regression cases, but there is less evidence 

for the multiple regression case. Could collinearity have an impact? There is not enough 

information to tell, which may often be the situation. Looking at the scatterplots, nothing 

is obvious. Thus one might not even consider heteroscedasticity, though assuming 

                                                 
20 See Singh(2018).  
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substantial heteroscedasticity may be better than assuming homoscedasticity, as is 

generally automatically done.  
 

 There are many interesting relationships between predictors. A suppressor variable,21 

for example, which may have little or no correlation with the response variable, will 

“suppress”22 variance in one or more predictors, indicating that the relationships here are 

complicated. Shmueli(2010), page 6, notes in the first column that when we are only 

looking for the best predictions, we may want a biased model. (Biased in the sense of being 

misspecified, not necessarily model-biased where the expectation of the sum of estimated 

residuals is not zero. But here a misspecified model is meant.) We might surmise that the 

ideal predicted-y is more like the one without bias (the “correct” model, Shmueli(2000), 

page 6), though that may then mean dealing with collinearity and issues between predictors, 

such as suppression. The idea of considering the “ideal predicted-y” or best model then 

might be quite problematic, whether or not it might actually relate to when we would have 

heteroscedasticity. One might want to consider principle components.  
 

 Note that the sample size needed to accurately estimate the coefficient of 

heteroscedasticity may vary greatly by application. In some cases, sample size needs might 

not be so large. Cochran(1953), page 205 notes how helpful it can be if there is one 

predictor, which is the same data “item” from a previous census. See examples 8.6 and 8.7 

above. There, sample sizes are n=9 and n=N=42, respectively. Knaub(2017a) and some 

references there, are with regard to many such small samples from numerous small 

populations of establishments, for official energy statistics, where 𝛾 can be expected to fall 

such that 0.5 ≤ 𝛾 ≤ 1.0, but 𝛾 = 0.5 is generally the default used to hedge against the 

possibility of data quality issues for smaller respondents to the frequently occurring sample. 

Brewer(2002), notably on page 137, considers that very large sample sizes are appropriate 

for estimating 𝛾, but that certain default values for 𝛾 might be used, depending upon the 

application. The supplementary spreadsheet tool for Knaub(2019) has a sheet commenting 

on this.  

  

11. CIRCUMSTANCES UNDER WHICH HOMOSCEDASTICITY IN 

REGRESSION MIGHT APPEAR TO BE APPROPRIATE 
 

 OLS regression may be the first stop when most new models requiring a continuous 

response are developed. Certainly this is encouraged in the literature. When one first learns 

regression, you are told that one of the main requirements is homoscedasticity. Other 

developments may depend upon it. But there are situations which cause heteroscedasticity 

(Knaub(2018)) which can be ‘corrected,’ such as omitted categorical variables, which 

might be identified, or one may be encouraged to apply a transformation to “fix” the 

natural, ‘essential’ heteroscedasticity (Knaub(2017b)) that is present. This might or might 

not work very well, and may or may not cause problems in interpreting the results. In this 

paper, essential heteroscedasticity is considered to be an important feature to be treated as 

part of the error structure.  First, we will review why this should be the case.   
 

                                                 
21 Suppressor variable complications can be quickly noted in Ludlow and Klein(2014), in the first 

part of the Introduction, pages 1 and 2, and the Conclusions on pages 21 and 22.  
22 Lancaster(1999), page 5.  
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 In summary: In William Cochran’s 1953 textbook, Sampling Techniques, 

Cochran(1953), on page 199 he notes an already by then well-established empirical 

expression for the within agricultural plot or cluster variance: 𝑆𝑤
2 =𝐴𝑀𝑔. On page 212, 

Cochran notes that when 𝑧𝑖 is a relative size measure, and there is a straight line relationship 

‘through’ the origin, between 𝑦𝑖 and 𝑧𝑖, that only a few studies had reported the 

relationship, between 𝑧𝑖 and the variance for 𝑦𝑖 , see page 211, but those that did report this 

had found this variance to increase at a rate “…between 𝑎𝑧𝑖 and 𝑎𝑧𝑖
2.” There Cochran noted 

that this was the variance for 𝑒𝑖, but wrote this such that no other random variable was 

involved, and thus it is 𝜀𝑖 in regression, and the variance is for 𝑌𝑖. There 𝑧𝑖 is 𝑀𝑖 ∑ 𝑀𝑗⁄ , 

where 𝑀𝑖 is the size of unit 𝑖, so 𝑧𝑖 is a relative size measure. Thus, Brewer(2002), mid-

page 111, explains why a long established empirical relationship was found. This indicates 

that for 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒𝑖, and from there 𝑌𝑖 = 𝑦𝑖
∗ + 𝑒𝑖, can be described such that 𝜎𝑖

2 =

𝑉(𝑌𝑖) = 𝑎𝑧𝑖
2𝛾

, where “…between 𝑎𝑧𝑖  and 𝑎𝑧𝑖
2” means that we have 0.5 ≤ 𝛾 ≤ 1. Thus, 

for the “gamma population model” on page 49 in Chambers and Clark(2012), where they 

have 𝐸(𝑦𝑖|𝑧𝑖) = 𝛽𝑧𝑖 and 𝑉𝑎𝑟(𝑦𝑖|𝑧𝑖) = 𝜎2𝑧𝑖
2𝛾

, we have 0.5 ≤ 𝛾 ≤ 1.  Brewer(2002), page 

111, shows why this was found to be the case.   
 

 So this is for the model of form 𝑌𝑖 = 𝑏𝑥𝑖 + 𝑒𝑖. Why should this not carry over to every 

model of form 𝑌𝑖 = 𝑦𝑖
∗ + 𝑒𝑖?  

 

 There are obvious cases where the researcher might just note heteroscedasticity. 

Consider the examples of Sections 8.4 and 8.10. In 8.4, the authors of the article for that 

example of Spanish shop data simply stated that there was heteroscedasticity, and how they 

addressed it. In 8.10, the forestry data was supplied for purposes of the experiment there. 

(That worked well, and it was for multiple regression.)  
 

 Below are some ideas as to why heteroscedasticity may not be seen, or we may just 

think it is not seen, or perhaps do not consider it.  
 

11.1 Sometimes there is heteroscedasticity, but it may not be apparent if you are 

not looking for it. Consider the Tennessee electric power cooperatives example in Section 

8.6. We first look at the scatterplot of y and x. The estimated residuals, which will generally 

give us an idea of the actual residuals, are small enough that heteroscedasticity may not be 

obvious from the first scatterplot. This was also true for Section 8.7, North Dakota total 

electric sales. Further, with small sample sizes, heteroscedasticity might not be obvious 

even from a graphical residual analysis, or even completely determinable, as in the case of 

the baseball example in Section 8.11, where there are indications of possible 

heteroscedasticity, or the Longley employment and related data, Section 8.5, where ill-

conditioning and perhaps fitting too many variables to a small sample may only make it 

appear to be homoscedastic. Also for the baseball example, and particularly for the Longley 

data, there is a fairly short range of the predicted-y (or size measure). This makes 

heteroscedastic differences smaller, such that they may be overwhelmed by general 

randomness, and thus less noticeable. (This seems plausible for the baseball example, but 

we will put the Longley example under 11.3, below.) The range of predicted-y values for 

the percent body fat example of Section 8.8 is relatively short, and even with a sample size 

of 92, the graphical residual analysis did not show the typical ‘fan-shaped’ pattern. The 

density of estimated residuals in the y-direction, as we move to larger predicted values is 

decreased, and therefore variance increases, but without causing a ‘fan-shape’ in that case.  
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11.2  Heteroscedasticity might be apparent, but not considered important to the 

current application. This could be the case with the home natural gas use and Kenyan sex 

worker examples of Sections 8.2 and 8.3, respectively.  It might be considered indirectly.   

 

11.3 Heteroscedasticity may be countered by model and/or data issues.  

 This appears to be the case in the example of the effect of alcoholism on arm strength 

given in Section 8.1, where missing information may have dampened heteroscedasticity, 

as discussed there. In the case of official energy statistics discussed in Knaub(2017a), one 

might often estimate 𝛾 to be between 0.7 and 0.9, but routinely use 0.5 to guard against 

data quality issues with the smallest respondents in the sample. This artificially increases 

variance near the origin, lowering the effective value of 𝛾.  
 

 However, in Section 8.9, the motor fuel consumption case, it was not clear why the 

addition of two more predictors made heteroscedasticity of the order expected as noted in 

Brewer(2002). Perhaps that selection of predictors worked well together and the 

collinearity was not so extreme as in the Longley case of Section 8.5, but it is not clear. 

The sample size may have been too small to make results reproducible. Also, in the 

Longley example, autocorrelation may have had an impact.  

 

11.4 Data May be Artificial and Designed to be Homoscedastic 

 Examples above were picked in a search for real data examples, while avoiding 

copyright issues. Many times one might encounter an example that looks promising, only 

to discover that it was manufactured as an example to illustrate how to do regression 

analysis. Real data examples are often messy. One may wish to illustrate a given point only 

to have it obscured by other issues in a real data example. Thus, real data examples, 

especially outside of your work experience, may be difficult for an individual to obtain. 

Examples here were located and requested for this purpose.  

 

11.5 Suggestion  
Perhaps readers may wish to look for heteroscedasticity in regression using their own data.  

The idea is to encourage everyone to think of heteroscedasticity in regression as the norm.     

 

12. CONCLUSIONS 
 

 Think of each y-value as having at its core, a predicted value made up of infinitely 

many smaller, equal size elements. (If one element were bigger, it could be broken down. 

Therefore, there are infinitely many infinitesimal, equal size elements. Each also has its 

own associated “random error” to consider.) So each y-value is a cluster of elements which 

has variance, as it is a realization of a random variable. The within cluster variance is then 

the square of sigma for the y-value, 𝑉(𝑌𝑖) =  𝑆𝑤
2 = 𝐴𝑀𝑔 =  𝜎𝑖

2, which can be said to be 

“irreducible.” (For the simplest case, 𝜎𝑖
2 = 𝜎𝜖0

2 𝑥𝑖
2𝛾

= 𝑉𝑎r(𝑦𝑖 |𝑥𝑖).) Thus every different 

predicted-y value would be associated with a y-value and therefore an estimated random 

'error,' e, which would generally, but not always, be of larger magnitude for larger 

predicted-y. Ken Brewer explained this for survey populations using retail stores for 

illustration. So why wouldn't it always be true? Perhaps it is true when model selection is 

at its best. So instead of thinking of heteroscedasticity as a problem that needs to be 'fixed,' 

we should really be thinking that there may be a problem if you have homoscedasticity. 
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Yes, textbooks often say that linear (and other) regressions call for homoscedasticity, or 

seem to encourage it, but that is just a reflection of the mathematics traditionally used, not 

reality.  
 

 Inherently, for complicated cases in machine learning for example, though a balance 

between bias and variance is sought, it may often not be possible to have the achieved 

predicted-y accurately mimic the behavior of the ideal predicted-y with regard to associated 

variance. As in the simpler example of arm strength, variability will be impacted by 

contradictions between the ideal and achieved predicted-y. This will complicate the issue, 

but under it all is the concept of essential heteroscedasticity, which will show itself 

whenever it is not suppressed. As we see on page 111 in Brewer(2002), "… 

homoscedasticity is the exception…,” at least with regard to “…sample survey 

populations," and here we contend that that underlies all applications. However, more 

complex regressions tend to make it harder to obtain “achieved” predicted-y values which 

accurately mimic the behavior of the “ideal” predicted-y values, in terms of associated 

variance. Larger predicted-y values should generally correspond to larger sigma for the 

estimated residuals. This is due primarily to essential heteroscedasticity. If this is not 

actually the case, then it is proposed that the achieved predicted-y may not be functioning 

closely to the ideal predicted-y, with regard to variance.   
 

 Many times, OLS (homoscedastic) regression is assumed, but when checked, is easily 

shown to not be the case. On other occasions, it may be less conspicuous, but nevertheless 

true. Yet other applications which might stay in one's memory from learning regression 

may have been contrived cases, where artificial data were used which were designed to be 

homoscedastic. To automatically assume homoscedasticity is to use gamma = 0 as a 

default, which may be convenient, but far from the truth.23  
 

 So, When Would Heteroscedasticity in Regression Occur? The answer proposed is that 

it should occur when you have the ideal predicted-y, or one that is close enough. It appears 

that the more complex the model that is used or that needs to be used, the less likely this is 

to be achieved.  
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APPENDIX A 

 

A.1 Remembering Ken Brewer:  

 During the first International Conference on Establishment Surveys (ICES). June 1993 

in Buffalo, New York, USA, there was a special session in the program which I found to 

be very interesting. It was the talk given by Ken Brewer which was later published in a 

book, Business Survey Methods, Wiley, pages 589-606, 1995, "Combining Design-Based 

and Model-Based Inference." I did not introduce myself to Ken that day, but thought about 

what he had to say, and was intrigued. Though he advocated combining these two methods, 

I was trying to learn more about the modeling aspect, which had great potential for the 

many small populations monitored by energy establishment surveys for official statistics 

in which I was involved and would become involved at the US Energy Information 

Administration (EIA). So I decided to contact Ken to see if he would discuss this with me.  
 

 As it turned out, no one could have been more helpful, in spite of his very busy 

schedule. Ken described the application of the coefficient of heteroscedasticity to me in 

great detail. This started before email was used as exclusively as it is now, and before the 

use of attachments, so Ken sent FAXed pages of equations and handwritten descriptions. 

We eventually used email, exclusively. A faux pau on my part occurred when I tried to 

discuss the way the estimated residuals are factored, but instead of using the word "factor," 

I used the word "component," which threw off the discussion. Ken thought I was referring 

to a different format for the nonrandom part of the residuals, and for the regression weights. 

When Ken eventually realized my mistake, breaking my habit of using "component" when 

I mean "factor" became a high priority for me. (Ken also was a stickler about using the 

term "estimated residuals," rather than "residuals" when that is what you mean, which again 

I can see as an important distinction.)  
 

 Ken and I carried on email discussions for many years, seldom seeing each other in 

person. (The first time we saw each other, he said he had me confused with someone else, 

but I told him that we had not met in Buffalo, 1993. I only heard him speak.) But finally, 

in the summer of 2002, Ken was in the US again, perhaps for both the Joint Statistical 

Meetings that year in New York, and other meetings afterward, I do not exactly recall his 

schedule, but he was in Washington DC in August, and visited my family and me at our 

home one evening. His book had come out, but he was puzzled about something. That 

anecdote follows. 

 

A.2 Anecdote  

 At the Joint Statistical Meetings, Ken told me that his (2002) book was to be found at 

the conference book display and sales area, and suggested I go see it. When I got to that 

store, the sales person showed me his book. It was quite thick as it was printed on only one 

side of each page, for some reason. She suggested that I purchase it immediately, but I just 

wanted to place an order for delivery, and not have to squeeze it into my luggage. However, 

she was very insistent, and wore down my resistance until I finally agreed.  
 

 When Ken later visited us at home, he said the following, or something very similar: 

"We don't know what happened to the two preprint copies of my book." It was a mystery! 

I said that I knew where one of them could be found! I showed the book to him and he 



James R. Knaub, Jr. 367 

autographed it for me. Apparently, the insistent salesperson was not supposed to have sold 

that "preprint' at all!  
 

 Attached is a picture of Ken with that autographed preprint. I bought another, regular 

copy, for regular use.  
 

 Also note his Waksberg Award paper: Brewer (2014). “Three controversies in the 

history of survey sampling,” Survey Methodology, Dec 2013, https://www150.statcan.gc. 

ca/n1/pub/12-001-x/2013002/article/11883-eng.htm.  (Note that Ken comments there on 

modeling and small sample sizes.)   

 

A.3 Conclusion  

 So, that is my memory of Ken Brewer: A fervent statistician, helpful and eager to 

discuss the area in which he chose to work. He, as a British-Australian, also sent a large 

book of marsupials, and a boomerang to our son. He was an A.A. Milne fan. He was a good 

friend to many.  

 

 
Ken Brewer 

August 2002 

Arlington, Virginia, USA 

 

 Also please note that Ken Brewer wrote about his own mentor, Ken Foreman, in his 

very entertaining style: Brewer, K.R.W. (2005). Anomalies, probings, insights: Ken 

Foreman's role in the sampling inference controversy of the late 20th century. Australian 

and New Zealand Journal of Statistics, 47, 4, 385-399.  
 

 Over the years I have talked to people who met or worked with Ken Brewer, and 

everyone respected him. More importantly, Ken was a decent person who cared about 

others. Condolences to his wife, Maggie. Ken will be missed.   
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