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ABSTRACT

The violation of constancy of variance of error terms causes the problem of
heteroscedasticity. Even though the ordinary least squares (OLS) estimates are unbiased in
the existence of heteroscedasticity problem in a data set, the standard errors of the
parameter estimates are biased. This renders the estimator inefficient. As an alternative, a
weighted residual (wild bootstrap) may be used to remedy this problem. However, the
weakness of wild bootstrap is that, in the presence of outliers, the estimates of the standard
errors become large. For the sake of rectifying this problem, a wild bootstrap (WB) based
on MM estimates is proposed. Nevertheless, this estimator cannot handle well high
leverage points (HLPs). Thus, wild bootstrap based on MM-GM6 estimator is proposed so
that the problems of both heteroscedasticity and outliers can be rectified. The performance
of the proposed method denoted as WBootMM-GM®6-Liu is compared with some existing
techniques such as wild bootstrap of OLS (WBootOLS), wild bootstrap of Liu (WBootLiu)
and wild bootstrap based on MM estimator denoted as (WBootMM-L.iu). The numerical
results indicate that the developed method outperformed other methods for data having
both problems of heteroscedasticity and high leverage points.
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INTRODUCTION

Multiple regression analysis is a statistical technique used widely for modelling and
analysing the relationship between one dependent variable and two or more predictor
variables.

The standard model of linear regression can be defined as:
y=XB+p 1)
where, y is an (rx1) vector of dependent variable, X is an (rxk) data matrix of
independent variables, B is a (k x1) vector of parameters, and p is an (rx1) vector of
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random errors with distribution of u~NID (0, o). Homoscedasticity refers to the situation
when the variance of the error terms is constant. Heteroscedasticity is a common problem
in a linear regression model, which occurs when the variance of the error terms are not
constant (Lukman et al., 2016). In this situation, the OLS estimator is no longer efficient.
There are several methods to rectify the problem of heteroscedasticity (Habshah et al.,
2011). A weighted bootstrap method proposed by Wu (1986) is one of the alternative
methods to rectify this problem. Liu (1988) suggested a wild bootstrap approach that, under
both homoscedastic and heteroscedastic models, is slightly different from the weighted
bootstrap method and worked better. Rana et al., (2012) suggested that there is evidence
that the presence of outliers due to the use of ordinary least squares (OLS) in their algorithm
causes such wild bootstrap estimators to suffer a huge setback. So, in the construction of
the robust wild bootstrap process, they implemented the robust MM estimator. The MM
estimator, however, does not have limited impact properties. Hence, in this study, we
attempt to improvise the robust wild bootstrap of Rana et al., (2012) by incorporating the
MM-GMB6 estimator in the establishment of robust wild bootstrap.

WILD BOOTSTRAP TECHNIQUE

Efron (1979) is the first person who introduced the bootstrap technique. In this
technique, the theoretical formulation could be replaced by the computer calculations.
There are many authors who have used the bootstrap methods (hamely Cribari-Neto and
Zarkos (1999), Efron (1987), and Efron and Tibshirani (1994). In regression analysis, the
most popular and widely used bootstrap technique is the fixed-x resampling or
bootstrapping the residual suggested by Efron and Tibshirani (1986) and Rana et al.,
(2012). This classical bootstrap process relies on the classical OLS residuals that can be
summarized as follows:

Step 1. Fita model y; = x;B+¢; using the OLS method to the real data to obtain [30,5

and hence the fitted model is y; = xif}ms.
Step 2. Compute the residuals of the OLS estimate £ =y, — §; and each residual &;
has equal probability, %

A

Step 3. Draw a sample of &;,¢,,...,e, randomly from & with replacement and

n
attached to ; to obtain fixed-x bootstrap values y;® where y:® = xf, +&.°.

Step 4. The ordinary least squares is then fitted to the bootstrap value yi*b on the fixed-
X to obtain ;2.

Step 5. Steps 3 and 4 were then repeated for R times to obtain B.t,..., 328 where R
is the bootstrap replications.

This bootstrap is called BootOLS because it depends on the OLS method.
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Liu (1988) modified Step 3 of the BootOLS method as follows:

* _ A 6 &
Vi =XiBois +——— 2
1 1F0ols ﬁ

where t;'s is a random variable from a standard normal and h;; is the ith leverage which
represents the diagonal of the projection matrix or hat matrix H = X (X 'X)™X" and is

denoted by “H”. The diagonal elements of H ” matrix are called the hat values denoted
-1
by h;, given by h;=x' (XTX) X%,i=12,.n. The h; values are often used as a

classical diagnostic method to identify the high leverage points. However, the h; mostly

fails to detect HLPs due to the fact that it suffers from the masking and swamping effects.
The main reason of the proposed is to improve the masking and swamping effects (Rana
etal., 2012).

Wild bootstrap based on Liu denoted as WBootLiu can be performed by selecting
t in the following way.

" . i 1 fl? ?1 1
1 (17 il 1
As well as, Zl,Zz,...Zn~iidN[E( e EJE} (Ranaet al., 2012).

PROPOSED ROBUST WILD BOOTSTRAP TECHNIQUE

Wu (1986) noted that the objective of wild bootstrap is to estimate the standard
errors of estimates that under heteroscedasticity are asymptotically correct. The
drawback of the wild bootstrap is that the estimates of the standard errors become
high in the presence of outliers. The wild bootstrap based on the MM estimator denoted
as WBootMM-Liu is therefore adopted by Rana et al., (2012) further into wild
bootstrap algorithm. However, this estimator cannot adequately handle high leverage
points (HLPs) because MM estimator is robust to outlier in y coordinate (Yohai, 1987).
It is now evident that the GM®6 is robust to high leverage points Ayinde et al.,
(2015). Therefore, in this paper, we incorporate the MM- GM6 estimator denoted
as WBootMM-GM6-Liu in the wild bootstrap algorithm to down weight outliers in
X and Y directions. The algorithm of MM-GM®6 wild bootstrap can be summarized as
follows:

Step 1. Fitamodel y; = X;B+¢; by using the MM estimator to the real data to obtain

the robust MM parameters [§MM and then the fitted model is ¥; = X; BMM.
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Step 2. The residuals of the MM estimate are obtained as §"™ = y; — §;. Then, assign

A

the weight of GM6 to each residual & to get new weighted residual

2
X
min{l,%]xé{m , where MVE is the minimum-volume ellipsoid.

Step 3. The MM estimate’s final weighted residuals denoted as &*™™ can be
calculated by multiplying the new weight obtained in Step 2 with the value of

2
* . X R *
t° to get min| 1,222 5 gMM ¢
MVE

Step 4. A bootstrap sample (y,* X) is then constructed, where

*

Yi XiBMM +§YVMM 3)

and ti* is randomly selected following Liu (1988) procedure.
Step 5. The MM method is then applied to the bootstrap sample (y,* X) and the
- . . "*R T -1 *
resulting estimate can be written as 3 :(X x) X'y.
Step 6. Steps 3 to 5 were repeated for R times, where R is the bootstrap replications.

NUMERICAL EXAMPLE

The performance of the WBootOLS, WBootLiu, WBootMM-Liu and WBootMM-
GM6-Liu is evaluated by a numerical example. A set of real data is used to test the
efficiency of the preceding methods. The Education Expenditure data is taken from
Chatterjee and Hadi (2015). This data set contains three predictor variables each with 50
observations. After checking the data with Diagnostic Robust Generalized Potential
(DRGP) Habshah et al., (2009), it is found that observation 49 is a high leverage point and
outlier in y direction. The WBo0otOLSs, WBootLiu, WBootMM-Liu and WBootMM-
GM6-Liu were then applied to the data set. The fitted values versus residuals are plotted in
Figure 1. The two observations in Figure 1 are significant, because 7 is an outlying
observation in Y direction and 10 is also an outlying observation in X direction. Therefore,
the two numbered observations played an important role to test the success of are the four
estimator techniques results displayed in Table 1. The proposed method is to down weight
any outlying observation either in X direction or Y direction or/ both directions. It has been
shown that the proposed method has the smallest standard errors. The heteroscedastic error
terms are evident by the funnel shape. The standard errors of the estimates based on 500
bootstrap samples are also exhibited in Table 1. The effect of the HLPs on the estimates of
the standard errors is presented in Figure 2. It is observed that the WBootOLS method
perform poorly, due to the presence of outliers. It is evident that the proposed method
consistently gives the best result by possessing the smallest standard errors of the parameter
estimates, followed by WBootMM-Liu, WBootLiuand WBootOLS. B
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Table 1
Standard Errors of the Parameter Estimates for Education Expenditure Data Set
Estimates | WBootOLS | WBootLiu | WBootMM-Liu | WBootMM-GM6-Liu
Bo 114.9278 92.6670 76.1690 55.0694
B, 0.0114 0.0086 0.0069 0.0050
B, 0.3022 0.2334 0.1949 0.1433
Bs 0.0496 0.0370 0.0326 0.0240
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Figure 1:

Fitted Values versus Residuals Plot of Education Expenditure Data
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Figure 2: The standard Errors of the Parameter Estimates of WB0ootOLS,
WBootLiu, WBootMM-Liu and WBootMM-GM6-Liu

SIMULATION STUDY

In this section, a simulation study is carried out based on the Monte Carlo procedure to
investigate the performance of the proposed method denoted as WBootMM-GM6-Liu in
the presence of both heteroscedasticity and high leverage points. In this paper, we consider
a multiple linear regression model with two explanatory variables and different sample
sizes of 20, 60, and 100. According to Liu (1988), the design of a heteroscedastic model
can be written as:

Yi =PBo +Byxq; +B2Xei +0ig; (4)
where Xx;; and X,; are generated from U (0,1) for all the sample sizes. The parameters
Bo.By and P, are set equal to one as the true parameters of this model, and the generation
function of heteroscedasticity is o7 =exp(0yXg; + 6%y ), where 6, is to be 0.4. In this
max(ciz)

paper, the heteroscedasticity’s level is &z_—z

=4. ¢g's where the error term
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generated from N(0,1) for the clean data. For 5% and 10% HLPs, the 95% and 90%
of & 's were generated from N (0,1) and the 5% and 10% were generated from N(0,20).

The simulation for each sample size involves a total of 500000 replications with 1000
replications and 500 bootstrap samples each. This simulation was performed based on the
procedure of Cribari-Neto and Zarkos (1999) and Furno (1997). The four estimation
methods such as WBootOLS, WBootLiu, WBootMM-Liu and WBootMM-GM6-Liu were
then applied to the simulated data. The outcomes of simulation study are summarized in
Tables (2-4). The standard errors of WBo0oOLS, WBootLiu, WBootMM-Liu and
WBootMM-GM6-L.iu are presented in Table 2. When the problem of heteroscedasticity is
presented in the simulated data without outliers, the performance of all three methods is
close to each other, but WBootMM-GMB6-L.iu is slightly better than the other classical and
robust methods. It can be observed that with the increase in the percentage of HLPs, the
standard errors of the parameter estimates of the classical wild bootstrap increase for
various sample sizes. However, our proposed method is less affected by the presence of
HLPs. Table 3 shows the bias of different methods. It can be observed that the bias of
WBootOLS, WBootLiu increases with the increase in the percentage of HLPs.
Furthermore, our proposed BootMM-GM6-Liu is slightly biased with the increase in the
level of HLPs. It can be seen from Table 4 that the value of RMSE increases with the
increase in the percentage of HLPs, while it is decreases with the increase in the sample
size.
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Table 2

Standard Errors of the WBooOLS, WBootLiu, WBootMM-Liu

and WBootMM-GM6-Liu Estimates

%outliers | Coeff | WB0ooOLS | WBootLiu | WBootMM-Liu | WBootMM-GM6-Liu

Sample Size n=20
Bo 1.9860 2.0207 2.2416 1.6056
0% B 2.1496 2.1872 2.4263 1.7378
B, 2.2862 2.3261 2.5804 1.8482
Bo 12.3313 6.9925 2.7469 1.3614
5% B 13.3472 7.5685 2.9733 1.4736
B> 14.1948 8.0492 3.1621 1.5672
Bo 16.9743 10.4052 3.5968 0.9521
10% B 18.3727 11.2624 3.8932 1.0868
B 19.5395 11.9777 4.1404 1.0088

Sample Size n =60
Bo 0.8734 0.8439 0.68964 0.61325
0% B 1.2106 1.1696 0.95585 0.84998
B, 1.0389 1.0038 0.82032 0.72945
Bo 5.28304 3.4899 0.7751 0.6687
5% b1 7.32243 48371 1.2897 1.1246
B> 6.28411 41512 1.1308 0.9962
Bo 6.90025 47175 1.0377 0.9151
10% By 9.56393 6.5386 1.7840 1.5775
B, | 820776 5.6114 1.4519 1.2896

Sample Size n =100
Bo 0.6001 0.5978 0.4037 0.3578
0% B 0.9439 0.9404 0.6349 0.5628
B, 0.7989 0.7959 0.5374 0.4764
Bo 3.10377 1.9934 0.4960 0.4577
5% b1 4.88213 3.1355 0.8938 0.7744
B> 4.13234 2.6539 0.7331 0.6389
Bo 5.0275 3.4509 0.6692 0.5955
10% B 7.9081 5.4282 1.1742 0.9781
B> 6.6935 4.5945 0.9405 0.7912
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Table 3
Bias of the WBootOLS, WBootLiu, WBootMM-Liu
and WBootMM-GM6-Liu Estimates

%outliers | Coeff | WB0ootOLS | WBootLiu | WBootMM-Liu | WBootMM-GM#é-Liu

Sample Size n=20

Bo 0.2341 0.1445 0.0136 0.0305
0% B 0.3425 0.1590 0.0238 0.0080
B2 0.4129 0.1877 0.0121 0.0358
Bo 1.4978 0.0927 0.0504 0.0227
5% B 0.4243 0.1502 0.1599 0.0300
B2 0.2191 0.1250 0.0013 0.0479
Bo 3.5791 0.0839 0.1523 0.0479
10% B 0.3255 0.2403 0.0822 0.0868
B2 0.3989 0.0387 0.1051 0.0087
Sample Size n =60
Bo 0.0932 0.0140 0.0073 0.0176
0% By 0.0789 0.0172 0.0204 0.0424
B> 0.0645 0.0316 0.0050 0.0038
Bo 1.7955 0.0769 0.0163 0.0346
5% B 0.6089 0.1241 0.0530 0.0596
B 0.2337 0.0468 0.0074 0.0318
Bo 3.6490 0.2816 0.0316 0.0773
10% B 0.3126 0.0753 0.1086 0.0415
B 0.4250 0.2709 0.0103 0.0026
Sample Size n =100
Bo 0.0543 0.0251 0.0002 0.0071
0% B 0.0761 0.0651 0.0008 0.0040
B 0.0346 0.0095 0.0137 0.0183
Bo 1.5640 0.0743 0.0246 0.0152
5% B 0.8576 0.0331 0.0269 0.0180
B, 0.9013 0.0292 0.0076 0.0106
Bo 3.5980 0.1555 0.0574 0.0020
10% B 0.5160 0.2651 0.0199 0.0704
B, 0.8585 0.1263 0.0237 0.0174
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Table 4
RMSE of the WBootOLS, WBootLiu, WBootMM-Liu
and WBootMM-GM6-Liu Estimates

9%outliers | Coeff | WB0otOLS | WBootLiu | WB0ootMM-Liu | WBootMMGM6-Liu

Sample Size n=20
Bo 1.8155 2.1407 2.7537 1.6805
0% B 2.2349 2.6078 3.2519 2.0856
Bs 2.1599 2.4831 3.1675 1.9397
Bo 9.4067 3.8727 3.1629 1.3031
5% B 13.4186 10.2546 3.6883 1.6157
Bs 10.4096 3.1602 3.8059 1.5250
Bo 12.9611 4.0081 3.8915 1.3139
10% B 15.9545 9.5572 4.7758 1.6134
Bs 15.0627 4.8645 4.7253 1.5661

Sample Size n =60
Bo 0.7165 0.7188 0.6000 0.4992
0% B 1.2094 1.1729 0.9929 0.9133
Bs 1.0419 1.0644 0.8949 0.7422
Bo 4.7503 3.1186 0.7525 0.6276
5% B 8.2838 7.1643 1.2228 1.0559
B> 6.3874 5.2139 1.0859 0.9349
Bo 7.2108 4.7696 0.9540 0.8875
10% B 11.7072 10.5537 1.6308 1.4928
B> 8.3711 6.7133 1.3163 1.2957

Sample Size n =100
Bo 0.5512 0.5755 0.3653 0.3508
0% B 0.9691 0.9937 0.6666 0.6119
B> 0.8047 0.8106 0.5618 0.4818
Bo 3.4920 2.4610 0.4738 0.4360
5% B 4.7654 3.5670 0.8388 0.7418
B> 3.9779 2.5507 0.6932 0.6156
Bo 6.4221 4.1885 0.6320 0.5618
10% B 8.3462 6.5994 1.0978 0.9012
B> 7.1185 5.5802 0.8852 0.7471

The effect of HLPs on the standard errors of the parameter estimates is displayed in
Figure 3-8. It can be observed from the plots that the standard errors of the parameter
estimates of the proposed WBootMM-GM6-Liu outperforms other methods at both
percentages of 5% and 10% HLPs. This is evident by having the smallest standard errors.
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Figure 3: The Effect of 5% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 20
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Figure 4: The Effect of 10% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 20
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Figure 5: The Effect of 5% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 60
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Figure 6: The Effect of 10% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 60
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Figure 7: The Effect of 5% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 100
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Figure 8: The Effect of 10% HLPs on the Standard Errors of the
Parameter Estimates when Sample Size n = 100
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CONCLUSION
The main objective of this paper is to develop a robust wild bootstrap method for

multiple regression model in the presence of heteroscedasticity and high leverage points.
In this regard, we proposed robust wild bootstrap method, namely, WBootMM-GM6-Liu
based on the MM-GM6 estimator. It can be observed from the simulation study and the
real data set that the suggested method has a good performance compared with other
existing methods in the existence of heteroscedasticity and high leverage points.
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