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ABSTRACT 
 

 The violation of constancy of variance of error terms causes the problem of 

heteroscedasticity. Even though the ordinary least squares (OLS) estimates are unbiased in 

the existence of heteroscedasticity problem in a data set, the standard errors of the 

parameter estimates are biased. This renders the estimator inefficient. As an alternative, a 

weighted residual (wild bootstrap) may be used to remedy this problem. However, the 

weakness of wild bootstrap is that, in the presence of outliers, the estimates of the standard 

errors become large. For the sake of rectifying this problem, a wild bootstrap (WB) based 

on MM estimates is proposed. Nevertheless, this estimator cannot handle well high 

leverage points (HLPS). Thus, wild bootstrap based on MM-GM6 estimator is proposed so 

that the problems of both heteroscedasticity and outliers can be rectified. The performance 

of the proposed method denoted as WBootMM-GM6-Liu is compared with some existing 

techniques such as wild bootstrap of OLS (WBootOLS), wild bootstrap of Liu (WBootLiu) 

and wild bootstrap based on MM estimator denoted as (WBootMM-Liu). The numerical 

results indicate that the developed method outperformed other methods for data having 

both problems of heteroscedasticity and high leverage points. 
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INTRODUCTION 
 

 Multiple regression analysis is a statistical technique used widely for modelling and 

analysing the relationship between one dependent variable and two or more predictor 

variables. 
 

 The standard model of linear regression can be defined as: 
 

  y X                      (1) 
 

where, 𝑦  is an ( 1)r  vector of dependent variable, 𝑋  is an ( )r k data matrix of 

independent variables,   is a ( 1)k  vector of parameters, and   is an ( 1)r  vector of 
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random errors with distribution of 𝜇~𝑁𝐼𝐷(0, 𝜎2). Homoscedasticity refers to the situation 

when the variance of the error terms is constant. Heteroscedasticity is a common problem 

in a linear regression model, which occurs when the variance of the error terms are not 

constant (Lukman et al., 2016). In this situation, the OLS estimator is no longer efficient. 

There are several methods to rectify the problem of heteroscedasticity (Habshah et al., 

2011). A weighted bootstrap method proposed by Wu (1986) is one of the alternative 

methods to rectify this problem. Liu (1988) suggested a wild bootstrap approach that, under 

both homoscedastic and heteroscedastic models, is slightly different from the weighted 

bootstrap method and worked better. Rana et al., (2012) suggested that there is evidence 

that the presence of outliers due to the use of ordinary least squares (OLS) in their algorithm 

causes such wild bootstrap estimators to suffer a huge setback. So, in the construction of 

the robust wild bootstrap process, they implemented the robust MM estimator. The MM 

estimator, however, does not have limited impact properties. Hence, in this study, we 

attempt to improvise the robust wild bootstrap of Rana et al., (2012) by incorporating the 

MM-GM6 estimator in the establishment of robust wild bootstrap. 

 

WILD BOOTSTRAP TECHNIQUE 
 

 Efron (1979) is the first person who introduced the bootstrap technique. In this 

technique, the theoretical formulation could be replaced by the computer calculations. 

There are many authors who have used the bootstrap methods (namely Cribari-Neto and 

Zarkos (1999), Efron (1987), and Efron and Tibshirani (1994). In regression analysis, the 

most popular and widely used bootstrap technique is the fixed-x resampling or 

bootstrapping the residual suggested by Efron and Tibshirani (1986) and Rana et al., 

(2012). This classical bootstrap process relies on the classical OLS residuals that can be 

summarized as follows: 
 

Step 1. Fit a model i i iy x    using the OLS method to the real data to obtain ˆ
ols  

and hence the fitted model is ˆˆ .i i olsy x   
 

Step 2. Compute the residuals of the OLS estimate ˆ ˆols
i i iy y    and each residual ˆ

i  

has equal probability, 
1

.
n

 

 

Step 3. Draw a sample of * * *
1 2, ,..., n    randomly from ˆ

i  with replacement and 

attached to ˆiy  to obtain fixed-x bootstrap values *b
iy  where * *ˆ .b b

i i ols iy x     
 

Step 4. The ordinary least squares is then fitted to the bootstrap value *b
iy  on the fixed-

x to obtain *ˆ .b
ols  

 

Step 5. Steps 3 and 4 were then repeated for 𝑅 times to obtain * 1 *ˆ ˆ,...,b bB
ols ols   where 𝑅 

is the bootstrap replications. 
 

 This bootstrap is called BootOLS because it depends on the OLS method. 
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 Liu (1988) modified Step 3 of the BootOLS method as follows: 
 

  
*

* ˆˆ

1

b i i
i i ols

ii

t
y x

h


  


                (2) 

 

where 'it s  is a random variable from a standard normal and iih  is the ith leverage which 

represents the diagonal of the projection matrix or hat matrix 1ˆ ( ' ) 'H X X X X  and is 

denoted by “𝐻”. The diagonal elements of “ Ĥ ” matrix are called the hat values denoted 

by iih , given by  
1

, 1,2,... .T T
ii i ih x X X x i n


   The iih  values are often used as a 

classical diagnostic method to identify the high leverage points. However, the iih  mostly 

fails to detect HLPs due to the fact that it suffers from the masking and swamping effects. 

The main reason of the proposed is to improve the masking and swamping effects (Rana 

et al., 2012).  
 

 Wild bootstrap based on Liu denoted as WBootLiu can be performed by selecting  
*
it  in the following way. 

 

* ( ) ( ), 1,2,...,i i i i it H Z E H E Z i n    and 1 2, ,..., nH H H ~𝑖𝑖𝑑
1 17 1 1

,
2 6 6 2

N
  

    
  

. 

 As well as, 1 2, ,... nZ Z Z ~𝑖𝑖𝑑
1 17 1 1

,
2 6 6 2

N
  

    
  

 (Rana et al., 2012). 

 

PROPOSED ROBUST WILD BOOTSTRAP TECHNIQUE 
 

 Wu (1986) noted that the objective of wild bootstrap is to estimate the standard  

errors of estimates that under heteroscedasticity are asymptotically correct. The  

drawback of the wild bootstrap is that the estimates of the standard errors become  

high in the presence of outliers. The wild bootstrap based on the MM estimator denoted  

as WBootMM-Liu is therefore adopted by Rana et al., (2012) further into wild  

bootstrap algorithm. However, this estimator cannot adequately handle high leverage 

points (HLPS) because MM estimator is robust to outlier in y coordinate (Yohai, 1987).  

It is now evident that the GM6 is robust to high leverage points Ayinde et al.,  

(2015). Therefore, in this paper, we incorporate the MM- GM6 estimator denoted  

as WBootMM-GM6-Liu in the wild bootstrap algorithm to down weight outliers in  

𝑋 and 𝑌 directions. The algorithm of MM-GM6 wild bootstrap can be summarized as 

follows: 
 

Step 1. Fit a model i i iy x    by using the MM estimator to the real data to obtain 

the robust MM parameters ˆ
MM  and then the fitted model is ˆˆ .i i MMy x   
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Step 2. The residuals of the MM estimate are obtained as ˆ ˆ .MM
i i iy y   Then, assign 

the weight of GM6 to each residual ˆMM
i  to get new weighted residual

2
0.95, ˆmin 1,

p MM
i

x

MVE

 
 
 
 

, where MVE is the minimum-volume ellipsoid. 

 

Step 3. The MM estimate’s final weighted residuals denoted as 𝜀𝑖̂
𝑊𝑀𝑀 can be 

calculated by multiplying the new weight obtained in Step 2 with the value of 

*
it  to get 

2
0.95, *ˆmin 1,

p MM
i i

x
t

MVE

 
  
 
 

. 

 

Step 4. A bootstrap sample  *,iy X  is then constructed, where  

 

   * ˆ ˆWMM
i i MM iy x                   (3) 

 

 and *
it  is randomly selected following Liu (1988) procedure. 

 

Step 5. The MM method is then applied to the bootstrap sample  *,iy X  and the 

resulting estimate can be written as  
1

* *ˆ .R T TX X X y


   

 

Step 6. Steps 3 to 5 were repeated for R times, where R is the bootstrap replications. 

 

NUMERICAL EXAMPLE 
 

 The performance of the WBootOLS, WBootLiu, WBootMM-Liu and WBootMM-

GM6-Liu is evaluated by a numerical example. A set of real data is used to test the 

efficiency of the preceding methods. The Education Expenditure data is taken from 

Chatterjee and Hadi (2015). This data set contains three predictor variables each with 50 

observations. After checking the data with Diagnostic Robust Generalized Potential 

(DRGP) Habshah et al., (2009), it is found that observation 49 is a high leverage point and 

outlier in 𝑦 direction. The WBootOLSs, WBootLiu, WBootMM-Liu and WBootMM-

GM6-Liu were then applied to the data set. The fitted values versus residuals are plotted in 

Figure 1. The two observations in Figure 1 are significant, because 7 is an outlying 

observation in 𝑌 direction and 10 is also an outlying observation in 𝑋 direction. Therefore, 

the two numbered observations played an important role to test the success of are the four 

estimator techniques results displayed in Table 1. The proposed method is to down weight 

any outlying observation either in 𝑋 direction or 𝑌 direction or/ both directions. It has been 

shown that the proposed method has the smallest standard errors. The heteroscedastic error 

terms are evident by the funnel shape. The standard errors of the estimates based on 500 

bootstrap samples are also exhibited in Table 1. The effect of the HLPS on the estimates of 

the standard errors is presented in Figure 2. It is observed that the WBootOLS method 

perform poorly, due to the presence of outliers. It is evident that the proposed method 

consistently gives the best result by possessing the smallest standard errors of the parameter 

estimates, followed by WBootMM-Liu, WBootLiu and WBootOLS. B 
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Table 1 

Standard Errors of the Parameter Estimates for Education Expenditure Data Set 

WBootMM-GM6-Liu WBootMM-Liu WBootLiu WBootOLS Estimates 

55.0694 76.1690 92.6670 114.9278 𝛽̂0 

0.0050 0.0069 0.0086 0.0114 𝛽̂1 

0.1433 0.1949 0.2334 0.3022 𝛽̂2 

0.0240 0.0326 0.0370 0.0496 𝛽̂3 

 

 

 
Figure 1: Fitted Values versus Residuals Plot of Education Expenditure Data  
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Figure 2: The standard Errors of the Parameter Estimates of WBootOLS, 

WBootLiu, WBootMM-Liu and WBootMM-GM6-Liu 

 

 

SIMULATION STUDY 
 

 In this section, a simulation study is carried out based on the Monte Carlo procedure to 

investigate the performance of the proposed method denoted as WBootMM-GM6-Liu in 

the presence of both heteroscedasticity and high leverage points. In this paper, we consider 

a multiple linear regression model with two explanatory variables and different sample 

sizes of 20, 60, and 100. According to Liu (1988), the design of a heteroscedastic model 

can be written as: 
 

  0 1 1 2 2i i i i iy x x                    (4) 
 

where 1ix  and 2ix  are generated from  0,1U  for all the sample sizes. The parameters 

0 1,   and 2  are set equal to one as the true parameters of this model, and the generation 

function of heteroscedasticity is  2
1 1 1 2expi i ix x    , where 1  is to be 0.4.  In this 

paper, the heteroscedasticity’s level is 
 
 

2

2

max
4.

min

i

i


  


 'i s  where the error term 
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generated from 𝑁(0,1) for the clean data. For 5% and 10% HLPS, the 95% and 90%  

of 'i s  were generated from 𝑁(0,1) and the 5% and 10% were generated from 𝑁(0,20). 

The simulation for each sample size involves a total of 500000 replications with 1000 

replications and 500 bootstrap samples each. This simulation was performed based on the 

procedure of Cribari-Neto and Zarkos (1999) and Furno (1997). The four estimation 

methods such as WBootOLS, WBootLiu, WBootMM-Liu and WBootMM-GM6-Liu were 

then applied to the simulated data. The outcomes of simulation study are summarized in 

Tables (2-4). The standard errors of WBooOLS, WBootLiu, WBootMM-Liu and 

WBootMM-GM6-Liu are presented in Table 2. When the problem of heteroscedasticity is 

presented in the simulated data without outliers, the performance of all three methods is 

close to each other, but WBootMM-GM6-Liu is slightly better than the other classical and 

robust methods. It can be observed that with the increase in the percentage of HLPS, the 

standard errors of the parameter estimates of the classical wild bootstrap increase for 

various sample sizes. However, our proposed method is less affected by the presence of 

HLPS. Table 3 shows the bias of different methods. It can be observed that the bias of 

WBootOLS, WBootLiu increases with the increase in the percentage of HLPS. 

Furthermore, our proposed BootMM-GM6-Liu is slightly biased with the increase in the 

level of HLPS. It can be seen from Table 4 that the value of RMSE increases with the 

increase in the percentage of HLPS, while it is decreases with the increase in the sample 

size. 
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Table 2 

Standard Errors of the WBooOLS, WBootLiu, WBootMM-Liu 

and WBootMM-GM6-Liu Estimates 

%outliers Coeff WBooOLS WBootLiu WBootMM-Liu WBootMM-GM6-Liu 

Sample Size  𝒏 = 𝟐𝟎 

0% 

𝛽0 1.9860 2.0207 2.2416 1.6056 

𝛽1 2.1496 2.1872 2.4263 1.7378 

𝛽2 2.2862 2.3261 2.5804 1.8482 

5% 

𝛽0 12.3313 6.9925 2.7469 1.3614 

𝛽1 13.3472 7.5685 2.9733 1.4736 

𝛽2 14.1948 8.0492 3.1621 1.5672 

10% 

𝛽0 16.9743 10.4052 3.5968 0.9521 

𝛽1 18.3727 11.2624 3.8932 1.0868 

𝛽2 19.5395 11.9777 4.1404 1.0088 

Sample Size  𝒏 = 𝟔𝟎 

0% 

𝛽0 0.8734 0.8439 0.68964 0.61325 

𝛽1 1.2106 1.1696 0.95585 0.84998 

𝛽2 1.0389 1.0038 0.82032 0.72945 

5% 

𝛽0 5.28304 3.4899 0.7751 0.6687 

𝛽1 7.32243 4.8371 1.2897 1.1246 

𝛽2 6.28411 4.1512 1.1308 0.9962 

10% 

𝛽0 6.90025 4.7175 1.0377 0.9151 

𝛽1 9.56393 6.5386 1.7840 1.5775 

𝛽2 8.20776 5.6114 1.4519 1.2896 

Sample Size  𝒏 = 𝟏𝟎𝟎 

0% 

𝛽0 0.6001 0.5978 0.4037 0.3578 

𝛽1 0.9439 0.9404 0.6349 0.5628 

𝛽2 0.7989 0.7959 0.5374 0.4764 

5% 

𝛽0 3.10377 1.9934 0.4960 0.4577 

𝛽1 4.88213 3.1355 0.8938 0.7744 

𝛽2 4.13234 2.6539 0.7331 0.6389 

10% 

𝛽0 5.0275 3.4509 0.6692 0.5955 

𝛽1 7.9081 5.4282 1.1742 0.9781 

𝛽2 6.6935 4.5945 0.9405 0.7912 
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Table 3 

Bias of the WBootOLS, WBootLiu, WBootMM-Liu  

and WBootMM-GM6-Liu Estimates 

%outliers Coeff WBootOLS WBootLiu WBootMM-Liu WBootMM-GM6-Liu 

Sample Size  𝒏 = 𝟐𝟎 

0% 

𝛽0 0.2341 0.1445 0.0136 0.0305 

𝛽1 0.3425 0.1590 0.0238 0.0080 

𝛽2 0.4129 0.1877 0.0121 0.0358 

5% 

𝛽0 1.4978 0.0927 0.0504 0.0227 

𝛽1 0.4243 0.1502 0.1599 0.0300 

𝛽2 0.2191 0.1250 0.0013 0.0479 

10% 

𝛽0 3.5791 0.0839 0.1523 0.0479 

𝛽1 0.3255 0.2403 0.0822 0.0868 

𝛽2 0.3989 0.0387 0.1051 0.0087 

Sample Size  𝒏 = 𝟔𝟎 

0% 

𝛽0 0.0932 0.0140 0.0073 0.0176 

𝛽1 0.0789 0.0172 0.0204 0.0424 

𝛽2 0.0645 0.0316 0.0050 0.0038 

5% 

𝛽0 1.7955 0.0769 0.0163 0.0346 

𝛽1 0.6089 0.1241 0.0530 0.0596 

𝛽2 0.2337 0.0468 0.0074 0.0318 

10% 

𝛽0 3.6490 0.2816 0.0316 0.0773 

𝛽1 0.3126 0.0753 0.1086 0.0415 

𝛽2 0.4250 0.2709 0.0103 0.0026 

Sample Size  𝒏 = 𝟏𝟎𝟎 

0% 

𝛽0 0.0543 0.0251 0.0002 0.0071 

𝛽1 0.0761 0.0651 0.0008 0.0040 

𝛽2 0.0346 0.0095 0.0137 0.0183 

5% 

𝛽0 1.5640 0.0743 0.0246 0.0152 

𝛽1 0.8576 0.0331 0.0269 0.0180 

𝛽2 0.9013 0.0292 0.0076 0.0106 

10% 

𝛽0 3.5980 0.1555 0.0574 0.0020 

𝛽1 0.5160 0.2651 0.0199 0.0704 

𝛽2 0.8585 0.1263 0.0237 0.0174 
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Table 4 

RMSE of the WBootOLS, WBootLiu, WBootMM-Liu  

and WBootMM-GM6-Liu Estimates 

 %outliers Coeff WBootOLS WBootLiu WBootMM-Liu WBootMMGM6-Liu 

Sample Size  𝒏 = 𝟐𝟎 

0% 

𝛽0 1.8155 2.1407 2.7537 1.6805 

𝛽1 2.2349 2.6078 3.2519 2.0856 

𝛽2 2.1599 2.4831 3.1675 1.9397 

5% 

𝛽0 9.4067 3.8727 3.1629 1.3031 

𝛽1 13.4186 10.2546 3.6883 1.6157 

𝛽2 10.4096 3.1602 3.8059 1.5250 

10% 

𝛽0 12.9611 4.0081 3.8915 1.3139 

𝛽1 15.9545 9.5572 4.7758 1.6134 

𝛽2 15.0627 4.8645 4.7253 1.5661 

Sample Size  𝒏 = 𝟔𝟎 

0% 

𝛽0 0.7165 0.7188 0.6000 0.4992 

𝛽1 1.2094 1.1729 0.9929 0.9133 

𝛽2 1.0419 1.0644 0.8949 0.7422 

5% 

𝛽0 4.7503 3.1186 0.7525 0.6276 

𝛽1 8.2838 7.1643 1.2228 1.0559 

𝛽2 6.3874 5.2139 1.0859 0.9349 

10% 

𝛽0 7.2108 4.7696 0.9540 0.8875 

𝛽1 11.7072 10.5537 1.6308 1.4928 

𝛽2 8.3711 6.7133 1.3163 1.2957 

Sample Size  𝒏 = 𝟏𝟎𝟎 

0% 

𝛽0 0.5512 0.5755 0.3653 0.3508 

𝛽1 0.9691 0.9937 0.6666 0.6119 

𝛽2 0.8047 0.8106 0.5618 0.4818 

5% 

𝛽0 3.4920 2.4610 0.4738 0.4360 

𝛽1 4.7654 3.5670 0.8388 0.7418 

𝛽2 3.9779 2.5507 0.6932 0.6156 

10% 

𝛽0 6.4221 4.1885 0.6320 0.5618 

𝛽1 8.3462 6.5994 1.0978 0.9012 

𝛽2 7.1185 5.5802 0.8852 0.7471 

 

 The effect of HLPS on the standard errors of the parameter estimates is displayed in 

Figure 3-8. It can be observed from the plots that the standard errors of the parameter 

estimates of the proposed WBootMM-GM6-Liu outperforms other methods at both 

percentages of 5% and 10% HLPS. This is evident by having the smallest standard errors.  
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Figure 3: The Effect of 5% HLPS on the Standard Errors of the  

Parameter Estimates when Sample Size 𝒏 = 𝟐𝟎 

 

 
Figure 4: The Effect of 10% HLPS on the Standard Errors of the  

Parameter Estimates when Sample Size 𝒏 = 𝟐𝟎 

 



On the Performance of Wild Bootstrap based on MM-GM6 Estimator…… 132 

 
Figure 5: The Effect of 5% HLPS on the Standard Errors of the  

Parameter Estimates when Sample Size 𝒏 = 𝟔𝟎 

 

 
Figure 6: The Effect of 10% HLPS on the Standard Errors of the 

Parameter Estimates when Sample Size 𝒏 = 𝟔𝟎 



Osama and Dalatu 133 

 
Figure 7: The Effect of 5% HLPS on the Standard Errors of the  

Parameter Estimates when Sample Size 𝒏 = 𝟏𝟎𝟎 

 

 
Figure 8: The Effect of 10% HLPS on the Standard Errors of the 

Parameter Estimates when Sample Size 𝒏 = 𝟏𝟎𝟎 
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CONCLUSION 
 

 The main objective of this paper is to develop a robust wild bootstrap method for 

multiple regression model in the presence of heteroscedasticity and high leverage points. 

In this regard, we proposed robust wild bootstrap method, namely, WBootMM-GM6-Liu 

based on the MM-GM6 estimator. It can be observed from the simulation study and the 

real data set that the suggested method has a good performance compared with other 

existing methods in the existence of heteroscedasticity and high leverage points. 
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