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ABSTRACT 
 

 In this paper, transmuted size-biased exponential distribution is developed using 

quadratic rank transmutation map approach. Mathematical properties like, CDF, r
th

 order 

moment, moment generating function, characteristic function, measure of skewness and 

kurtosis, reliability measures, hazard function, Shannon and Renyi entropy functions, 

mean residual life function are derived. Furthermore, method of moments and maximum 

likelihood are used to estimate the parameters of proposed distribution. The performance 

of suggested distribution is compared with its base line distribution while modeling real 

data sets. 
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1. INTRODUCTION 
 

In recent developments, researchers focused on generating more flexible, tractable 

and meaningful distributions and modeled various types of lifetime data with monotone 

failure rates. In spite of their simplicity in solving many problems of lifetime data and 

reliability studies, such existing distributions are not useful to model bathtub and 

multimodal shaped failure rates and also fail to provide sound parametric fit to some 

practical application. In recent past, new families of probability distributions have been 

defined that are extension of well-known families of distributions. These newly 

developed families/classes of distributions provide greater flexibility in modeling 

complex data. 
 

Weighted in general and size biased in particular distributions arise in practice when 

observations from a sample are recorded with unequal probability and provide unifying 

approach for the problems when the observations fall in the non-experimental, non-

replicated and non-random categories, first introduced by Fisher (1934) to model 

ascertainment bias these are later formulized in uniform theory by Rao (1965). Patil and 

Rao (1977, 1978) discussed that weighted distributions have various statistical 

applications, especially in analysis of data relating to ecology and human populations. 

For the first, time Warren (1975) applied weighted distribution to connect with sampling 
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wood cells. Gove (2003) studied some of the latest results on size-biased distributions 

especially conceder the Weibull family relating to application and parameter estimation 

with method of moments and maximum likelihood in forestry. A weighted version of 

exponential distribution is discussed by Mir et al. (2013). They derive some mathematical 

properties and estimate the parameter with method of moments, maximum likelihood and 

Bayesian method.  
 

After introducing the concept of extending the probability distributions via weighted 

distributions, section 2 contains the derivation of pdf and CDF with their graphical 

presentation of transmutation size biased distribution with the help of quadratic rank 

transmutation map. Section 3 contains the derivation of r
th 

non-moment, moment 

generating function and mean deviation. The expression for the coefficient of variation, 

skewness and kurtosis are also reported and their numerical values are calculated. Section 

4 is about the quantile function, median and random number generating process. 

Reliability function, hazard function and their mathematical and graphical presentation 

are given in Section 5. Section 6 is related to measure of uncertainty of the proposed 

distribution. Section 7 contains the mean residual life function for variable X  has a 

transmuted sized biased exponential distribution. Section 8 is about order statistics: the 

lowest, highest and joint order densities of transmuted size biased exponential 

distribution are specified. Methodology for parameter estimation, Newton Raphson 

algorithm for maximum likelihood is discussed in Section 9. To compare the suitability 

of subject distribution with its related distributions, real life data set is selected and its 

goodness of fit on empirical data is tested by using likelihood function, AIC, AICC, BIC, 

K S , nC  and LR test in section 10. 

 

2. TRANSMUTED SIZED BIASED EXPONENTIAL DISTRIBUTION 
 

 In this section, we derive the probability density function (pdf) and probability 

distribution function (cdf) with their graphical presentation of transmutation size biased 

exponential distribution with the help of quadratic rank transmutation map. 
 

 In order to generate more distributional flexibility, Shaw and Buckley (2007) 

suggested quadratic rank transmutation map (QRTM) approach. Transmutation map 

provides a powerful technique for turning the ranks of one distribution in to the ranks of 

another. According to this approach, a random variable X is said to have transmuted 

distribution if its cumulative distribution (CDF) is given by 
 

  
2( ) (1 ) ( ) ( )T B BF x F x F x   ,            (2.1) 

 

where  BF x  is the CDF of the base distribution, which on differentiation yields, 
 

  
        1 2T B Bf x f x F x      ,           (2.2) 

 

where  BF x  and  TF x  are the CDF’s and  Bf x  and  Tf x  are the pdf’s of the base 

distribution and transmuted distribution respectively. Note that if 0  , we have the 

distribution of the base random variable. 
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 Various generalizations have been introduced based on the transmutation map 

approach. Aryal and Tsokos (2009) used QRTM to drive a flexible family of probability 

distributions. They take extreme value distribution as the base line distribution by adding 

a new parameter that produced extra variability. They also fitted the proposed family of 

distribution to real data set. Merovci (2013) generalized the Lindley distribution using the 

QRTM. Further, he comprehensively derived the mathematical properties and its 

reliability performance. The practicality of the transmuted Lindley distribution for 

modeling data was illustrated using real data. Elbatal et al. (2013) proposed transmuted 

generalized linear exponential distribution, Merovci (2013) generalized the exponentiated 

exponential distribution using the quadratic rank transmutation map, Khan and King 

(2013) proposed transmuted modified Weibull distribution, Merovci (2013) generalized 

the Raleigh distribution using the QRTM. 
 

 Recently, among others, Hussian (2014) proposed transmuted exponentiated gamma 

distribution, Ahmad et al. (2014) generalized the inverse Raleigh distribution using the 

QRTM, Merovci and Elbatal (2014) proposed transmuted Lindley-geometric distribution, 

Merovci and Puka (2014) generalized the pareto distribution using the QRTM, Abdual-

Moniem and Seham (2015) proposed transmuted gompertz distribution, exponentiated 

transmuted modified Weibull distribution is proposed by Paland Tiensuwan (2015), 

Using QRTM, Afify et al. (2015) proposed transmuted Weibull Lomax distribution. 

 

Definition 2.1  

 The CDF of a sized-biased exponential distribution is  
 

  
    1 ; 1 ,xF x e x                   (2.3) 

 

with the probability density function is  
 

   
2

;
xxe

f x
 

 


, 0x                (2.4) 

 

 By substituting (2.3) in (2.1), we obtain the cdf of transmuted sized biased 

exponential distribution. 
 

  
       ; , 1 1 1 1x xF x e x e x            

 
      (2.5) 

 

and its respective pdf is given by 
 

  

    2
; , 1 2 1

x
xxe

f x e x
 

        


, 0x         (2.6) 

 

where 0   is the scale parameter, 1   is transmuted parameter and .x   
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Fig. 1: pdf’s Plots of Various Transmuted Size Biased Exponential Distributions 

 

 Figure 1 and 2 illustrates some of the possible shapes of the pdf and cdf of transmuted 

size biased exponential distribution for selected values of the parameters β and λ, 

respectively. 

 

 

Fig. 2: cdf’s Plots of Various Transmuted Size Biased Exponential Distributions 

 

3. STATISTICAL PROPERTIES OF TRANSMUTED SIZED  

BIASED EXPONENTIAL DISTRIBUTION 
 

 In this section, we discuss the statistical properties of the transmuted size biased 

exponential distribution. Specifically moments, mean, variance, moments ratio, moment 

generating function, mean deviation, skewness and kurtosis. 

 

Theorem 3.1: 

 If X  has the ( , );SBET x    with | 1|     , then the 
thr  non-central moments are 

given by 

  

 
2

4
2 1 1

2

r
r r

r
r



  
        

  
.            (3.1) 

 

Proof: 

 The 
thr  non-central moment is given by 
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 
0

( )r r
r TSBEE X x f x dx



     

   

  1 1 2 2 2

2
0 0 0

1 1
1 2r x r x r xx e dx x e dx x e dx

  
        

  
      

    
    

   

 
2

4
2 1 1

2

r

r

r
r



  
       

  
.        

 

 By Setting 1r   and 2r   in (3.1), we can easily derive the mean ( )  and variance

2( )  of the transmuted size biased exponential distribution given in statement of the 

theorem. 
 

 The expressions of the Coefficient of variation (CV), Skewness (Skew) and Kurtosis 

(Kurt) for the transmuted sized biased exponential distribution are respectively given by 
 

  

  
1 2

1

8 3 4 3

8 3
CV

      
 

  
, 

 

Table 1 

CV at Different Values of   

  1 0.5 0 -0.5 -1 

CV 0.663325 0.7497434 0.7071068 0.6293821 0.5378254 

 

   

   

  

2
2 33

3 2 1 1

3 3

2 128 24 54 273 2

8 3 4 3
Skew

               
 

      

, 

 

Table 2 

Skewness at Different Values of   

  -1 -0.5 0 0.5 1 

Skew 1.457726 1.476668 2.000000 2.933834 1.589782 

  

 From Table 2, we can say that transmuted size biased exponential distribution is 

positively skewed distribution for almost values of transmuted parameter  .  

 

        

  

32 4

4 3 1 2 1 1

4 2

3 2048 3 256 1 9 8 34 6 3

8 3 4 3
Kurt

                      
 

      

. 
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Table 3 

Kurtosis at Different Values of   

  -1 -0.5 0 0.5 1 

Kurt 5.346122 5.309453 6.000000 7.658393 5.330579 

 

 Table 3 shows that, transmuted size biased exponential distribution is leptokurtic for 

almost all values of transmuted parameter  .  

 

Theorem 3.2: 

 If X  has the ( , );SBET x    with | 1|    , then the moment generating function of X , 

say ( )XM t , is 
 

  

 
 

 

 

 
2 3

1 2 4

1 2
X

t
M t

t t

   
  
   

.            (3.2) 

 

Proof:  

 The moment generating function of the random variable X is given by 
 

  

      2
0

1 2 1
x

tX tx x
X

xe
M t E e e e x dx

 
       


  

   

 
     1 2 2

2

2
0 0 0

1 1
1 2

x x x
t t t

xe dx xe dx x e dx
       

  
  
      
  

  

    

   

 

 

 

 
2 3

1 2 4

1 2

t

t t

   
  
   

.  

      

Theorem 3.3:  

 If X  has the ( , );SBET x    with | 1|     ,then mean deviation about mean of X , say

E X  , is 
 

  

      

8 3
8 3

4
4 8 3 16 3 40 8 1 16 3

16

e
E X e

  
    
   

 

 
              

 
 

.   

                       (3.3) 
 

Proof:  
 The mean deviation of the random variable X is given by 
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 E X X f x dx




   .        

    

  2
0

1 2 1
x

xxe
X e x dx

 
       


 .       (3.4) 

 

 Now we have 
 

  

2 2

0 0 0

x x x x xX xe dx xe dx x e dx x e dx xe dx
   

         

 

           

and  

  
0 00 0

1 1 1

x x x
x xe e e

xe dx dx e

 
      

   
   
          
        
   

  . 

   
2 2 2e e        , 

 

 Similarly, after solving (3.4), we have (3.3).  

   

4. QUANTILE AND RANDOM NUMBER GENERATION 
 

 The thp  quantile px of the transmuted size biased exponential distribution can be 

obtained from (2.5) as  
 

          
2

1 1 1 1 1q qx x

q q qF x e x e x p
             

 
, 

 

and after simple calculation this yields  
 

  
 

     
2

1 1 4 1
1

2

px

p

p
e x
         

  


.       (4.1) 

 

 The above equation has no closed form solution in px , so we have to use a numerical 

technique such as a Newton- Raphson method to get the quantile. If we put p = 0.5 in 

equation (4.1) one gets the median of transmuted size biased exponential distribution. 

Further from (4.1), the values of px  for  0,1p Uniform  gives the random values 

generated from transmuted size biased exponential distribution.  

 

5. RELIABILITY ANALYSIS OF THE TRANSMUTED SIZED  

BIASED EXPONENTIAL DISTRIBUTION 
 

 The reliability function, measure the mortality or failure of a system. In other words it 

measures that system will survive beyond a specified time based on a certain distribution. 

By definition survival function is  
 

     1R t F t  .          
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 Now, reliability function of transmuted size biased exponential distribution is 
 

  
      1 1 1 1t tR t e t e t          

 
.        (5.1) 

 

 With various choices of parametric values the Figure 3 illustrates the reliability 

function pattern of transmuted size biased exponential distribution. 

 

  

Fig. 3: Plots of Reliability Function for various Values of   and   

 

 It is important to note that     1R t F t  . One of the characteristic in reliability 

analysis is the hazard rate function. Hazard rate function is very useful in defining and 

formulating a model when dealing with lifetime data. It describes the current chance of 

failure for the population that has not yet failed. The general form of hazard function is 

defined as 
 

  

 

 
(t)

f t
h

R t
 .          

 

 The hazard function of transmuted size biased exponential distribution is given as 
 

   
  

    2

1 2 1

1 1 1

t

t

t e t
h t

t e t

 

 

    


       
 

.     

 

  

Fig. 4: Hazard Function Plots for Selected Values of   and   
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 The cumulative hazard function of the transmuted size biased exponential distribution 

given as 
 

        ln 1 1 1 1t tH t e t e t           
 

.       (5.2) 

 

 It is important to note that the units for (t)H  is the cumulative probability of failure 

per unit of time, distance or cycles. The hazard rate plots for TSBED for various values 

of parameters are given in the figure 4. 

 

6. MEASURES OF UNCERTAINTY OF THE TRANSMUTED  

SIZED BIASED EXPONENTIAL DISTRIBUTION 
 

 Statistical entropy is a good measure of randomness or uncertainty associated with a 

random variable X  and is a measure of a reduction in that uncertainty. The concept of 

entropy was introduced by Shannon (1948) pioneering work on the mathematical theory 

of communication in the nineteenth century. Entropy has been used as a major tool in 

engineering, information theory and other sciences. In this section, we present Shannon 

entropy and Renyi entropy for the transmuted size biased exponential distribution. 

 

6.1. Shannon Entropy:  

 If X  is continuous random variable has the  ; ,SBET x    distribution. Then the 

Shannon entropy is defined by 
 

  

     
0

  logE log f X f x f x dx


         . 

 

 We have 
 

  
         2log logE log f X E X E X             

          
  2 1log 1 XeE X      

 
.  

 

 Now, with the substitution x t   and   1 2 1xe x y      , we can readily 

obtain both  logE X    and   2log 1 1Xe XE       
 

 respectively so that 

Shannon entropy for the transmuted size biased exponential distribution is given by 
 

  

         log(2 )
8 3

[ 2 2]
4

2 3
4

E log f X       
   

 


  


  

      
         2 2 2 2
1 1 1 1

1
log l 1

8
1og       

  
, (6.1) 

where 

  
 

 8 3

4
E X

  
 ,    

0

2 log tt t te d


   and     2

0

3 log tt t de t


   . 
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6.2. Renyi Entropy 

 During the last couple of decades a number of research papers have extended 

Shannon's original work. Among others Park (1995), Wong and Chen (1990) provided 

some results on Shannon entropy for order statistics. Renyi (1961) who developed a one-

parameter extension of Shannon entropy. If X  is continuous random variable has the

 ; ,SBET x    distribution, then the Renyi entropy is defined by 
 

  

    
( )

1

1 R
RI log f x dx




 
 



  

 , for 0   , 1  .     

 

 We have, 
 

  

    2
0 0

) 1 1 2 1( ; ,
x

xx
f x dx d

e
xe x

     
 



 
    





   .    (6.2) 

 

 If 0k   and | z | 1 , we have the series of representations 

  

 

 0

(1
1

!

)
( )

j

k j
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 From (6.2) if   1 1 12 xe x     , we expand    11 1 2 xe x
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     as 

in (6.3) and then (6.2) can be reduced to 
 

  

 
 

 
  

0
2

0 1

( )
1 2 1

1
; ,

!

x

i

i
x

i
x e

e x
i

i
f x dx dx

  




 
 




   

  
   

   
  . 

 

 After similar simplifications, we can easily obtain the Renyi entropy as 
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7. MEAN RESIDUAL LIFE FUNCTION 
 

 The mean residual function gives an interpretable measure of how much more time to 

be expected to survive for an individual, given that one already reached the time point t. 

Assuming that X is a continuous random variable has  ; ,SBET x    with reliability 

function given in (5.1), the mean residual life function is given by (see, Abdous and 

Berred, 2005). 
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  After simplification the mean residual life function for proposed distribution is 
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8. ORDER STATISTICS 
 

 In fact, the order statistics have many applications in reliability and life testing.  

The order statistics arise in the study of reliability of a system. Let 1 2, ,..., nX X X   

be a simple random sample from  ( ); ,SBET x    distribution with cumulative distribution 

function and probability density function given in (2.5) and (2.6), respectively. Let 

( ) ( ) ( )1 2 nX X X    denote the order statistics obtained from this sample. In reliability 

literature,  jX  denote the lifetime of an ( )1n j   out of n  system which consists of n  

independent and identically components. Then the pdf of  jX ,1 j n  order statistics 

follows  ; ,SBET x    is given by 
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8.1. Distribution of Minimum, Maximum and Median 

 Let 1 2, ,..., nX X X  be independently identically distributed order random variables 

from the transmuted size biased exponential distribution having smallest, largest and 

median order probability density function are given by the following. 
 

 The pdf of the first or smallest    11 2, ,..., nX XX Min X  order statistics is given by, 
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 The pdf of the last or largest    1 2, ,...,
n nX XX Max X  order statistics is given by, 
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 The pdf of the median  1m
X

 order statistics is given by, 
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8.2. Joint Distribution of the thj and thk Order Statistics 

 The joint density distribution of the thj
 
order statistics  jX  and thk  order statistics 

 k
X from transmuted size biased exponential distribution is given by 
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9. PARAMETER ESTIMATION AND INFERENCE 
 

 In this section, we have used method of moments and method of maximum likelihood 

to estimate the unknown parameters of the transmuted size biased exponential 

distribution. 

 

9.1. Method of Moments 

 To find the estimators of the parameters of a distribution with method of moments 

(MMs), we equate the population moments to the sample moments. Given a random 

sample 1 2, ,..., nx x x , of size n from transmutes size biased exponential distribution with 

pdf (2.6), then from (3.4) we have the following system of two equations 
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 (9.1) is being multiplied by 5 , subtracting (9.2) from (9.1) and solving for  , we get 
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 Putting the value of ̂  in (9.1) and solving for  , we get 
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9.2. Method of Maximum Likelihood Estimation 

 In this section, we discuss the maximum likelihood estimators (MLE’s) and inference 

for the ,( );SBET x    distribution. Let 1 2, ,..., nx x x  be a random sample of size n  from 

,( );SBET x   distribution then the sample log likelihood function is given by 
 

      
1 1 1

1
log 2 ln ln ln 1 2 1i

n n n
x

i i i
i i i

n x x e x
 

  

         


     (9.5) 

 

 To find the parameter estimates, we partially differentiate the log likelihood function 

with respect to respected parameters  ,  and then equating to zero respectively 
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 The maximum likelihood estimator  ˆ ˆ ˆ,


     of  ,      is achieved by solving 

above nonlinear equations. For numerically maximize the log-likelihood function given 

in (9.5) we use an appropriate numerical solution algorithm such as the quasi-Newton 

algorithm. For  n  , the MLEs of  can be treated as being approximately bivariate 

normal with mean 0 and variance-covariance matrix equal to the inverse of the expected 

information matrix. That is, 
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the MLE ˆ ˆ( , )   is given by 
 

  

11 12

21 22

ˆ ˆ
,

ˆ ˆ

ˆ

ˆ

V V
N

V V

     
          

 
 
 
   

      

where, ˆij ij
V V


  and 

11 12 11 12

21 22 21 22

1
V V A A

V V A A


   

   
   

is the approximate variance 

covariance matrix with its elements obtained from 
 



Hussain, Abbas
 
and Ahmad 113 

  

2

11 2

ln L
A


 


,

2

12 21

ln L
A A


  


and 

2

22 2

ln L
A


 


. 

 

 We have, 
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 Approximate 100 1( )%  two sided confidence intervals for 
 

and   are 

respectively given by 
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where 2z  
is the upper th  percentiles of the standard normal distribution. Using R we 

can easily calculate the values of the standard error and asymptotic confidence intervals. 

We can also compute the Hessian matrix and its inverse. In any case, hypothesis is 

0 0H :  
 
verses 1 0H :   , where   vector is formed with some components of   

and 0  is a specified vector. For example, comparing transmuted size biased exponential 

distribution with size biased exponential distribution yields the hypothesis 
 

 0 : 0H  
 
or the two models are equally close to the true data.   

 1 :H ( ; , )SBE xT    
is better than ( ; )BES x   or proposed model is more closer to the   

 true data. 
 

 We use the likelihood ratio (LR) test statistic to check whether the transmuted size 

biased exponential distribution for a given data set is statistically superior to the size 

biased exponential distribution. We compute the maximized unrestricted and restricted 

log-likelihood functions to construct the LR test statistic. The (LR) statistic is defined as 
 

  
 
 

     0
1 0

1

2 lo2 gg loo gl 


     
 

,     

 

where 1  
and 0 are the MLEs under 1H

 
and under 0H

 
respectively. The LR test 

statistic   for testing 0H  versus 1H  is asymptotically distributed as 2
k , where k is the 
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length of the parametric vector θ of interest. The LR test rejects 0H  if
2

;k   , where

2
;k   denotes the upper 100 %  quantile of the 2

k  distribution. 
 

 We also compute AIC (Akaike Information Criterion), AICC (Akaike Information 

Criterion Corrected), BIC (Bayesian information criterion), Kolmogorov–Smirnov (K–S), 

Statistic and Cramer-von Mises Statistic ( nC ). The statistics of the criterion are 

respectively defined as 
 

   2 2logAIC p  ,  
2 ( 1)

1

p p

n p
AICC AIC







 ,    

     .log 2logBIC p n  ,    
1

1
max ,i i

i n

i i
K S F X F X

n n 

 
    

 
,  

and 

   
2

1

1 2 1

12 2

n

n i
i

i
C F X

n n

 
   

 
  

 

where ‘p’ is number of parameters in the model and ‘n’ is sample size. 

 

10. APPLICATION OF TRANSMUTED SIZE-BIASED  

EXPONENTIAL DISTRIBUTION 
 

 In this section, we use real data sets to show that the transmuted size biased 

exponential distribution (TSBE) is a better model than one based on the size biased 

exponential distribution (SBED). The data set given in table 4 represents an uncensored 

data set corresponding to remission times (in months) of a random sample of 128 bladder 

cancer patients reported by Merovci(2013) and lee and Wang (2003). We use several 

initial values to find the best fit for each model. We obtain the following results 

 

Table 4 

Remission Times (in months) of 128 Bladder Cancer Patients 

00.08  02.09  03.48  04.87  06.94  08.66  13.11  23.63  00.20  02.23 

03.52  04.98  06.97  09.02  13.29  00.40  02.26  03.57  05.06  07.09 

09.22  13.80  25.74 00.50  02.46  03.64  05.09  07.26  09.47  14.24 

25.82 00.51  02.54  03.70  05.17  07.28  09.74  14.76  26.31 00.81 

02.62  03.82  05.32  07.32  10.06  14.77  32.15  02.64  03.88  05.32 

07.39  10.34  14.83  34.26 00.90  02.69  04.18  05.34  07.59  10.66 

15.96  36.66  01.05  02.69  04.23  05.41  07.62  10.75  16.62  43.01 

01.19  02.75  04.26  05.41  07.63  17.12  46.12  01.26  02.83  04.33 

07.66  11.25  17.14  79.05  01.35  02.87  05.62  07.87  11.64  17.36 

01.40  03.02  04.34  05.71  07.93  11.79  18.10  01.46  04.40  05.85 

08.26  11.98  19.13  01.76  03.25  04.50  06.25  08.37  12.02  02.02 

03.31  04.51  06.54  08.53  12.03  20.28  02.02  03.36  06.76  12.07 

21.73  02.07  03.36  06.93  08.65  12.63  22.69  05.49   
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Table 5 

Summary Statistics for Remission Times (in months)  

of 128  Bladder Cancer Patients 

Mean Median Variance  S.D Skewness Kurtosis 

9.366 6.395 110.425 10.508 3.287 18.483 

 

 Table 6 shows the values of  2log , AIC, AICC, BIC, K S  and nC  values 

where Table 7 shows the MMs and MLEs for the transmuted size biased exponential 

distribution (TSBED), size biased exponential distribution (SBED), size biased Pareto 

distribution and size biased Maxwell distribution (SBMD).  

 

Table 6 

Criteria of Comparison 

Model  2log  AIC AICC BIC K S  nC  

TSBED 843.46 847.5 847.6 853.2 0.11 3.44 

SBED 853.59 855.6 855.6 858.5 0.14 4.49 

SBMD 1338.73 1340.73 1340.76 1343.58 0.49 12.16 

SBPD 1077.05 1079.05 1079.08 1081.90 0.42 7.06 

 

 In Table 6, the statistic values of all criteria are small for transmuted size biased 

exponential distribution. These indicate that the transmuted size biased exponential 

distribution leads to a better fit than the other distributions. 
 

 The LR statistics to test the hypotheses 0 : 0H    versus 1 : 0H   : 20.2552

 
2
1, 0.05

3.841    , so we reject the null hypothesis. 

 

Table 7 

Parameter Estimates 

Model Method of Moments Maximum Likelihood 

TSBED 
4. 88ˆ 69  

0. 05ˆ 64   

ˆ 5.74   

ˆ 0.58   

SBED 4. 28ˆ 68  ˆ 4.68   

SBPD 2. 86ˆ 00  ˆ 1.234   

SBMD 4. 18ˆ 98  ˆ 7.023   
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Fig. 5: Empirical, Fitted TSBED, SBED, SBPD and SBMD’s CDF of the  

Remission Times (in months) of 128 Bladder Cancer Patients Data 

 

11. CONCLUSIONS 
 

 In this article, we propose a new model i.e. the transmuted size biased exponential 

distribution which extends the application of size biased exponential distribution in the 

analysis of data with real support. An obvious reason for generalizing a standard 

distribution is because the generalized form provides greater flexibility in modeling real 

data. We derive expansions for expectation, variance, mean deviation, moments and the 

moment generating function. The parameters estimation is accomplished by the method 

of maximum likelihood and method of moments. The graph of hazard rate function and 

reliability behavior of the transmuted size biased exponential distribution demonstrates 

that the developed distribution can also be used to model reliability or life time data. Also 

the expression for entropy and mean residual life function for proposed distribution are 

also derived. The LR and other well-known statistic are used to equate the proposed 

model with its baseline and some other models. The application of transmuted size biased 

exponential distribution to real life data show that the new distribution provides quite 

effective results and better fits than the size biased exponential distribution and also other 

distributions used in comparison. We expect that this research will serve as a reference 

and help to advance future research in the subject area. 
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