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ABSTRACT 
 

 This study examines effects of additive outliers on asymmetric generalized 

autoregressive conditional heteroscedastic (GARCH) models. The outlier’s detection and 

correction method is developed for asymmetric GARCH models. We focus on the 

estimates of parameters and forecasts of out-of-sample volatility when data is 

contaminated with outliers. The performance of the proposed method is assessed through 

Monte Carlo simulations and an application to real data. Our results show that the 

asymmetric GARCH model fitted to outlier corrected data yields better estimates of both 

parameters and volatility forecasts than the asymmetric models for original returns. 
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1. INTRODUCTION 
 

 General time series models including autoregressive, moving average and 

autoregressive moving average (ARMA) models have the assumption of 

homoscedasticity, i.e., the variance of the error remains constant over time. This 

assumption does not hold for financial time series data where the variance or volatility is 

time-varying. Financial time series primarily focuses on the modelling of stock indices, 

share prices and foreign exchange rates. Some of the well-known characteristics of 

financial time series, also known as stylised facts, are heavy-tailedness, volatility 

clustering and leverage effect.  
 

 To capture these stylised facts of financial time series, the autoregressive conditional 

heteroscedastic (ARCH) model was first introduced by Engle (1982). The ARCH model 

has been extended to generalised ARCH (GARCH) model by Bollerslev (1986).Since 

then various extensions of the GARCH model have been proposed. Numerous 

applications of the GARCH model have found that the GARCH (1, 1) model can provide 

a good fit to the financial data. One of the drawbacks of the GARCH model is that it 

cannot model the asymmetric feature commonly found in many assets returns, i.e., it 

responds equally to both positive and negative shocks. To overcome this disadvantage, 

various asymmetric GARCH models have been proposed. Among these, one of the 
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widely used asymmetric model is the GJR model of Glosten, Jagannathan and Runkle 

(1993). 
 

 Time series models are often contaminated with outliers. The identification of ARMA 

model is effected in the existence of outliers. Outliers may also introduce bias in the 

estimated parameters of ARMA models. Besides, outliers can affect the forecasts of these 

models; especially outliers near the start of the forecast period can have severe 

consequences. Fox (1972) and Tsay (1988) provided a detail discussion on outliers and 

their effects. Several studies exist on outlier’s detection and correction procedures for 

ARMA models (see Chang et al., 1988 and Chen and Liu, 1993, among others). 
 

 The parameter estimates of GARCH models are also affected in the existence of 

additive outliers. The method of maximum likelihood in the presence of outliers may 

cause increase in ARCH and considerable decrease in GARCH estimates. The 

distribution of the unconditional returns is effected and the conditional normality 

assumption cannot be justified. The volatility forecasts of GARCH models are also 

influenced by outliers. Isolated observations, if not taken into account, reduce the 

forecasting performance which significantly reduces out-of-sample predictive power of 

GARCH models. Few studies exist in literatures which deal with the effect of outlier on 

GARCH models (see Franses and Ghijsels, 1999, Charles and Darne, 2005, Charles, 

2008 and Carnero et al., 2012). Recently, Gran ́and Veiga (2014) studied the impact of 

additive outliers on the estimation of risk measures using GARCH-type models by 

comparing wavelet-based detection method of Gran ́ and Veiga (2010) with various 

alternative proposals. Besides, robust methods are also developed for GARCH-type 

models (see Muler and Yohai, 2008, Mukherjee, 2008 and Iqbal and Mukherjee, 2010). 
 

 One of the main objectives of the present study is to investigate effects of additive 

outliers on GARCH-type models. More specifically, we suggest an additive outlier’s 

detection and correction method for the asymmetric GJR model and aim to observe the 

effects of this type of outlier on the estimates of parameters and out-of-sample forecasts 

of volatility. We use Monte Carlo simulations to assess the effectiveness of the proposed 

technique of outlier correction method. Various evaluation measures are employed to 

evaluate the parameter estimates and volatility forecasts of both contaminated and 

corrected series. The method is also applied to estimate and forecast the volatility of 

Karachi Stock Exchange. 
 

  This article is organized as follows: Section 2 introduces additive outlier’s detection 

and correction procedure for the asymmetric GJR model. In Section 3, results of 

simulations and empirical application is presented and discussed. Finally, Section 4 

concludes the paper.  

 

2. ADDITIVE OUTLIERS IN GARCH-TYPE MODELS 
 

 Franses and Ghijsels (1999) presented a method for detecting additive outliers in the 

GARCH model. Charles and Darne (2005) extended this method and considered the 

effect of innovative outliers in the GARCH model. The volatility forecasting of the 

symmetric GARCH model in the presence of outliers were studied by Charles (2008). 
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 Consider the returns series                  , where    is the closing price at  

time  .  
 

 T   GARCH (1, 1) model is  
 

           
 

    
            

        
               (1) 

 

 The model’s parameters are supposed to meet the assumptions            
     and          These assumptions are required for conditional variance    

  to 

be positive and second-order stationary, see Bollerslev (1986). It is also assumed that the 

disturbance term    is distributed identically and independently with zero mean and unit 

variance. 
 

 The GARCH (1, 1) model deals with conditional volatility of the returns, and has 

been widely used for volatility modelling and forecasting. The model can be written as  
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 Under the assumption that,      
     

  Eq. (2), corresponds to an ARMA (1, 1) 

model for   
  , see Bollerslev (1986). 

 

 One of the widely-used asymmetric GARCH model is the GJR (1, 1) model defined 

as 
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 The indicator function  ( ) takes the value 1 when the condition in the parenthesis is 

satisfied and 0 otherwise. The parameters of this model are supposed to meet the 

restrictions                (      
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 Next, we develop additive outlier’s detection and correction procedure for the GJR 

model. The detailed procedure and applications of the method can be found in Raziq 

(2012). The procedure works as follows: 

 

Step 1 

Using the method of maximum likelihood, estimate the parameters in Eq. (4). This 

will provide the vector of estimated parameters  ̂  (  ̂   ̂   ̂   ̂ ) , the estimated 

volatility  ̂ 
  and the estimated residuals   ̂    Next, build  ̂    

   ̂  
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Step 2 

The estimated residuals can be expressed as   ̂   ̂( )   , where L is the lag-operator 

and  

   ̂( )  
*(  (  ̂   ̂  

 

 
  ̂ ))  +

(   ̂ )
 

 

 This, after simplification, reduces to  
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                      (5) 

 

For each    , perform a regression  ̂         for estimated residuals  ̂   with  

                      

                            

          ̂                          
 

where  ̂  is defined as in Eq. (5). 
 

 The impact   of additive outlier at time    can be estimated as  
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The  ̂ statistic, ̂  *
 ̂( )

 ̂ 
+   ∑   

  
    

 

 , is calculated for  ̂   and then compared with C. 

Note that  ̂  is the estimated standard deviation of the residual process and obtained 

from the ‘omit-one’ method (Franses and Ghijsels, 1999). 
 

Step 3 

At     ,  ̂  is replace by  ̂ 
    ̂   ̂   ( ), when the largest value of the  ̂ statistic 

exceeds C, where    is an indicator function taking the value 1 when     and  ̂( ) is 

the estimated weight as in Eq. (6).  
 

Step 4 

Build   
          

    ̂ 
   ̂ 

  at time     use  ̂ 
       ̂ 

  and obtain the additive 

outlier (AO)-corrected returns as 
 

   
                                          and 

   
      (  ) (  

  )
 

             
 

The expression above indicates that the sign of   
  is equivalent to that of    at 

   . This means that for additive outlier corrected returns there is no change of sign. 
 

Step 5 

Go to step 1 with the corrected series   
   and repeat all steps until no  ̂ test statistic 

value exceeds    where   is a predetermined critical value. In other words, perform all 

steps until there are no more additive outliers in the data. As suggested in Charles and 

Darne (2005) a critical value of C=10 is used in this study. This value was initially 

proposed by Verhoeven and McAleer (2000). 
 

 In the end, we have   ̂ 
    ̂  

   ̂  
   ̂ 

  and   
       ̂ 

   and hence one-step ahead forecasts 

for  ̂   
   can be obtained.  
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3. RESULTS AND DISCUSSION 
 

 In this section, the GJR model’s performance is assessed in existence of additive 

outliers through Monte Carlo simulations and an application to real data. The main focus 

is to assess the effect of additive outliers on estimates of parameters and volatility. In 

addition, out-of-sample volatility forecasts for the contaminated and corrected returns are 

also compared. All computations are performed using MATLAB software. 
 

 First, we use Monte Carlo simulations to assess the precision and consistency of the 

proposed additive outlier’s detection and correction method. Next, an application to a real 

data set is also provided.  

 

3.1 Simulation of the GJR (1, 1) Model 

 The return series from the GJR (1, 1) model is simulated for two sample sizes 

(          ). Last 20 observations are left for the evaluation of volatility forecasts. 

The errors are generated from normal (standard normal), heavy-tailed (Student’s-t with  

4 degrees of freedom) and heavy-tailed skewed (skewed-t with 4 degrees of freedom and 

skewness of 0.20) distributions. In order to diminish the influence of starting 

observations, initial 2000 observations are discarded. A total of        Monte Carlo 

sample are generated in this way. 
 

 The GJR (1, 1) model  
 

          
 

    
           

        
  (      )        

  
 

is used and the values of true parameters considered are    (                  ) . This 

choice for true parameter vector is based on the values of parameters commonly found in 

application of the GJR model. 
 

 Next, the return series is contaminated by plugging three random additive outliers 

(given T and  ) of different magnitudes (               ), where   is the 

standard deviation of the returns.  
 

 The GJR (1, 1) model for contaminated returns become  
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 The quasi maximum likelihood (QML) estimation method is employed to obtain 

 ̂  ( ̂ 
   ̂ 

   ̂   ̂ 
 )   the vector of estimated parameters of the contaminated series 

model. Next, the proposed method of outlier’s detection and correction is applied and the 

corrected series is estimated to obtain  ̂   ( ̂     ̂     ̂   ̂   )
   the vector of estimated 

parameters of corrected series and the corrected returns ( ̇ ).  
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3.2 Evaluation of Estimated Parameters  

 The performance of estimated parameters for both contaminated and corrected returns 

are evaluated using evaluation measures such as mean squared error (MSE), root mean 

squared error (RMSE) and mean absolute error (MAE).  
 

 The MSE is defined as 
 

      
 

 
∑ ( ̂ 

 
      )

  
 

where  ̂ , is vector of estimated parameters and    is the vector of true parameters. 

Similarly, RMSE and MAE are defined as 
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 Table 1 represents the result of the parameter’s evaluation when the GJR (1, 1) model 

is fitted to contaminated and corrected returns for a small sample of size T=500. It can be 

seen from the results of the parameters evaluation that in the presence of outliers, the 

estimated parameters of the GJR (1, 1) model are not found close to their true values. It is 

also observed that as the size of the outliers increases the GJR (1, 1) model fitted to 

contaminated series produces large biases in estimated parameters. The estimated 

parameters from the corrected returns under all error distributions are found better than 

the contaminated returns.  

 

Table 1 

Evaluation of the Estimated Parameters of the GJR (1, 1) Model Fitted to 

Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

T=500 
Standard Normal Student-t (4) Skewed-t (4,0.2) 

  
   ̇    

   ̇    
   ̇  

5  

MSE 0.0165 0.0003 0.0205 0.0182 0.0155 0.0124 

RMSE 0.1284 0.0186 0.1432 0.1351 0.1244 0.1112 

MAE 0.0817 0.0093 0.0840 0.0691 0.0745 0.0598 

9  

MSE 0.0808 0.0014 0.0756 0.0281 0.0671 0.0208 

RMSE 0.2843 0.0374 0.2749 0.1676 0.2590 0.1443 

MAE 0.1843 0.0213 0.1682 0.0875 0.1618 0.0696 

15  

MSE 0.1451 0.0009 0.1314 0.0140 0.0951 0.0028 

RMSE 0.3809 0.0297 0.3625 0.1185 0.3038 0.0532 

MAE 0.2568 0.0171 0.2463 0.0520 0.2094 0.0309 

 Values in bold represent the least values of evaluation criteria 

 



Raziq, Farhat and Talpur 69 

 Table 2 shows the result of the parameter’s evaluation for a large sample of size 

T=3000. The errors in the estimated parameters have decreased as compared to the results 

of the previous table where a small sample size was used. The GJR (1, 1) model fitted to 

the corrected series is found to estimate the parameters correctly than the same model for 

contaminated returns and hence for consistent and accurate estimates of the parameters of 

the model, the outlier’s effect must be removed.  

 

Table 2 

Evaluation of the Estimated Parameters of the GJR (1, 1) Model Fitted to 

Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

T=3000 
Standard Normal Student-t (4) Skewed-t (4,0.2) 

  
   ̇    

   ̇    
   ̇  

5  

MSE 0.0005 0.0001 0.0005 0.0033 0.0006 0.0026 

RMSE 0.0231 0.0076 0.0214 0.0577 0.0237 0.0507 

MAE 0.0160 0.0046 0.0139 0.0355 0.0130 0.0320 

9  

MSE 0.0048 0.0001 0.0262 0.0068 0.0276 0.0117 

RMSE 0.0696 0.0076 0.1618 0.0825 0.1661 0.1082 

MAE 0.0446 0.0047 0.0991 0.0473 0.1020 0.0555 

15  

MSE 0.0180 0.0001 0.0392 0.0052 0.0403 0.0099 

RMSE 0.1340 0.0076 0.1980 0.0721 0.2007 0.0095 

MAE 0.0877 0.0049 0.1931 0.0323 0.1145 0.0415 

Values in bold represent the least values of evaluation criteria 

 

3.3 Evaluation of Out-of-Sample Volatility Forecasts 

 Subsequently, the effect of outliers on volatility forecasts is studied. The out-of-

sample volatility forecasts of both contaminated and corrected returns are evaluated 

through measures like                    . The estimates of                     

are obtained. 
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As a proxy, the squared returns      
  are traditionally used. This enable volatility 
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 The result of out-of-sample volatility forecasts of the GJR (1, 1) model fitted to a 

small sample (T=500) of contaminated and corrected series is presented in Table 3. It is 

observed from the findings of the table that additive outliers can affect volatility forecasts 

and this effect can be decreased by removing the outliers from the data. The errors in 

volatility forecasts of the corrected returns for all error distributions and for magnitude of 

small, medium and large outliers are smaller than that of contaminated returns.  

 

Table 3 

Evaluation of volatility forecasts of the GJR (1, 1) Model fitted to  

Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

T=500 
Standard Normal Student-t (4) Skewed-t (4,0.2) 

  
   ̇    

   ̇    
   ̇  

5  

MSE 0.0097 0.0094 0.0910 0.0876 0.1067 0.0917 

RMSE 0.0985 0.0969 0.3017 0.2959 0.3266 0.3082 

MAE 0.0648 0.0632 0.1136 0.0856 0.1198 0.0955 

9  

MSE 0.0847 0.0124 0.3004 0.2474 0.3115 0.2646 

RMSE 0.2911 0.1114 0.5481 0.4973 0.5581 0.5144 

MAE 0.1933 0.0699 0.2245 0.0961 0.2302 0.0987 

15  

MSE 0.2527 0.0097 0.3557 0.0360 0.3633 0.0961 

RMSE 0.5027 0.0987 0.5964 0.1898 0.6028 0.3100 

MAE 0.4171 0.0647 0.4553 0.0734 0.4777 0.0942 

Values in bold represent the least values of evaluation criteria 

 

 Table 4 shows the result of volatility forecasts of a large sample (T=3000). Again, 

GJR model applied to outlier corrected series show better results as errors in out-of-

sample forecasts are found smaller. These are true for all error distributions and all 

magnitudes of outliers. These findings show that the volatility forecasts in the presence of 

additive outliers may be misleading and for reliable volatility estimates and forecasts the 

data need to be cleaned from outliers. 
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Table 4 

Evaluation of Volatility Forecasts of the GJR (1, 1) Model Fitted to  

Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

T=3000 
Standard Normal Student-t (4) Skewed-t (4,0.2) 

  
   ̇    

   ̇    
   ̇  

5  

MSE 0.0086 0.0079 0.0299 0.0190 0.0520 0.0401 

RMSE 0.0927 0.0899 0.1729 0.1378 0.2281 0.2002 

MAE 0.0587 0.0451 0.0715 0.0521 0.0795 0.0693 

9  

MSE 0.0291 0.0113 0.0262 0.0168 0.0276 0.0177 

RMSE 0.1706 0.1061 0.1618 0.1296 0.1661 0.1330 

MAE 0.0822 0.0664 0.0991 0.0473 0.1020 0.0555 

15  

MSE 0.0419 0.0097 0.0388 0.0152 0.0396 0.0169 

RMSE 0.1050 0.0985 0.1970 0.1233 0.1990 0.1300 

MAE 0.0799 0.0632 0.1305 0.0404 0.1201 0.0523 

Values in bold represent the least values of evaluation criteria 

 

 We also calculated the percentage of correct and false detection of outliers. The 

percentage of correct and false detections varies from 91% – 100% to 7% – 35%, 

respectively in all six scenarios considered in this study. Note that higher percentage of 

false detection was observed when Student-t and skewed-t were used as these 

distributions are heavy-tailed and may contain aberrant observations. 

 

3.4 Empirical Application to Karachi Stock Indices 

 The daily closing prices of Karachi Stock Exchange (KSE) for fourteen years 

(January 1998 to December 2011), obtained from (http://www.finance.yahoo.com), are 

used in this empirical application. For indices, at time t  the log-returns are defined as 
 

     (              )                        
 

where     represents the closing price of KSE at time  . The KSE data set consists of total 

(      ) observations. Preliminary     observations are used for the estimation of 

the model and last        observations are left for out-of-sample volatility forecast 

evaluation. 
 

 Table 5 below shows the summary of descriptive statistics of KSE log-returns for 

both estimation and forecast periods. It is observed that the data set demonstrates excess 

kurtosis and asymmetry. Both estimation and forecast periods of KSE are found slightly 

negatively skewed. Significantly large values of Jarque-Bera (JB) statistic reject the 

normality hypothesis in the data. High values of the Ljung-Box   (  ) statistic for the 

squared returns up to lag-10, clearly indicate ARCH effect, i.e., dependence in squared 

returns. 

 

http://www.finance.yahoo.com/
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Table 5 

Descriptive Statistics of KSE Daily Log-Returns 

 Estimation Period Forecast Period 

Sample size 2369 1000 

Mean 0.0148 -0.0351 

Median 0.0587 0.0140 

Minimum -5.7626 -2.3165 

Maximum 5.5184 3.5608 

Standard deviation 0.7792 0.6366 

Skewness 0.3930 -0.1952 

Kurtosis 8.4542 5.6865 

JB 2997.4 307.0668 

   (10) 742.6466 396.8315 

JB: Jarque-Bera test statistic.   (10) is the Ljung-Box statistic for squared log-returns 

 

 The method of QML is used to fit the GJR (1, 1) model to the estimation period and 

the estimates of parameters are obtained. Next, the outlier’s detection and correction 

method is applied and the effects of outliers are removed. The GJR (1, 1) model is then 

fitted to the corrected series and again estimates of parameters are obtained. Results of 

parameters estimates are not reported here for the sake of brevity.  
 

 Descriptive statistics in Table 6 show that the residuals of corrected series have 

smaller skewness and kurtosis as compared to contaminated series. The Jarque-Bera (JB) 

statistic is significantly larger in contaminated series indicating that the residuals are far 

from normality. The value for Ljung-Box    statistic for the squared residuals of both 

series shows no ARCH effect. These findings confirm that the residuals obtained from 

the corrected series have better statistics then the contaminated series.  

 

Table 6 

Descriptive Statistics of Residuals Obtained from Fitting the GJR (1, 1)  

Model to Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

 

 

Standard Normal Student-t Skewed-t 

  
   ̇    

   ̇    
   ̇  

Skewness -0.4903 -0.3409 -0.4567 -0.3478 -0.4735 -0.3601 

Kurtosis 5.9831 4.4507 6.5734 4.6803 6.4231 4.6085 

JB 973.31 253.63 1342.70 326.45 1245.1 306.60 

  (  ) 3.8252 4.6922 5.3174 5.6485 5.1703 5.7628 
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 Finally, we compare the out-of-sample volatility forecasts of KSE for both 

contaminated and corrected returns using various measures of assessment.  
 

 Out-of-sample volatility forecasts results of the GJR (1, 1) model fitted to KSE data is 

shown in Table 7. It can be clearly seen that the outlier corrected returns produce smaller 

errors in out-of-sample volatility than the contaminated returns. In other words, a 

volatility forecast of the KSE has improved when the return series is cleaned from 

additive outliers. This holds for all error distributions. 

 

Table 7 

Out-of-Sample Volatility Evaluation of KSE for  

Contaminated Returns (  
 ) and Corrected Returns ( ̇ ) 

 

 

Standard Normal Student-t Skewed-t 

  
   ̇    

   ̇    
   ̇  

MS   0.6482 0.6391 0.6744 0.6425 0.6720 0.6534 

RMS   0.8051 0.7994 0.8212 0.8016 0.8198 0.8083 

MA   0.4488 0.4390 0.4519 0.4402 0.4690 0.4541 

 Values in bold represent the least values of evaluation criteria 

 

 Results of this empirical study confirm the findings of our Monte Carlo study and it is 

concluded that the outliers have severe effects on the parameter estimates and volatility 

forecasts of GARCH-type models and to get reliable parameters and volatility estimates, 

the effect of additive outliers must be removed. 

 

4. CONCLUSION 
 

 This paper deals with effects of additive outliers on the parameter estimates and 

volatility forecasts of the asymmetric GJR model. A method for detecting and correcting 

additive outliers in the GJR model is developed. Monte Carlo simulations are used to 

assess the performance of the proposed method under different error distributions and 

various magnitudes of outliers. The results of simulation study show that outliers produce 

bias in the estimated parameters and volatility forecasts. When the outlier correction 

procedure is applied, the parameter estimates and volatility forecasts of corrected series 

improved. An empirical application to KSE also confirms these findings and it is 

suggested that in order to produce consistent estimates of parameters and reliable 

forecasts of volatility, the return series should be cleaned from additive outliers. 
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