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ABSTRACT 
 

 In this paper, we propose two bootstrap procedures to construct prediction intervals 

for Autoregressive Fractionally Integrated Moving Average with Conditionally 

Hetroscedastic errors (ARFIMA-GARCH) models. The first method is based on the model 

based bootstrap, in which the order of the model is assumed to be known. The second 

bootstrap method is based on the idea of approximating the ARFIMA part by an AR 

model. In modeling the ARFIMA-GARCH model, the first step is to determine the order 

of ARFIMA part and determination the order of ARFIMA model is a complicated task. To 

simplify the model building procedure, we approximate the ARFIMA part of the 

ARFIMA-GARCH model by an AR(p) model and fit an AR-GARCH model instead of 

ARFIMA-GARCH model. The methodology has also been applied to ARMA-GARCH 

models. To check the performance of the proposed methods, we perform simulation 

study. 
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1. INTRODUCTION 
 

 In time series analysis a variety of models such as AR, ARMA, ARIMA are used to 

model the observed series and make predictions. For prediction based on these models, it 

is typically assumed that the variance of the error terms is constant. The assumption of 

constant variance of the error term is not realistic for many financial and economic time 

series. These series show bursts of unusually high volatility and the assumption of a 

constant variance is not appropriate for such series. However, Engle (1982) found that the 

classical ARIMA model failed to achieve the desired effect of the fitting for UK inflation 

rate. By carefully studying the sequence of the residuals, they found that the series of the 

residuals faced the problem of heteroscdasticity. Recently, many researchers have shown 

that various financial time series exhibit heteroscdasticity. They have found positive 

relationship between the standard deviation and the level. That is, the sequence of 

fluctuation remains low with low level of the sequence and the sequence of fluctuation 

becomes high with increasing sequence of the level. For example, in financial time series, 
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small returns are followed by more small returns (in case when market crashes) and large 

returns are followed by more large returns in the growth period. In time series analysis 

forecasting is an important objective. In classical interval forecasting, it is typically 

assumed that the innovations of the model have some known distribution. In most of the 

applications, this assumption is not satisfied and the prediction intervals based on it are 

not valid. To deal with this problem, several bootstrap procedures have been introduced 

for the construction of prediction intervals in time series analysis e.g. Thombs and 

Schucany (1990); Masarotto (1990); Grigoletto (1998) Cao et al. (1997); Alanso, A.M,  

et al. (2002, 2003); Pascual et al. (2004), Clements and Kim (2007), Amjad et al. (2015) 

among others. These bootstrap prediction intervals have the assumption of 

homescedasticity for the innovations of the model. In the context of time series models 

with hetroscedastic errors, Miguel and Olave (1999) proposed a bootstrap method to 

construct prediction intervals for ARMA-ARCH models. This method was further 

improved by Pascual et al. (2006) by incorporating the parameter variability and applied 

to construct prediction intervals for ARMA-GARCH models. In the current study, we 

propose two bootstrap procedures to construct prediction intervals for Autoregressive 

Fractionally Integrated Moving Average (ARFIMA) Models with GARCH errors. The 

first method is based on the parametric bootstrap, in which the order of the model is 

assumed to be known. The second bootstrap method is based on the idea of 

approximating the ARFIMA part by an AR model. In modeling the ARFIMA-GARCH 

model, the first step is to determine the order of ARFIMA part. Determination of the order 

of ARFIMA model is a complicated task. To simplify the model building procedure, we 

approximate the ARFIMA part of the ARFIMA-GARCH model by an AR(p) model and fit 

an AR-GARCH model instead of ARFIMA-GARCH model. 

 

2. THE MODEL 
 

2.1 The ARMA-GARCH Model 

 The ARMA-GARCH model is the combination of the linear ARMA model with 

GARCH errors. This is also called the conditional mean and conditional variance model. 

In most of the applications the GARCH model is not directly observed but the innovations 

of the linear ARMA process follows the GARCH model. The time series 1 2, ,....., nX X X  

follows the ARMA(p,q)-GARCH(r,s) model if: 
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 The ARMA(p,q) model for the conditional mean is assumed to be covariance 

stationary and invertible i.e. the roots of ( )B  and ( )B  lie outside the unit circle. 
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 For the conditional variance model to be stationary 0w  , 0j  , 0j   and 

1

1
r s

i j
i i j 

     . 

 

2.2 The ARFIMA-GARCH Model 

 The ARFIMA-GARCH model is obtained by combing the ARFIMA model with 

GARCH innovations. The stochastic process ,tX t R  has ARFIMA(p,d,q)-GARCH(r,s) 

model if it satisfies 
 

  
( ) ( )(1 ) ,d

t tB X B B     
     

 

with   
2 2 2
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~ . . . (0,1),

t t t
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where ( )B  and ( )B  are polynomials of order p and q respectively and d is the long 

memory parameter. 

 

3. BOOTSTRAP PREDICTION INTERVALS FOR  

ARFIMA-GARCH MODELS 
 

 The construction of the prediction intervals through bootstrap methods is a 

nonparametric approach, which does not assume any parametric hypotheses on the error 

distribution. In the current study, we propose two bootstrap procedures to construct 

prediction intervals for ARFIMA-GARCH models. One is model based bootstrap in which 

we assume that the model is known and the other is a sieve type bootstrap procedure. 

These methods are discussed as below. 

 

3.1 The Model Based Bootstrap Method to Construct Prediction Intervals (A1) 

 In the model based bootstrap method also called the parametric bootstrap method, we 

assume that the order of the ARFIMA(p,d,q)-GARCH(r,s) is known. The steps to 

construct model based bootstrap prediction intervals are outlined as follows. 

1) Estimate the fractional difference parameter d for the given series. A number of 

methods are available to estimate d. Here the semi-parametric local Whittle 

estimator of d is used. 

2) Take the fractional difference of the given series by using d, estimated in step-1. 

The filtered series thus obtained will follow ARMA(p,q)-GARCH(r,s) model. 

3) Estimate the ARMA(p,q)-GARCH(r,s) model for the filtered series by quasi-

maximum likelihood. The vector of estimated parameters is given by  

 1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( ,...., , , ,....., , , ,....., , ,....., )p q r sd w         

 where d̂  is the estimate of the fractional difference parameter calculated in step 2. 
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4) Estimate the residuals ˆ t  from the fitted model and calculate the standardized 

residuals by 

  

ˆ
ˆ 1,......,

ˆ
t

t
t

z for t p n


  


. 

5) Draw an i.i.d sample from ˆ
t

G  denoted by 
*
tz , where ˆ

t
G  is the empirical 

distribution function of the centered residuals and is defined by  

 
1

1ˆ ( ) ( ),
n

t
t

G x I z x
n




   

 where ˆ ˆt t tz z z   and 
1

1

ˆ ˆ( ) .
n

t t
t p

z n p z

 

    

6) Generate the bootstrap sample by recursion 
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 Note that, we generate 200n  observations by the above recursion in order to 

stabilize the series and discard the first 200  values. 

7) Estimate the model parameter 
* * * * * * * * * *
1 1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( ,...., , , ,..., , , ,..., , ,..., )p q r sd w       
 
for 

the bootstrap sample 
* * *
1 2( , ,..., )nX X X . The estimation is done on the same lines as 

we did in steps (1-3) for the original series. 

8) Calculate the h-steps ahead forecast values by using the recursion 
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  



   

 The bootstrap distribution of the predicted values is obtained by repeating steps 

(5-8) B times. 

 

3.2 The Sieve Bootstrap Approach to Construct Prediction Intervals (A2) 

 In the model based bootstrap, it was assumed that order of the ARFIMA part of 

ARFIMA-GARCH model is known. In practice, identifying the order of ARFIMA model is 

not very simple and leads to wrong inferences if it is not correctly identified. To deal with 

this complexity, we approximate it by an AR model as the identification of an AR model 

is very simple compared to an ARFIMA model. Therefore, to construct prediction 
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intervals for ARFIMA-GARCH model, we fit an AR-GARCH model to the given series. 

The steps to construct prediction intervals are outlined as follow. 

1) Approximate the conditional mean equation of the ARFIMA-GARCH model by an 

AR model and determine the order p of the AR model. 

2) Estimate the parameters of the AR(p)-GARCH(r,s) model given by  

 1 1 1
ˆ ˆˆ ˆ ˆ ˆˆ( ,...., , , ,....., , ,....., )p r sw      . 

3) From the model fitted in step 2, calculate the residuals ˆ t  and the standardized 

residuals 
ˆ

ˆ 1,......,
ˆ

t
t

t

z for t p n


  


. 

4) Define the empirical distribution function ˆ
t

G  
for the centered standardized 

residuals as 
1

1ˆ ( ) ( )
n

t
t

G x I z x
n




  . The centered residuals are given ˆ ˆt t tz z z 
 

where 
1

1
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t t
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z n p z
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5) The bootstrap sample 
* * *
1 2( , ,..., )nX X X  is generated by the following recursion 
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where 1
ˆ ˆ ˆ( ) (1 ....... )pB     and 

* .t tX X for t p 
 

Using the above recursion, we generate (n+200) and remove the first 200 values 

to minimize the effect of initial values. 

6) Fit the AR(p)-GARCH(r,s) model to the bootstrap sample 
* * *
1 2( , ,..., )nX X X

 
generated in step 5 and estimate the model parameters given by 

* * * * * * *
1 1 1

ˆ ˆˆ ˆ ˆ ˆˆ( ,...., , , ,....., , ,....., )p r sw      . 

7) Calculate the h-steps ahead forecast values by using the recursion 
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* * * *
1 1

1

* * * * * *

1

* * *
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ˆˆ ˆˆ ˆ ˆ
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j
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   

The bootstrap distribution of the predicted values is obtained by repeating steps  

5-7, B times. 
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4. SIMULATION STUDIES 
 

 The finite sample performance of the model based bootstrap and sieve bootstrap 

methods to construct prediction intervals for ARFIMA-GARCH models has been 

investigated thorough simulation studies. Here, we present results for the following 

models. 
 

  

1 : (0, ,0) (1 , 1)

2 : (1, ,0) (1 , 1)

3 : (0, ,1) (1 , 1)

4 : (1, ,1) (1 , 1)

M ARFIMA d GARCH

M ARFIMA d GARCH

M ARFIMA d GARCH

M ARFIMA d GARCH









 

 

 The value of the long memory parameter d is set to be 0.3 for all the models. For the 

ARFIMA part the values of the autoregressive parameter 1  and the moving average 

parameter 1  are fixed to be 0.5 and 0.3 respectively. We also apply the sieve bootstrap 

approach to construct prediction intervals for ARMA models with conditional 

hetroscedastic errors. The following models are considered in our simulation study. 
 

  

5: (0., 0.6) (1 , 1)

6 : (0.5 , 0.3) (1 , 1)

M ARMA GARCH

M ARMA GARCH

 

 
  

 

 The parameters of the GARCH(1,1) model are taken as 1 10.05, 0.10, 0.85w    
 

and for the ARCH(1) model, these are set to be 11, 0.4w    . We use two sample sizes 

200 and 400 and three different error distributions: the standard normal, the t-distribution 

with 5 degrees of freedom (i.e. leptokurtic one) and the exponential distribution with 

scale parameter equal to one (i.e. the asymmetric one). The exponential and  

t-distributions are centered and scaled to have zero mean and unit variance. We construct  

h = 1, 3, 5, 10 steps ahead forecast intervals at the nominal coverage level of 90, 95 and 

99 percent, but here the results are given for 95 percent level of significance. To evaluate 

the performance of the prediction intervals, the empirical coverage and the length of the 

intervals are calculated with their corresponding standard errors. 
 

 To check the performance of the model based bootstrap and sieve bootstrap prediction 

intervals, we calculate the empirical coverage and length of the intervals with 

corresponding standard errors. The number of simulations is taken as S=100 and the 

number of bootstrap resamples B is set to be 1000. For each combination of the model, 

parameters, sample size and innovations distribution, we perform the following steps. 

1) Generate a realization of size n. Also generate R=1000 future values of T hX  . 

These future values are generated conditional on the past n values of the generated 

realization, the true values of the parameters and the true error distribution. 
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2) Calculate the bootstrap forecast interval * *1 1
,

2 2
Q Q
     
    

    
 based on  

B=1000 bootstrap resamples, where * 1

2
Q
  
  

  
 and * 1

2
Q
  
  

    

are the 

1

2

 
 
 

th and 
1

2

 
 
 

 th percentiles of the 1000 bootstrap predicted values. 

3) Using the true R=1000 future values, we calculate the empirical coverage of the 

interval. The empirical coverage (
* ) is obtained as the percentage of R future 

values that lie in-between * 1

2
Q
  
  

    

and * 1

2
Q
  
  

  
. The length of the 

interval is calculated as * * *1 1
.

2 2
L Q Q

    
    

   
. 

 

 We repeat the above steps S=100 times and obtain the empirical mean length 
*( )L  

and the empirical mean coverage 
*  with corresponding standard errors for each of the 

forecast intervals as follows.
  

  

* 1 *

1

S

i
i

L S L



   
* 1 * * 2 1/2

1

( ) ( ( 1)) ( ) )
S

i
i

SE L S S L L



    

 

  

* 1 *

1

S

i
i

S



   , 
* 1 * * 2 1/2

1

( ) ( ( 1)) ( ) )
S

i
i

SE S S 



    

 
 

 The results for model 1 to 12 are presented in Tables 1 to 6. Both methods have 

reasonable coverage for n=200, but increases with increasing the sample size to n=400 as 

expected. Since constructing prediction intervals by bootstrap are non-parametric 

methods, therefore, different error distributions have no significant effect on the 

percentage coverage. This is true for all models and both sample sizes, but in most of the 

cases length of the prediction interval for t-distribution is a little bit wider than the normal 

and exponential distribution. While constructing prediction intervals for ARFIMA-

GARCH models our simulation results reveal that the performance of the Sieve Bootstrap 

method becomes weaker as the long memory parameter “d” approaches “0.5” which is 

its limiting value.  
 

 It is very natural as the performance of AR-approximation deteriorates as the model 

becomes more persistent (Poskitt, 2007). The same nature of performance has also been 

reported by Amjad et al. (2015) while constructing prediction intervals for ARFIMA 

models with white noise errors.  
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5. CONCLUSION 
 

 This work is concerned with forecasting of time series models with conditional 

hetroscedastic errors through bootstrap methods. We considered the long memory 

ARFIMA and short memory ARMA models with conditional hetroscedastic errors. In the 

current study, two bootstrap methods for the construction of prediction intervals have 

been proposed for ARFIMA-GARCH model; the model based bootstrap and the sieve 

bootstrap. Simulation studies showed that both the methods have good coverage 

performance. The proposed sieve bootstrap procedure showed good performance when 

applied to construct prediction intervals for ARMA-GARCH models. 
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Table 1 

Simulation Results for M1 

Step-

ahead 

Sample 

size 
Distr. 

A1 A2 

* (se) *L (se) 
* (se) *L (se) 

1 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.6(0.069) 

92.8(0.064) 

93.1(0.081) 

94.3(0.060) 

94.5(0.061) 

93.9(0.073) 

4.539(0.0087) 

5.053(0.0101) 

4.460(0.0130) 

4.541(0.0055) 

4.458(0.0077) 

4.461(0.0087) 

91.9(0.070) 

93.1(0.065) 

92.9(0.099) 

94.2(0.074) 

94.4(0.073) 

93.8(0.093) 

4.546(0.0079) 

5.069(0.0099) 

4.609(0.0086) 

4.579(0.0066) 

4.644(0.0074) 

4.548(0.0066) 

3 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.3(0.064) 

93.2(0.067) 

92.9(0.104) 

94.8(0.056) 

94.5(0.062) 

94.8(0.075) 

4.575(0.0086) 

4.637(0.0122) 

4.494(0.0134) 

4.561(0.0057) 

4.677(0.0071) 

4.514(0.0081) 

92.1(0.060) 

93.1(0.060) 

93.0(0.109) 

94.6(0.057) 

95.0(0.077) 

94.7(0.066) 

5.056(0.0078) 

4.487(0.0095) 

4.212(0.0106) 

4.121(0.0063) 

4.737(0.0065) 

4.803(0.0072) 

5 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.1(0.085) 

92.4(0.094) 

92.6(0.098) 

94.7(0.055) 

94.3(0.051) 

94.5(0.061) 

4.679(0.0083) 

4.771(0.0120) 

4.573(0.0132) 

4.624(0.0073) 

4.728(0.0069) 

4.995(0.0090) 

91.9(0.083) 

92.3(0.082) 

92.6(0.097) 

94.1(0.061) 

94.5(0.059) 

94.3(0.062) 

4.823(0.0799) 

5.073(0.0093) 

4.981(0.0088) 

4.646(0.0066) 

5.089(0.0063) 

4.746(0.0074) 

10 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.0(0.098) 

92.1(0.096) 

92.4(0.097) 

93.8(0.050) 

94.2(0.052) 

94.6(0.056) 

4.995(0.0083) 

5.071(0.120) 

4.597(0.0135) 

4.512(0.0065) 

5.146(0.0070) 

5.082(0.0081) 

92.1(0.093) 

92.0(0.080) 

92.1(0.074) 

94.0(0.064) 

93.9(0.052) 

93.8(0.044) 

5.282(0.0099) 

4.936(0.0103) 

5.238(0.0110) 

5.806(0.0050) 

5.809(0.0068) 

4.987(0.0081) 
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Table 2 

Simulation Results for M2 

Step-

ahead 

Sample 

size 
Distr. 

A1 A2 

* (se) *L (se) 
* (se) *L (se) 

1 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.0(0.071) 

93.1(0.076) 

92.9(0.103) 

94.9(0.051) 

94.6(0.057) 

94.7(0.062) 

4.686(0.0088) 

5.127(0.0105) 

4.552(0.0104) 

4.355(0.0054) 

4.470(0.0067) 

4.501(0.0080) 

92.9(0.070) 

93.3(0.068) 

93.1(0.110) 

94.0(0.051) 

94.2(0.044) 

94.3(0.052) 

4.756(0.0104) 

4.995(0.0088) 

4.671(0.0135) 

4.446(0.0078) 

4.668(0.0084) 

4.474(0.0091) 

3 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.9(0.053) 

92.8(0.055) 

92.4(0.090) 

94.8(0.043) 

94.5(0.052) 

94.7(0.071) 

4.871(0.0080) 

5.163(0.0110) 

4.700(0.0122) 

4.348(0.0053) 

4.506(0.0067) 

4.611(0.0090) 

92.6(0.068) 

91.9(0.041) 

91.9(0.077) 

94.6(0.051) 

94.6(0.040) 

94.8(0.066) 

4.865(0.0109) 

4.990(0.0098) 

4.839(0.0117) 

4.517(0.0081) 

4.440(0.0085) 

4.684(0.0095) 

5 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.7(0.055) 

92.6(0.084) 

91.9(0.091) 

94.9(0.043) 

94.5(0.052) 

94.4(0.067) 

4.996(0.0082) 

5.607(0.0117) 

4.901(0.0127) 

4.394(0.0057) 

4.736(0.0071) 

4.706(0.0090) 

92.3(0.053) 

92.2(0.050) 

91.9(0.073) 

94.4(0.049) 

94.1(0.041) 

94.7(0.050) 

5.023(0.0108) 

5.224(0.0095) 

4.976(0.0113) 

4.459(0.0086) 

4.628(0.0085) 

4.845(0.0093) 

10 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.7(0.061) 

93.7(0.067) 

92.9(0.087) 

94.7(0.037) 

95.0(0.050) 

94.4(0.089) 

5.104(0.0083) 

5.162(0.0105) 

4.966(0.0136) 

4.944(0.0058) 

4.858(0.0072) 

4.848(0.0095) 

93.5(0.058) 

93.3(0.044) 

93.0(0.070) 

94.5(0.042) 

94.4(0.032) 

94.9(0.062) 

5.150(0.0103) 

5.210(0.0095) 

5.053(0.0119) 

4.957(0.0085) 

5.012(0.0085) 

4.969(0.0096) 
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Table 3 

Simulation Results for M3 

Step-

ahead 

Sample 

size 
Distr. 

A1 A2 

* (se) *L (se) 
* (se) *L (se) 

1 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.5(0.050) 

93.1(0.051) 

93.3(0.074) 

94.2(0.039) 

94.1(0.040) 

93.9(0.058) 

4.331(0.0080) 

4.616(0.0105) 

5.058(0.0114) 

4.983(0.0050) 

5.095(0.0071) 

4.994(0.0080) 

93.1(0.054) 

93.2(0.052) 

93.0(0.073) 

94.1(0.044) 

94.0(0.042) 

93.8(0.057) 

4.345(0.0085) 

4.782(0.0104) 

4.544(0.0110) 

4.971(0.0054) 

5.123(0.0097) 

5.061(0.0089) 

3 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.4(0.055) 

92.3(0.057) 

93.6(0.077) 

94.7(0.040) 

95.0(0.046) 

94.5(0.050) 

4.423(0.0081) 

5.064(0.0110) 

5.083(0.0115) 

4.963(0.0053) 

4.934(0.0070) 

5.015(0.0086) 

92.3(0.056) 

92.0(0.054) 

93.1(0.086) 

94.8(0.053) 

94.7(0.039) 

94.4(0.064) 

4.575(0.0084) 

4.896(0.0103) 

5.225(0.0117) 

4.961(0.0057) 

4.960(0.0099) 

5.041(0.0102) 

5 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.8(0.052) 

93.5(0.061) 

92.9(0.060) 

94.4(0.031) 

94.0(0.031) 

94.0(0.051) 

4.968(0.0088) 

4.850(0.0120) 

5.082(0.0125) 

4.996(0.0051) 

5.394(0.0071) 

5.076(0.0087) 

93.0(0.051) 

92.8(0.040) 

93.2(0.085) 

93.9(0.044) 

94.3(0.031) 

94.5(0.072) 

4.870(0.0083) 

4.987(0.0106) 

4.456(0.0119) 

5.106(0.0056) 

4.199(0.0066) 

5.097(0.0105) 

10 200 

 

 

400 

 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.8(0.043) 

92.6(0.048) 

93.0(0.057) 

94.5(0.025) 

94.6(0.042) 

94.7(0.056) 

5.392(0.0084) 

4.904(0.0122) 

5.174(0.0132) 

4.996(0.0053) 

5.478(0.0073) 

5.078(0.0084) 

92.3(0.057) 

92.2(0.052) 

92.6(0.090) 

94.0(0.036) 

94.4(0.043) 

94.5(0.081) 

5.303(0.0091) 

5.105(0.0108) 

4.657(0.0124) 

5.365(0.0056) 

5.220(0.0070) 

5.203(0.0100) 
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Table 4 

 Simulation Results for M4 

Step-

ahead 

Sample 

Size 
Distr. 

A1 A2 

* (se) *L (se) 
* (se) *L (se) 

1 200 

 

 

400 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

93.1(0.056) 

93.2(0.063) 

92.7(0.053) 

94.8(0.042) 

94.5(0.050) 

94.1(0.037) 

4.665(0.0090) 

4.716(0.0120) 

4.505(0.0123) 

4.734(0.0056) 

4.838(0.0080) 

4.678(0.0094) 

92.9(0.058) 

93.0(0.066) 

92.9(0.056) 

94.4(0.044) 

93.9(0.051) 

93.9(0.032) 

4.702(0.0092) 

4.731(0.0112) 

4.494(0.0117) 

4.834(0.0060) 

4.916(0.0078) 

6.747(0.0084) 

3 200 

 

 

400 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.8(0.052) 

93.1(0.057) 

92.3(0.055) 

94.8(0.040) 

94.2(0.053) 

93.9(0.037) 

4.803(0.0093) 

4.940(0.0110) 

4.635(0.0096) 

4.839(0.0058) 

4.859(0.0088) 

4.965(0.0085) 

92.8(0.060) 

92.1(0.063) 

92.1(0.058) 

94.8(0.040) 

94.1(0.052) 

93.8(0.036) 

4.800(0.0096) 

4.913(0.0120) 

4.733(0.0103) 

4.892(0.0058) 

4.982(0.0104) 

4.972(0.0092) 

5 200 

 

 

400 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.7(0.056) 

93.1(0.067) 

93.0(0.054) 

94.8(0.043) 

94.4(0.054) 

94.3(0.040) 

4.928(0.0097) 

4.944(0.0096) 

5.165(0.0099) 

4.866(0.0065) 

5.075(0.009) 

5.233(0.0079) 

92.6(0.056) 

93.0(0.062) 

93.1(0.055) 

93.8(0.043) 

93.0(0.051) 

93.9(0.038) 

4.880(0.0097) 

4.919(0.0093) 

5.210(0.0110) 

4.896(0.0065) 

5.323(0.0090) 

5.164(0.0087) 

10 200 

 

 

400 

 

N 

t(5) 

EXP. 

N 

t(5) 

EXP. 

92.2(0.052) 

92.7(0.066) 

92.4(0.054) 

94.1(0.035) 

94.4(0.047) 

93.9(0.045) 

5.155(0.0098) 

5.038(0.0100) 

5.174(0.0085) 

5.355(0.0068) 

5.425(0.0094) 

5.377(0.0086) 

92.1(0.052) 

92.2(0.043) 

92.8(0.045) 

94.1(0.035) 

93.0(0.031) 

93.8(0.040) 

4.955(0.0098) 

4.819(0.0081) 

4.963(0.0088) 

4.995(0.0068) 

5.323(0.0090) 

5.444(0.0093) 
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Table 5 

Simulation Results for M5 

Step-

ahead 
Distr. 

n=200 n=400 

* (se) *L (se) 
* (se) *L (se) 

1 N 

t(5) 

EXP. 

93.5(0.051) 

93.7(0.054) 

92.9(0.063) 

4.783(0.0106) 

4.984(0.0111) 

5.030(0.0107) 

94.7(0.038) 

94.9(0.039) 

94.6(0.033) 

4.968(0.0076) 

5.097(0.0080) 

5.130(0.0077) 

3 N 

t(5) 

EXP. 

93.0(0.055) 

93.7(0.058) 

94.1(0.063) 

4.914(0.0109) 

5.219(0.0115) 

5.045(0.0110) 

94.8(0.034) 

94.5(0.040) 

94.6(0.039) 

5.194(0.0075) 

5.243(0.0082) 

5.230(0.0079) 

5 N 

t(5) 

EXP. 

92.9(0.056) 

93.2(0.064) 

93.3(0.062) 

4.983(0.0114) 

5.096(0.0122) 

4.361(0.0116) 

94.4(0.038) 

95.1(0.046) 

94.6(0.042) 

5.238(0.0079) 

5.275(0.0084) 

5.120(0.0081) 

10 N 

t(5) 

EXP. 

93.0(0.061) 

92.7(0.069) 

92.2(0.066) 

5.127(0.0118) 

5.288(0.0130) 

5.826(0.0114) 

94.4(0.041) 

94.7(0.046) 

94.6(0.043) 

5.441(0.0083) 

5.400(0.0097) 

5.030(0.0087) 

 

Table 6 

Simulation Results for M6 

Step-

ahead 
Distr. 

n=200 n=400 

* (se) *L (se) 
* (se) *L (se) 

1 N 

t(5) 

EXP. 

93.5(0.062) 

93.6(0.070) 

93.4(0.061) 

4.653(0.0112) 

4.718(0.0124) 

4.761(0.0116) 

94.8(0.043) 

94.7(0.052) 

95.3(0.051) 

4.952(0.0083) 

5.073(0.0091) 

4.961(0.0087) 

3 N 

t(5) 

EXP. 

92.8(0.066) 

92.9(0.071) 

92.6(0.063) 

4.614(0.0114) 

5.024(0.0129) 

5.030(0.0117) 

94.8(0.045) 

95.0(0.057) 

94.9(0.052) 

4.990(0.0086) 

5.164(0.0101) 

5.161(0.0096) 

5 N 

t(5) 

EXP 

91.7(0.065) 

91.9(0.076) 

92.2(0.070) 

5.199(0.0119) 

5.531(0.0136) 

5.426(0.0129) 

94.4(0.050) 

94.8(0.058) 

95.3(0.060) 

5.233(0.0083) 

5.413(0.0104) 

5.361(0.0096) 

10 N 

t(5) 

EXP. 

90.7(0.073) 

91.7(0.082) 

91.1(0.075) 

5.514(0.0127) 

5.716(0.0145) 

5.425(0.0134) 

94.5(0.057) 

94.1(0.060) 

94.3(0.062) 

5.517(0.0091) 

5.852(0.0100) 

5.461(0.0098) 

 


