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ABSTRACT 
 

 In survey sampling we select a random sample according to some specified random 

fashion. We focused to apply innovative approach of maximum entropy sampling to 

develop a new easily executable procedure to determine the probability function in 

unequal probability sampling and it needs no iteration to compute inclusion probabilities 

of any order. The empirical comparison of this procedure shows that Horvitz & 

Thompson (1952) population total estimate has high entropy and lower variance than that 

of the Yates and Grundy (1953), Brewer (1963) and Prabhu and Ajgankar (1982) 

selection procedures. 
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 Probability proportional to size sampling, Entropy, Horvitz & Thompson Population 
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1. INTRODUCTION 
 

 In unequal probability sampling without replacement consider a finite population 

comprising of N  elements or units. For each such element k , where 1,2,3, ,k N  , 

two variables Y  and Z  are attached such that the values of the variable Y , called as 

benchmark or auxiliary variable, is known for all the values of k  from 1 to N . The 

variable of main interest is denoted by Z  and we want to estimate the population total 

1

N

k
k

Z Z


  . The benchmark or auxiliary variable Y  is supposed to be related to the 

variable of interest Z . We select n  distinct units as a random sample from the finite 

population and for those selected units k  in the sample the values of the main variable 

kZ  are then known. The probability to select a sample s is represented by sP . Since 

sampling is without replacement so there being altogether N
nC  distinct samples and

1s
s

P


 , where Ω denotes the collection of all possible samples. The first order 

inclusion probability or probability of inclusion of unit k  in the sample is denoted by k  

where k s
s k

P


   . For k  the property 
1

N

k
k

n


  , holds. With such k ’s a popular 

estimator of population total Z , suggested by the Horvitz & Thompson (1952) is  
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  ˆ k

k s k

z
Z






                    (1.1) 

 

 Expression (1.1) gives unbiased population total estimate Z  and Horvitz & 

Thompson (1952) also suggested an variance expression of Ẑ  of the form  
 

  
1 2

1 1

ˆVar( ) (1 )( ) 2
N

k k k k k l
k k l N

Z z z z

   

              (1.2)  

 

where    
1

k k l kl k l


       . If 0kl  , Yates and Grundy (1953) provided an 

unbiased estimate ˆ( )v Z  of ˆVar( )Z  where  
 

  

2

ˆ( ) k l
k

k l s k l

z z
v Z

 

 
   

  
               (1.3) 

 

 We define the unbiased estimate Ẑ  for a general set of first order inclusion 

probabilities k ’s, but in cases where there exists evidences that kY  is closely correlated 

to kZ  then it seems better option to consider k
k

k s

nY

Y

    where 
1

N

k
k

Y Y


  .  

 

 In unequal probability sampling literature we can find a variety of sampling schemes 

developed by several authors where the first order inclusion probability k ’s are used as 

pre-assigned values e.g. some references in this context are Brewer (1963), Durbin 

(1967), Sampford (1967) and Samiuddin and Asad (1981). But the major purpose of 

these authors was to develop such sampling schemes that can be executed with simplicity 

and ease. Hanif and Brewer (1980) elaborated fifty such schemes in their monograph 

“Sampling with unequal probabilities without replacement: a review”. Hanif et al. (1992) 

added up the material and listed about seventy schemes but now more than hundred such 

sampling schemes have been reviewed by them. 
 

 But the issue was that when we fix ,k s
s k

P


    sP  cannot be determined properly 

and no attention was paid to solve this issue in a significant way. The first meaningful 

work in this direction seems to be a book of Hájek published in 1981. Hájek suggested 

the theory of Poisson sampling design. This design maximizes the entropy for first order 

inclusion probabilities but it suffers due to the variable sample size. Hájek suggested to 

use a fixed sample size instead of variable sample size and provided the idea of 

conditional Poisson sampling which is also known as rejective sampling. Hájek derived 

Conditional Poisson sampling by maximizing entropy criteria ln( )s s
s

P P


   subject to 

two constraints ,k s
s k

P


    and 1s
s

P


 . Stern and Cover (1989) also worked on this 

model and applied it to study the Canadian Lotto lotteries (See also Joe (1990)).  
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2. DEVELOPMENT OF A SIMPLE NEW SELECTION PROCEDURE 
 

 Since sampling is without replacement we have altogether N
nC  samples of fixed size 

n  and sP  is the probability to select a sample s such that 1s
s

P


 . The level of 

uncertainty or amount of randomness about the happening of a event or outcome s when 

one selects the sample according to some probability mechanism sP  is calculated by the 

term entropy, defined as H(P) = ln( )s s
s

P P


  . Where H(P), the term entropy represents 

on average the amount of information that a sampling design contains. It is interesting to 

mention that Shannon (1948) tried to calculate this average amount of information 

transferred from one point to another place and resulted with the same entropy 

expression, when he was working in Bell Telephone. 
 

 In unequal probability sampling when one selects the random sample and declares 

that the event or outcome suggests on average the amount of information equivalent to 

ln( )s s
s

P P


   which is the same amount of information required to eliminate the 

uncertainty measured by the expression entropy. Samiuddin & Kattan (1991) and  

Berger (1996) also suggested Maximum Information Sampling abbreviated as (MIS)  

for this information which is more familiar in the statistical community. In the  

current context it means determining sP  such that the expression ln( )s s
s

P P


    

is maximized subject to single constraint, fixed first order inclusion probability 

,k s
s k

P


    where 1,2,3,...,k N  which is equivalent to maximize 

 

  ln( )s s
s

P P


   +
1

N

k s k
k s k

P
 

 
   

 
              (2.1) 

 

unconditionally. Differentiating expression (2.1) with respect to sP  and equating to zero 

leads to  
 

  ln( ) 1sP  + 0k
k s

 
1

ln s k k
k s k s

P
n 

 
      

 
  , where 

1
k k

n
    . 

 

Finally this leads to  
 

  
k

k s
sP e 


                   (2.2) 

 

with suitable choice of k ’s satisfying ,k s
s k

P


   . The maximum entropy function 

with sP  given by the relation (2.2) is 
 

  lns s s k
s s k s

H P P P
  

 
     

 
  

1 1

N N

k s k k
k s k k

P
  

            (2.3) 
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 Generally to solve the relation (2.2) is tedious and time consuming. Chen et al. (1994) 

put the solution in a different form by suggesting an iterative procedure which links the 

Conditional or rejective Poisson sample with the exponential families framework. Chen 

et al. (1994) also derived a draw by draw sampling scheme to select a random sample. 

Due to such characteristics Maximum Information Sampling (MIS) is easily executable 

and hopefully in future it will be a widely used popular sampling scheme. We further 

enhance this work to minimize the computation labor in next sections. We start from a 

simple sample having two units and provide a complete solution. 

 

3. THE SIMPLE CASE OF 2n   
 

 Here easily we can write the sP  for a sample of two units  , ,s k l k l   as 
 

  exps k l k lP         
 

 Now  

  1 1exp exp or e ek k

k k k kA A
                       (3.1)  

 

where 1
1

exp
N

k
k

A


  . In general it can be written as 
1

exp
N

r k
k

A r


    , where 

1,2,3,r   in future. 
 

 Relation (3.1) leads to  
 

  
2

1( ) 0k k

ke A e
 

                  (3.2) 

 

 Relation (3.2) is of quadratic nature, its solution is 
 

  

1

2
1

2
1

4
1 1

2

k k
A

e
A



 
  
    
   

  

for all 1, 2,3,...,k N
.        (3.3)  

 

 Also relation (3.2) leads to 1
k k

kA e e
    

  
. We differentiate k k

k e e
   

  
 

w.r.t. k  and equating it to zero to get its max / min, which leads to 

e e 0k k

k

    
  

2
e k

k


   . The second derivative is e e 0k k

k

    
  

 which
 

indicates that 
2 k

ke


   leads to 

1

2(4 )k  which is the minimum value of 1A . Thus we 

can write 

1

2
1 (4 )kA    or 

2
1 4 kA    for all 1,2, ,k N  . Thus the roots obtained by 

relation (3.3) are real. 
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 Also summing both sides of relation (3.3) we get
 

  

1

2
1

1 2
1 1 1

4
1

2

k
N N

k

k k

A
e A N

A



 

  
   
       
        

    

which simplifies to 

  

1

2

2
1 1

4
2 1

N
k

k

N
A

 
  
     
    

 


.              (3.4)

 

 

 Expression (3.4) seems to indicate many possible forms but there are just two possible 

solutions, the first one is 
 

  

1

2

2
1 1

4
2 1

N
k

k

N
A

 
   
 
 


                (3.5)  

 

 The relation (3.5) has N  terms each of which is 1  and also it increases with the 

increase in 2
1A . Thus the terms on R.H.S. of relation (3.5) will lie between 

1

2

1

4
1

N
k

k N

 
 
 

  and N. We can find a value of 2
1A  satisfying relation (3.5) if and only if 

 

1

2

1

4
1 2

N
k

k N

N


 
   
 

 . The other possibility is if  

1

2

1

1 2
N

k

k N

N


 
   
 

  then one 

can observe that there may be one negative term only in the R.H.S. Let it be the 
thr  term 

then we have  

     

1 1

2 21

2 2
11 1

44
2 1 1 2

N kN

k

N N
A A





   
         
   
   

         (3.6)  

 

 If we put 
2
1 4 NA    we get the maximum of 

1

21

2
1 1

4
1

N
k

k A





 
 
 
 

  for this to happen we 

have  

1

2

1

1 2
N

k

k N

N


 
   
 

 . Thus if  

1

2

1

1 2
N

k

k N

N


 
   
 

  solve relation (3.4) for 

2
1A  and if  

1

2

1

1 2
N

k

k N

N


 
   
 

  solve relation (3.5) for
2
1A . 
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 We now illustrate these two cases with following two examples  
 

Example-1: 

 The data of this example has been taken from Chen et al. (1994). 

 Here 1 2 3 40.1,  0.4,  0.7 and 0.8         and 

1

4 2

1 4

1 1.9961 2k

k

 
   
 

 .  

So it is possible to find 2
1A such that 

1

24

2
1 1

4
2 2 1 k

k

N
A

 
    

 
 

 .  

 

 One can observe that 2
1 3.20005A   nearly satisfies the equation. For MIS the roots 

are given by 

1

2
1

2
1

4
1 1

2

k kA
e

A



 
   

     
  
 

 which gives 1 0.057767,e

  2 0.261969,e


  

3 0.578186e


  and 4 0.890898e


 . The joint inclusion probability for MIS is given by 

,k l

k l e k l
 

   . The values of these k l  are given in the following table. This table 

also contains values of k l  for Brewer sampling scheme where 

     
 

1
41 1

1

2 1 1 2
1

k
k l k l k l k l

k l



 



                    
  

 

Values of Joint Inclusion Probabilities for MIS and Brewer Sampling Scheme 

 12
 13

 14
 23

 24
 34

 

MIS 0.51330 0.033400 0.051465 0.151467 0.233388 0.515105 

Brewer 0.012195 0.034146 0.053658 0.153658 0.234146 0.512195 

 

 The entropy value for MIS turns out to be 1.296867 and that for the Brewer’s 

sampling scheme its entropy value is 1.296436. In this case entropy of MIS is very close 

to Brewer’s sampling procedure. 

 

Example-2: 

  1 2 3 40.2,  0.4,  0.6  and  0.8        . 
 

 Here 

1

4 2

1 4

1 2.073130 2 2k

k

N


 
     
 

 . Consequently 
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1 1

2 23
4

2 2
1 1 1

4 4
2 2 1 1k

k

N
A A

    
        
   
   


           (3.7) 

 

 For 2
1 3.2213A   RHS = 2.000009 which nearly satisfies the equation. These give 

2 31 0.119373, 0.260747, 0.444271e e e
 

    and 4 0.970372.e


  

 

Values of Joint Inclusion Probabilities for MIS and Brewer Sampling Scheme 

 12
 13

 14
 23

 24
 34

 

MIS 0.031126 0.053034 0.115836 0.115836 0.253022 0.431108 

Brewer 0.027722 0.053465 0.118812 0.118812 0.253465 0.427772 

 

 The entropy for MIS is 1.473636 and that for the Brewer’s sampling scheme is 

1.473636. Again MIS is near to the Brewer’s sampling procedure. 
 

 We can write the one by one draw procedure for a sample of size 2 for MIS as, draw 

first unit k  with probability proportional to 1( ) / 2 / 2k k

ke A e
 

   . After the selection 

of first unit we choose the second unit l, l ≠ k at the 2
nd

 draw with probability 

proportional to 1( )l le A e
 

 . 

 

4. THE GENERAL CASE 
 

 Consider a sample s containing three units (3, 5 and 9). The units can also be 

permuted so that s ≡ (3,5,9) ≡ (3,9,5) ≡ (5,3,9) ≡ (5,9,3) ≡ (9,5,3) ≡ (9,3,5) following this 

pattern we construct a general sample of n  units  1 2 3 1
( , , ...., , )nn

s k k k k k


  where 

 1 2 3 1
, , ...., , nn

k k k k k


 are distinct identifiable units of sample. Now 

 

  
 

1 2

1 2 1
,....,

exp ( ... ), or
n

k k k k nn

S k k k

S

P

P e


     
  

    



, 1 2 3, ....., .nk k k k     

 

  1 2 ( 1)
,.....,1

!

k k k kn n

sP e
n


     
    ,  1 2 3 1

, ....., .nn
k k k k k


       (4.1)  

 

Also 

  
( 1)1 2

1 2 ( 1)

1 2 1 2 3 ( 1) ( 2) 1

11 1 ...

,..., 1

....
( 1)!

k n
k k k n

n n n

kk k

k s
s k k k k k k k k k k

e
P e

n




 

         

       

  


       (4.2) 

 

  

( )
( 1)n

n!

k k
n

k

e s



   

 



A High Entropy Procedure for Unequal Probability Sampling 416 

  

 

( 3)1 2
1 2 ( 2)

1 2 2 3 ( 3) ( 2) 1 2

11 1 ...

, , ,..., 1

.....
( 2)!

k l n
k k k n

n n n

kk k

kl s
s k l k l k k k k k k k k

e
P e

n




  

        
  

       

  


       

                       (4.3)  

and 
 
( , )2

2
( )

n!

k l k l

n

k l

n n e s
   




  , similarly inclusion probabilities of higher order i.e. 

, ,....k lm k lmn  can be derived. Let 

 

  
1 2 ( 2) ( 1)

1 2 1 2 3 ( 2) ( 1) ( 1)

....
.....

k k k k kn n n

n n n n

n
k k k k k k k k k

s e
 

  

      
  

    

         (4.4)  

 

 We expand the R.H.S. in relation (4.4) as 
 

1 2 ( 2) ( 1)

1 2 2 2 3 ( 3) ( 2) ( 1)

....
...

k k k kn n

n n n

n
k k k k k k k k
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 Finally we obtain 
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 (4.5) 

 

 We also have to investigate how a one by one procedure of selection of sample is to 

be done for 2n  . 

 

5. APPLICATION OF THE GENERAL PROCEDURE  

AND SOME USEFUL RESULTS  
 

 Our sample for 2n   will be  
 

   ,s k l  and 
2

k l

s

e
P
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  if l k .            (5.1) 
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k , the first order inclusion probability to select the k th unit in the sample of size 2 is  
 

   1exp expk k kA     , where 1
1

exp
N

k
k

A


  .       (5.2)  

 

 Summing over both sides of relation (5.2) we get 
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 For a sample of size 2, the joint or second order inclusion probability is 
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 Summing over both sides of relation (5.3) we have  
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 Relation can be rewritten as (3.1) as  
 

  1 exp exp 2k k kA        . 

 

 If 1 1exp exp 2 exp exp 2k l k k l lA A                          

  i)  if 1exp exp exp expk l k lA            which is true. 

  ii)  if 1exp exp exp expk l k lA            which is not true. 

   So k l    implies that exp expk l k l       

iii) if    1 1exp exp 2 exp exp 2k l k k l lA A                      
 

1 exp expk lA        .  

Thus exp expk l k l k l          . 

 

6. EMPIRICAL STUDIES AND CONCLUSIONS 
 

 In this section we conduct an empirical study with the aim to evaluate and compare 

the performance of Maximum Information Sampling procedure (MIS) with Yates & 

Grundy (1953)
 
draw by draw procedure (YG procedure), Prabhu and Ajgonkar Procedure 

(1982) (PA procedure) and Brewer (1963) Procedure (B procedure) selected from sample 

survey literature. For this purpose we have gathered and worked out data of seventeen 

populations (among them fifteen are natural and two small artificial populations), found 

in sampling literature. The sources of these populations along with some major 

characteristics i.e. main variable or variable under study, benchmark or auxiliary variable, 
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population size, variability and correlation found between these variables, of these 

populations are summarized in Table 1. The population sizes ranges from 4 to 20.  

 

Table 1 

Description of Populations Characteristics 

P
o

p
u

la
ti

o
n

 

Source N y x 
CV 

(y) 

CV 

(x) 
ρ 

1 
Chen et al. 

(1994) 
4 Small population used by Chen (1994) 

2 
Sukhatme and 

Sukhatme (1970) 
4 

Small artificial population used  

Yates and Grundy (1953) and Raj (1956) 
0.35 0.52 0.99 

3 
Cochran(1977)  

p-268 
5 Small artificial population 0.68 0.50 0.99 

4 
Cochran (1977) 

p-203 
10 Actual weight Estimated weight 0.19 0.17 0.97 

5 
Cochran (1963) 

p-325 
10 

# of persons per 

block 
# of rooms per block 0.15 0.14 0.65 

6 
Sukhatme and 

Sukhatme (1970) 
10 

Area under wheat in 

1937 

Area under wheat in 

1936 
0.93 0.94 0.99 

7 
Sukhatme and 

Sukhatme (1970) 
10 

Area under wheat in 

1937 

Area under wheat in 

1936 
0.65 0.59 0.98 

8 Lahiri (1951) 10 Catch of fish in Kg # of boats - - - 

9 Kish (1965) 14 - - 1.46 1.11 0.98 

10 
Cochran (1963) 

p-156 
15 # of people in 1930 # of people in 1920 0.67 0.69 0.94 

11 Cochran (1977) 16 

# of inhabitants  

(in 1000’s) of cities 

in 1930 

# of inhabitants  

(in 1000’s) of cities 

in 1920 

0.98 0.98 0.99 

12 
Sampford (1962) 

p-61 
17 

Oat acreage in 1957 

(even units) 

Total acreage in 

1947 
0.71 0.61 0.80 

13 
Sampford (1962) 

p-61 
18 

Oat acreage in 1957 

(odd units) 

Total acreage in 

1947 
0.75 0.73 0.91 

14 
Cochran (1977) 

p-272 
19 

Actual # of 

household in a block 

Eye estimate of 

household in a block 
- - - 

15 Sukhatme (1970) 19 Wheat acreage # of villages 0.63 0.50 0.59 

16 Yates (1960) 20 - - 0.56 0.49 0.75 

17 Cochran (1977) 20 # of people in 1930 # of people in 1920 0.10 0.10 0.99 
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Table 2 

Entropy Values for Different Schemes 

Population HMIS HYG HPA HB 

1 1.29682439 1.29681711 1.29643906 1.296439055 

2 1.47360366 1.47359942 1.47331923 1.47331931 

3 2.02829054 2.02828263 2.02813504 2.02813528 

4 3.77752932 3.77752932 3.77752925 3.77752924 

5 3.78842290 3.78842288 3.78842285 3.78842285 

6 2.90343834 2.90343514 2.90335878 2.90335878 

7 3.4565335 3.4565330 3.45652363 3.45652363 

8 3.34027793 3.34027669 3.34025153 3.34025154 

9 3.40066479 3.40066275 3.40062003 3.40062003 

10 4.23737940 4.237377903 4.23737218 4.23737218 

11 4.01958491 4.01958186 4.0195235 4.0195235 

12 4.43605934 4.43605919 4.4360563 4.43605633 

13 4.52731417 4.52731405 4.52731176 4.52730458 

14 4.990490682 4.990490677 4.99049056 4.99049056 

15 4.87628312 4.87628309 4.87628282 4.87628281 

16 5.01067405 5.010674035 5.01067380 5.010673803 

17 4.35805554 4.35805460 4.35803695 4.35803694 

 

 Table 2 displays the calculated set of entropy values of the four sampling procedures 

for each population. The abbreviations HMIS, HYG, HPA and HB respectively denotes the 

entropy values of MIS, YG (1953) procedure, PA(1982) procedure and B (1963) 

Procedure. In each of the entropy value of the four schemes one digit at some decimal 

value is kept bold which determines the place to differentiate that from here the entropy 

value of a specific scheme is smaller or greater than the other counterpart procedures. For 

an example in the following table for Population No. 1, the four schemes are arranged in 

the order of magnitude of the entropy values and we assign rank one to the highest value 

and allot rank two to the next higher value of entropy and so on. 

 

Ranking of Schemes Based on Entropy Values 

Population # MIS YG Procedure PA Procedure B Procedure 

 1   1.29682439 > 1.29681711 > 1.29643906 > 1.29643906 

Ranks 1 2 3 4 

 

 In case where the entropy values of two procedures for a same population are equal in 

magnitude, we allot them similar ranks e.g. in Population No. 5 PA (1982) and B (1963) 

procedures have same entropy values i.e. HB = HPA = 3.78842285 and we assign rank 3 to 

both of these sampling schemes. 
 

 In Table 3 we have allotted the ranks to all the seventeen populations for these four 

sampling procedures. The Maximum Information Sampling (MIS) design among the four 

schemes attains the highest entropy values for all the seventeen populations and so we 

allot rank one for each population and cumulative ranks for this scheme is seventeen. The 
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YG (1953) sampling
 
procedure is very close competitor to MIS, the difference between 

entropy values of both these schemes is insignificant. For Population No. 4 its rank is one 

and for the remaining sixteen populations the entropy values are positioned at place 

second. Cumulative rank of the YG scheme for all the seventeen populations is 33.  

 

Table 3 

Ranking of Different Schemes with Respect to Entropy Values 

Popu # EMIS EYG EPA EB 

1 1 2 3 4 

2 1 2 4 3 

3 1 2 4 3 

4 1 1 3 4 

5 1 2 3 3 

6 1 2 3 3 

7 1 2 3 3 

8 1 2 3 4 

9 1 2 3 3 

10 1 2 3 3 

11 1 2 3 3 

12 1 2 3 3 

13 1 2 3 4 

14 1 2 3 3 

15 1 2 3 4 

16 1 2 3 3 

17 1 2 3 4 

Total 17 33 53 57 

 

 When we discuss the PA (1982) selection procedure it reveals that entropy values for 

15 populations are ranked 3 only two Populations No. 3 and 4 have attained same rank 4 

and the cumulative rank of this procedure is 53. Evaluating the performance of the B 

(1963) procedure it turns out to be very close to that of the PA (1982) selection 

procedure. Out of 17 populations 11 have identical performance for both selection 

procedures. All these 11 populations attained rank three each, whereas populations No. 

1,4,8,13,15 and 17 are positioned at rank four each. Thus the cumulative rank for B 

(1963) selection scheme turns out to be 57.  
 

 Thus the above discussion prompts that the Maximum Information Sampling (MIS) 

procedure having high entropy values for all the populations included in this study shows 

much randomness then other three schemes. The PA(1982) and B(1963) selection 

procedures are inferior to MIS to some extent in their performance. Performance of the 

YG (1953) procedure is also better than PA (1982) and B (1963) selection procedures. 

However the PA (1982) selection procedure and B (1963) selection procedure exhibits 

almost equal level of performance for these populations. 
 

 We have also evaluated and compared the performance of these procedures on the 

basis of the Horvitz and Thompson (1952) variance values (HT (1952)). Here we allot 
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rank one to the smallest or minimum value of variance; rank two is attached to the second 

last variance value and ranks are assigned to remaining values in the same pattern. In 

Table 4 we have displayed the calculated values of the variances using these procedures 

for all the 17 populations and Table 5 displays the ranks assigned to the schemes under 

study according to their variance values. The summery data of this table reveals that the 

HT- variances values of thirteen populations out of seventeen with Maximum 

Information Sampling (MIS) procedure are smaller than their three counterpart 

procedures. We allot rank 1 to these populations. The two Populations No. 13 and No. 15 

are positioned at rank 3 and the Populations No. 2 and No. 3 are ranked at number four. 

Thus the sum of ranks of this sampling procedure turns out to be 27. 

 

Table 4 

Horvitz and Thompson Variance Values For Different Schemes 

Popu # VMIS VYG VPA VB 

1 0.405868 0.407315 0.41463415 0.414635 

2 0.288768 0.287748 0.282178 0.282178 

3 0.252981 0.252188 0.24810811 0.248108 

4 276.14606 276.1447 276.1410 276.1416 

5 6373.243 6373.259 6373.319 6373.319 

6 24139.243 24145.78 24172.07 24172.07 

7 48660.68 48672.01 48713.50 48713.5 

8 1866467.6 18666508 1867368.16 1867368 

9 9166.601 9167.505 9170.75 9170.747 

10 83776.298 83777.05 83779.68 83780 

11 55360.58 55383.96 55380.06 55380.06 

12 25552.574 25549.02 25536.94 25537 

13 18323.626 18323.71 18324.015 18324.01 

14 2887.196 2887.224 2887.317 2887.32 

15 44054215 44053756 44052254 44052254 

16 4591.594 4591.631 4591.75 4591.75 

17 1701724 1701737 1701782.67 1701783 
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Table 5 

Ranking of HT – Variance Values for Different Schemes 

Popu # VMIS VYG VPA VB 

1 1 2 3 4 

2 4 3 1 1 

3 4 3 2 1 

4 1 1 1 1 

5 1 1 1 1 

6 1 2 3 3 

7 1 2 3 3 

8 1 2 4 3 

9 1 2 3 3 

10 1 2 3 4 

11 1 3 2 2 

12 3 2 1 1 

13 1 2 4 3 

14 1 1 1 1 

15 3 4 1 1 

16 1 1 1 1 

17 1 2 3 3 

Total 27 35 37 36 

 

 In the YG (1953) sampling procedure the HT (1952) - variance values for the 

populations at No. 4,5,14 and 16 are minimum so we allot rank one to each of them, nine 

populations due to their variance values are ranked at position number 2, among the 

remaining four populations, three are ranked at number 3 and only 1 Population No. 15 

having larger variance value is ranked at number 4. Finally the total sum of ranks of the 

YG (1953) procedure turns out to be 35. 
 

 Similarly the cumulative rank of the Prabhu and Ajgonkar (1982) sampling procedure 

is 37 and that of the Brewer (1963) selection procedure is 36. 
 

 The cumulative rank of Maximum Information Sampling (MIS) procedure calculated 

using the HT - (1952) variance criteria is minimum from their counterpart procedures. 

This prompts that Maximum Information Sampling (MIS) sampling procedure on 

average produces smaller amount of the HT - variance and thus is superior in 

performance to its counterparts under study. The sum of ranks of YG (1953) sampling 

procedure, PA (1982) and B (1963) selection procedures vary from 35 to 37. The 

performance of these sampling schemes is mixed, none of them dominates or 

outperforms the other procedure and they nearly exhibit same level of performance. This 

empirical study is limited to small populations and sample sizes. Hopefully the results for 

of Maximum Information Sampling (MIS) procedure will improve with large populations 

and increased sample size. 
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