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ABSTRACT 
 

 This article investigates the potential usefulness of the transmuted Gompertz 

distribution for modeling lifetime data. This distribution can be obtained by using the 

quadratic rank transmutation map scheme. Various structural properties of the transmuted 

Gompertz model are investigated including estimation of the parameters using maximum 

likelihood and evaluate the performance of MLE using simulation. The potential 

usefulness of the transmuted Gompertz model is shown by means of windshields data. 
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1. INTRODUCTION 
 

 The two parameter Gompertz distribution was pioneered by Gompertz (1825) and is 

often used in survival analysis for modeling human mortality data. It is widely used for 

modeling in demography, actuarial studies and biological sciences. The Gompertz 

distribution belongs to the exponential family of lifetime distributions. The two parameter 

Gompertz distribution has the cumulative distribution function (cdf) is given by 
 

 (     )       { 
 

 
(     )}  (1) 

 

for    ,     and    . The corresponding probability density function (pdf) is 

given as follows 
 

 (     )         { 
 

 
(     )}  (2) 

 

 In recent literature the transmuted family of lifetime distributions have received a 

great attention of the researcher for modeling lifetime data. More recently Abdul-Moniem 

and Seham (2015) proposed the transmuted Gompertz distribution and discussed some 

mathematical properties of this model which includes the moments, TL-moments and L-

moments. The authors compared the transmuted Gompertz with Gompertz distributions 

and estimated the models parameters by using the maximum likelihood estimation. The 
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motivation of this study is to investigate the potential usefulness of the transmuted 

Gompertz distribution and derive several mathematical properties of this model. 

Interestingly, although the transmuted method has been used extensively for the 

development of the new family of lifetime distribution, an attempt has been made to use 

this idea to explore properties of the subject model with an efficient estimates of the 

model parameters. By using the idea of the quadratic rank transmutation map proposed 

by Shaw and Buckley (2007), we can obtain the three parameter transmuted Gompertz 

distribution. According to this approach a random variable X is said to have a transmuted 

distribution if its (cdf) satisfies the following relationship 
 

 ( )  (   ) ( )    ( ) , | |    (3) 

and 

 ( )   ( )*(   )     ( )+  (4) 
 

where  ( ) is the cdf of the baseline model,  ( ) and  ( ) are the corresponding 

probability density functions (pdf) associated with  ( ) and  ( ), respectively. This 

paper investigates the statistical properties of the transmuted Gompertz distribution. 

Aryal and Tsokos (2011) studied the transmuted Weibull distribution to analyse two 

lifetime data sets. Recently Khan and King (2013a, 2013b) proposed the transmuted 

modified Weibull and the transmuted generalized inverse Weibull distributions and 

discussed structural properties with application to reliability data. Recently Khan et al. 

(2014) proposed the transmuted Inverse Weibull distribution and discussed various 

structural properties with application to reliability data. More recently Khan et al. (2015a, 

2015b, 2016) studied the transmuted generalized exponential, transmuted Weibull and 

transmuted generalized Gompertz distributions by using QRTM technique which extend 

the baseline models for modeling lifetime data. Merovci (2013) and Yuzhu et al. (2014) 

proposed the transmuted Rayleigh and the transmuted linear exponential distributions 

with a discussion on some properties of this family.  
 

 The article is organized as follows, in Section 2, we present the analytical shapes of 

the probability density and hazard functions of the transmuted Gompertz distribution. A 

range of mathematical properties are considered in Section 3, such as we formulate the 

moments, moment generating function, incomplete moments, Bonferroni and Lorenz 

curves and probability weighted moments. Entropies are derived in section 4. Order 

statistics and their moments are derived in Section 5. Maximum likelihood estimates 

(MLEs) of the unknown parameters are discussed in Section 6. In Section 7, we evaluate 

the performance of the MLEs using simulation. Application to the real data set is 

illustrated in Section 8. In Section 9, concluding remarks are addressed. 

 

2. TRANSMUTED GOMPERTZ DISTRIBUTION 
 

 A random variable   is said to have transmuted Gompertz distribution with 

parameters       and | |   ,     then   has the distribution function as,  
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The CDF corresponding to (5) is given by 
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 A random variable   with pdf (5) is denoted by     (       )  When the 

transmuting parameter      we obtain the classical Gompertz distribution. For      it 
reduces to the transmuted extended exponential distribution. A physical interpretation of 

the transmuted Gompertz distribution is possible when the parameters   and   are 

positive. Where   and   are the scale and shape parameters and   is the transmuted 

parameter representing the different patterns of the transmuted Gompertz distribution.  

 

 

  
Figure 1: Plots of the TG Densities for Simulated Data Sets,  

   (a)              (b)                  
 

  
Figure 2: Plots of the TG pdf for Some Parameter Values 

 

 Figure 2 shows the shape of the transmuted Gompertz PDF with different choice of 

parameters. Figure 3 illustrates the instantaneous failure rate pattern of the transmuted 

Gompertz distribution with different choice of parameters and suggests that the 
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distribution has increasing failure rates patterns. The reliability, quantile and hazard 

functions of the TG distribution are given by 
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 Figure 3: Plots of the TG hrf for Some Parameter Values 

 

3. STATISTICAL PROPERTIES 
 

 In this section, we develop some structural properties of the transmuted Gompertz 

distribution. 
 

3.1. Moments 

 If   has the   (       ) with | |   , then the     moment of   is given as follows 
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 The above expression reduces to 
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 Hence, it follows that 
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3.2 Moment generating function  

 If   has the   (       ) with | |   , then the moment generating function of X, 

  ( ) is given as follows  
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using the Taylor series expansions, the above integral reduces to 
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the integral in equation (11) can be finally obtained as 
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(a) Median (b) Coeff. of Quartile deviation 

 

Figure 4: Quantile Plots of the TG Distribution 
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Figure 5: Skewness and Kurtosis of the TG distribution. 

 

Table 1 

Moments Calculated of the TG Distribution 

      
Estimates 

 ́   ́   ́   ́  

0.5 1 

-1 1.2494 1.8308 2.9811 5.2491 

-0.50 1.0864 1.5061 2.3810 4.1173 

0.50 0.7596 0.8566 1.1808 1.8539 

1 0.5963 0.5319 0.5806 0.7222 

1 2 

-1 0.6247 0.4577 0.3726 0.3280 

-0.50 0.5432 0.3765 0.2976 0.2573 

0.50 0.3798 0.2141 0.1476 0.1158 

1 0.2981 0.1329 0.0725 0.0451 

2 2 

-1 0.4156 0.2132 0.1255 0.0817 

-0.50 0.3569 0.1731 0.0990 0.0634 

0.50 0.2394 0.0928 0.0461 0.0268 

1 0.1806 0.0527 0.0196 0.0085 

2 3 

-1 0.3546 0.1505 0.0718 0.0374 

-0.50 0.3066 0.1230 0.0571 0.0292 

0.50 

1 

0.2106 

0.1627 

0.0682 

0.0408 

0.0275 

0.0127 

0.0128 

0.0046 
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Table 2 

Moments based Measures of the TG Distribution 

      
Estimates 

Mean              

0.5 1 

-1 1.2494 0.2698 0.4157 0.1393 2.5808 

-0.5 1.0864 0.3258 0.5254 0.1978 2.4201 

0.5 0.7596 0.2796 0.6961 0.7125 2.9791 

1 0.5963 0.1763 0.7042 0.7177 2.9858 

1 2 

-1 0.6247 0.0674 0.4157 0.1371 2.5863 

-0.5 0.5432 0.0814 0.5253 0.1986 2.4183 

0.5 0.3798 0.0698 0.6958 0.7163 2.9603 

1 0.2981 0.0440 0.7039 0.7172 3.0015 

2 2 

-1 0.4156 0.0404 0.4841 0.3991 2.7566 

-0.5 0.3569 0.0457 0.5991 0.4688 2.7202 

0.5 0.2394 0.0354 0.7868 1.0309 3.7415 

1 0.1806 0.0201 0.7847 0.9936 3.6265 

2 3 

-1 0.3546 0.0247 0.4437 0.2242 2.7253 

-0.5 0.3066 0.0289 0.5553 0.3255 2.4229 

0.5 0.2106 0.0238 0.7332 0.8397 3.3085 

1 0.1627 0.0143 0.7357 0.8158 3.4719 

 

Table 3 

Calculated Values of Rényi Entropy 

      
Estimates 

                

0.5 1 

-1 0.2776 0.2525 0.2367 0.2255 

-0.50 0.3195 0.3012 0.2888 0.2796 

0.50 0.2290 0.2053 0.1910 0.1812 

1 0.1249 0.1004 0.0853 0.0748 

1 2 

-1 -0.0234 -0.0484 -0.0643 -0.0754 

-0.50 0.0184 0.0001 -0.0123 -0.0214 

0.50 -0.0721 -0.0957 -0.1101 -0.1198 

1 -0.1761 -0.2005 -0.2157 -0.2262 

2 2 

-1 -0.1426 -0.1669 -0.1822 -0.1928 

-0.50 -0.1249 -0.1432 -0.1545 -0.1627 

0.50 -0.2762 -0.3135 -0.3368 -0.3532 

1 -0.3979 -0.4348 -0.4582 -0.4746 

2 3 

-1 -0.2430 -0.2674 -0.2828 -0.2937 

-0.50 -0.2108 -0.2285 -0.2401 -0.2486 

0.50 -0.3274 -0.3563 -0.3742 -0.3866 

1 -0.4393 -0.4689 -0.4875 -0.5006 
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Table 4 

 Calculated Values of q-Entropy 

      
Estimates 

                

0.5 1 

-1 0.4723 0.3437 0.2683 0.2187 

-0.50 0.5209 0.3751 0.2880 0.2309 

0.50 0.4098 0.3058 0.2442 0.2028 

1 0.2500 0.1852 0.1484 0.1245 

1 2 

-1 -0.0555 -0.1250 -0.0643 -0.0754 

-0.50 0.0416 0.0003 -0.0295 -0.0547 

0.50 -0.1805 -0.2769 -0.3795 -0.5040 

1 -0.5000 -0.7592 -1.1458 -1.7583 

2 2 

-1 -0.3888 -0.5784 -0.8398 -1.2273 

-0.50 -0.3333 -0.4667 -0.6363 -0.8689 

0.50 -0.8888 -1.6177 -3.0807 -6.2149 

1 -1.5000 -3.2037 -7.5625 -19.544 

2 3 

-1 -0.7500 -1.213 -2.0183 -3.4886 

-0.50 -0.6250 -0.9318 -1.4167 -2.2170 

0.50 -1.1250 -2.0797 -4.0875 -8.5497 

1 -1.7500 -3.8333 -9.3359 -24.878 

 

3.3 Incomplete Moment  

 If     (       ) with | |   , then the     incomplete moment of the TG 

distribution is as follows 
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Using the binomial expansion equation (13) reduces to 
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 The three main features of the     incomplete moment used to determine the 

Bonferroni and Lorenz curves, mean residual life and mean waiting time can be obtained 

from (14). 
 

 The degree of scatter in a population is widely measured by the totality of deviations 

from the mean and median. If   has the   (       ) distribution, we can then derive 

the mean deviation about the mean and about the median M from the following equations  
 

    *   ( )   ( )+ and         ( )   (15) 
 

 The mean is obtained from (10) with     and the median M is the solution of the 

non-linear equation from (8), where  ( ) can be obtained from (14) as 
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 Hence, the measures in (15) can be obtained from (16). The quantity  ( ) can also be 

used to determine Bonferroni and Lorenz curves which have wide applications in 

econometrics and in finance. These Bonferroni and Lorenz curves equations can be 

calculated as 
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where      ( ) is calculated from (8) for a given probability  .  

 

3.4 Probability Weighted Moment  

 If     (       ) with | |   , then the probability weighted moment (PWM) of 

the TG distribution is as follows 
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 From the above integral the expension of cdf in terms of infinite weighted sum as 
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Using the binomial expansion PWM reduces to 
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 Finally, we obtain 
 

 (   )  (   ) ∑ ∑ (
 
 
) (
 

 
)
 

           

 

     

 

     

(     )  (   ) 

   ∑ ∑ (
 
 
) (
 

 
)
 

            

 

     

 

     

(     )  (   )  (17) 

where 

           .
 
 / .

 
 /

(  )         

  ( (   ))
   
  

 

4. ENTROPIES  
 

 The entropy of a random variable   with probability density  ( ) is a measure of 

variation of the uncertainty. A large value of entropy indicates the greater uncertainty in 

the data. The Rényi, A. (1961) introduced the Rényi entropy defined as 
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 Finally we obtain the Rényi entropy as 
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 The  -(or   entropy) was introduced by Havrda and Charvat (1967) and is the one 

parameter generalization of the Shannon entropy. Ullah, 1996 stated that  -(or   entropy) 

measures the monotonic functions of the Rényi entropy and is defined as 
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where     and    . The integral in   ( ) of the TG distribution can be defined as  
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 Using (19) and (21), we obtain the expression of the           as 
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 Shannon's introduced a probabilistic measure of uncertainty which is used in almost 

every branch of reliability engineering and biomedical sciences. The Shannon entropy of 

the TG distribution can be defined as  
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The expectation in equation (22) can be obtained by the following steps, 
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 Finally we obtain the Shannon entropy as 
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5. ORDER STATISTICS 
 

 Let             be independently and identically distributed ordered random 

variables from the   (       ) distribution having the pdf of rth order statistics is given 

by 
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 First we evaluate the expression as  
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 The pdf of rth order statistics can be written as a linear combination by inserting (5) 

and (24) in (23), we obtain  
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 Using (25), we obtain the     moment of the TG distribution of      is given by 
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where  (       ) is given in Section 3.4 (PWM). 

 

6. PARAMETER ESTIMATION 
 

 Consider the random samples            consisting of   observations from the 

transmuted Gompertz distribution then the log-likelihood function       of (5) is  

given by 
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 Let   (     )  be the parameter vector. The associated score function is given by 
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 The maximum likelihood estimates (MLEs) of the parameter vector   (     )  are 

obtained by solving the non-linear equations  ( )   . These system of non-linear 

equations can be solved numarically by using softwares such as R, SAS, MAPLE and 

OX.  
 

 For interval estimation and hypothesis tests on the model parameters of the TG 

distribution, we require the     unit observed information matrix as 
 

  ( )   (

            
            
            

)  

 

 The asymptotic multivariate normal   (    ( )
  ) distribution can be used to 

construct the approximate confidence intervals and confidence region of individual 

parameters for the transmuted Gompertz distribution. We can compute the maximum 

values of restricted and unrestricted log-likelihood to construct the likelihood ratio (LR) 

statistics for testing the TG distribution and compare with other lifetime distributions. For 

any testing of hypothesis we formulate the null hypothesis         versus         

can be performed based on the LR statistics to compare the TG distribution with other 

lifetime distributions. For example, the test of        versus       is not true to 

compare the TG with Gompertz distributions. In this case the likelihood ratio (LR) 

statistics is 
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   { ( ̃  ̃   )   (  ̂  ̂  ̂)}, 
 

where  ̂  ̂ and  ̂ are the MLEs under    and  ̃ and  ̃ are the estimates under   . 
 

 The elements of the     information matrix   ( ) are given by 
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respectively,  

where     
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7. SIMULATION 
 

 This section evaluates the performance of MLEs by using Monte Carlo simulation. 

The inversion method is used to generate samples from the TG distribution for different 

sample sizes                     and for different choices of parameters using 

equation (8). The simulation process is repeated for 1000 times using the BFGS 

optimization method in R and compute the MLE for the TG distribution by optimum 

routine were displayed in Table 5-10. Tables 5-10 show the output of the ML estimates, 

standard deviation, bias, mean square error (MSE), ratio, root mean square error (RMSE) 

vary with respect to the sample sizes. These results of the estimated values of the 

parameters      , are quite promising as the sample size   increases the values of the 

bias and mean square error (MSE) decreases. Furthermore, the graphical comparison of 

these three parameters of the bias estimates for the TG distribution are displayed in 

Figure 6. 
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Table 5 

Estimated Values of  ̂ based on MLE 

  (     )   
Estimates 

 ̂  ̂  ̂ 

0.5, 0.5, -0.8 

25 0.3085 0.8889 -0.2385 

50 0.3481 0.6441 -0.9998 

100 0.6108 0.4006 -0.9894 

200 0.3906 0.6046 -0.4974 

400 0.5629 0.4585 -0.8956 

0.5, 1, -0.5 

25 0.3661 1.4189 -0.1040 

50 0.4274 1.0763 -0.9327 

100 0.7020 0.7730 -0.8167 

200 0.2904 1.2820 0.0749 

400 0.5418 0.9707 -0.5426 

1, 2, 0.5 

25 0.9645 2.5403 0.7284 

50 0.6688 2.8042 0.1245 

100 0.9276 1.9240 0.6606 

200 0.8518 2.0221 0.7920 

400 0.9582 2.2675 0.4019 

1, 3, 0.8 

25 1.1423 3.8676 0.7468 

50 0.7971 4.2617 0.1238 

100 1.1080 2.9697 0.6914 

200 1.0268 3.0863 0.8147 

400 1.0262 2.8571 0.7517 
 

Table 6 

Standard Deviations of the Estimate of  ̂ based on MLE 

  (     )   
SD 

 ̂  ̂  ̂ 

0.5, 0.5, -0.8 

25 0.2950 0.4519 0.8800 

50 0.3152 0.4282 0.8283 

100 0.1217 0.1197 0.1642 

200 0.2092 0.2390 0.5140 

400 0.0655 0.0676 0.0999 

0.5, 1, -0.5 

25 0.3375 0.6105 0.8222 

50 0.2302 0.3859 0.3916 

100 0.1774 0.2031 0.2160 

200 0.1236 0.2182 0.3993 

400 0.1212 0.1548 0.2057 

1, 2, 0.5 

25 0.6715 1.1654 1.0169 

50 0.4158 0.7709 0.5698 

100 0.2915 0.3961 0.3939 

200 0.1482 0.3290 0.2287 

400 0.3013 0.2711 0.3636 

1, 3, 0.8 

25 0.7880 1.7578 1.0684 

50 0.5184 1.1024 0.5848 

100 0.3118 0.5578 0.3441 

200 0.1632 0.4443 0.1895 

400 0.1335 0.2812 0.1640 
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Table 7 

Bias of the Estimate of  ̂ based on MLE 

  (     )   
Bias 

 ̂  ̂  ̂ 

0.5, 0.5, -0.8 

25 -0.1915 0.3889 0.5615 

50 -0.1519 0.1441 -0.1998 

100 0.1108 -0.0994 -0.1894 

200 -0.1094 0.1046 0.3026 

400 0.0629 -0.0415 -0.0956 

0.5, 1, -0.5 

25 -0.1339 0.4189 0.3960 

50 -0.0726 0.0763 -0.4327 

100 0.2020 -0.2270 -0.3167 

200 -0.2096 0.2820 0.5749 

400 0.0418 -0.0293 -0.0426 

1, 2, 0.5 

25 -0.0355 0.5403 0.2284 

50 -0.3312 0.8042 -0.3755 

100 -0.0724 -0.0760 0.1606 

200 -0.1482 0.0221 0.2920 

400 -0.0418 0.2675 -0.0981 

1, 3, 0.8 

25 0.1423 0.8676 -0.0532 

50 -0.2029 1.2617 -0.6762 

100 0.1080 -0.0303 -0.1086 

200 0.0268 0.0863 0.0147 

400 0.0262 -0.1429 -0.0483 
 

Table 8 

MSE of the Estimate of  ̂ based on MLE 

  (     )   
MSE 

 ̂  ̂  ̂ 

0.5, 0.5, -0.8 

25 0.1236 0.3554 1.0896 

50 0.1224 0.2041 0.7260 

100 0.0270 0.0242 0.0628 

200 0.0557 0.0680 0.3557 

400 0.0082 0.0062 0.0191 

0.5, 1, -0.5 

25 0.1318 0.5481 0.8328 

50 0.0582 0.1547 0.3405 

100 0.0722 0.0927 0.1469 

200 0.0592 0.1271 0.4899 

400 0.0164 0.0248 0.0441 

1, 2, 0.5 

25 0.4521 1.6500 1.0862 

50 0.2825 1.2410 0.4656 

100 0.0902 0.1626 0.1809 

200 0.0439 0.1087 0.1375 

400 0.0925 0.1450 0.1418 

1, 3, 0.5 

25 0.6411 3.8425 1.1443 

50 0.3099 2.8071 0.7992 

100 0.1088 0.3120 0.1301 

200 0.0273 0.2048 0.0361 

400 0.0185 0.0994 0.0292 
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Table 9 

Ratio of the Estimate of  ̂ based on MLE 

  (     )   
Ratio 

 ̂  ⁄   ̂  ⁄   ̂  ⁄  

0.5, 0.5, -0.8 

25 0.6170 1.7778 0.2981 

50 0.6962 1.2882 1.2497 

100 1.2216 0.8012 1.2367 

200 0.7812 1.2092 0.6217 

400 1.1258 0.9170 1.1195 

0.5, 1, -0.5 

25 0.7322 1.4189 0.2080 

50 0.8548 1.0763 1.8654 

100 1.4040 0.7730 1.6334 

200 0.5808 1.2820 -0.1498 

400 1.0836 0.9707 1.0852 

1, 2, 0.5 

25 0.9645 1.2701 1.4568 

50 0.6688 1.4021 0.2490 

100 0.9276 0.9620 1.3212 

200 0.8518 1.0110 1.5840 

400 0.9582 1.1337 0.8038 

1, 3, 0.8 

25 1.1423 1.2892 0.9335 

50 0.7971 1.4205 0.1547 

100 1.1080 0.9899 0.8642 

200 1.0268 1.0287 1.0183 

400 1.0262 0.9523 0.9396 
 

Table 10 

RMSE of the estimate of  ̂ based on MLE 

  (     )   
RMSE 

 ̂  ̂  ̂ 

0.5, 0.5, -0.8 

25 0.3517 0.5962 1.0438 

50 0.3498 0.4517 0.8520 

100 0.1645 0.1555 0.2506 

200 0.2360 0.2608 0.5964 

400 0.0908 0.0793 0.1382 

0.5, 1, -0.5 

25 0.3630 0.7403 0.9125 

50 0.2413 0.3933 0.5835 

100 0.2688 0.3045 0.3833 

200 0.2433 0.3565 0.6999 

400 0.1282 0.1575 0.2101 

1, 2, 0.5 

25 0.6724 1.2845 1.0422 

50 0.5315 1.1140 0.6824 

100 0.3003 0.4033 0.4253 

200 0.2095 0.3297 0.3709 

400 0.3041 0.3808 0.3766 

1, 3, 0.8 

25 0.8007 1.9602 1.0697 

50 0.5566 1.6754 0.8940 

100 0.3299 0.5586 0.3608 

200 0.1653 0.4526 0.1900 

400 0.1360 0.3154 0.1709 
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Figure 6: Boxplot of the Bias Estimates 

 

8. APPLICATION 
 

 This section provides the data analysis in order to assess the goodness-of-fit of a 
model with failure times of windshields data. The data have been obtained from Murthy 
et al. (2004) and is given by  

0.04, 0.3, 0.31, 0.557, 0.943, 1.07, 1.124, 1.248, 1.281, 1.281, 1.303, 1.432, 
1.48,1.51, 1.51, 1.568, 1.615, 1.619, 1.652, 1.652, 1.757, 1.795, 1.866, 
1.876, 1.899, 1.911, 1.912, 1.9141, 0.981, 2.010, 2.038, 2.085, 2.089, 
2.097, 2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.23, 2.3, 2.324, 2.349, 
2.385, 2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 2.89, 2.9, 
2.934, 2.962, 2.964, 3, 3.1, 3.114, 3.117, 3.166, 3.344, 3.376, 3.385, 3.443, 
3.467, 3.478, 3.578, 3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.240, 
4.255, 4.278, 4.305, 4.376, 4.449, 4.485, 4.570, 4.602, 4.663, 4.694. 

 
 We fitted the TG, GE, WE and G distributions by the method of maximum likelihood. 
The required numerical evaluations were implemented using R language, R Core Team 
(2015). The MLEs and the values of maximized log-likelihoods for transmuted Gompertz, 
Generalized Exponential, Weighted Exponential and Gompertz distributions are displayed 
in Table 11. Table 11 gives the MLEs of the unknown parameters (with their standard 
errors) and the K-S test (Kolmogorov–Smirnov test), with their corresponding P-values and 
the estimated values of log-likelihood. The Kolmogorov–Smirnov statistic used for 
goodness of fit test and quantifies a distance between the empirical distribution function of 
the sample information and the cumulative distribution function of the TG distribution. 
Comparing with three distributions indicate that the TG distribution provides better fit for 
the windshields data. The graphical goodness of fit displayed in Figure 7 indicates that the 
TG distribution provides better fit for the failure times of windshields data. In Figure 8(a) & 
8(b), we display the pp-plot, the empirical survival function and the estimated survival 
function of the TG distribution which shows the satisfactory fit.  
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Table 11 

MLEs of the Parameters for Windshields Data, the Corresponding SEs  

with the K-S Test, P-value and Estimated Log-Likelihood Values 

Distribution 
Parameter Estimates K-S  

Test 
P-value 

-Log-

Likelihood  ̂  ̂  ̂ 

TG 
0.0567 

(0.0244) 

0.8398 

(0.1042) 

0.3408 

(0.3820) 
0.0824 0.5881 134.46 

GE 
3.5681 

(0.5999) 

0.7558 

(0.0751) 
- 0.1071 0.2648 146.88 

WE 
0.0001 

(0.2528) 

0.7785 

(0.1134) 
- 0.1724 0.0107 150.26 

G 
0.0811 

(0.0207) 

0.7710 

(0.0905) 
- 0.0845 0.5565 134.72 

 

 To further verify which distribution provides the better estimates for windshields data, 

we apply the Cramér-von Mises and Anderson-Darling goodness of-fit statistics 

displayed in Table 12. The smaller values of these statistics indicate the better fit. We 

observe from Table 12 that the data points from the TG distribution has better 

relationship and hence the TG distribution is a good model for failure times of 

windshields data. 

 

Table 12 

Cramér-von Mises and Anderson-Darling Goodness of-Fit Statistics 

Distribution     

TG 0.1352 0.8428 

GE 0.1961 1.5916 

WE 0.1442 1.2488 

G 0.1462 0.9030 

 

  

Figure 7: Plots of the Fitted pdfs and cdfs Models for Windshields Data 
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 Figure 8(c) suggests that the failure times of the windshields data has increasing 

hazard function with time and follows the wear-out period of the bathtub shape failure 

rates. During this period the failure is generally caused by factors such as fatigue and 

degradation. Figure 8(d) shows the profile of log-likelihood function for the parameter  

  of the TG distribution for windshields data. 

 

  
(a) P-P Plot  (b) Estimated Survival Function 

  

(c) Estimated Hazard Function (d) Profile of Log-Likelihood for   

Figure 8: pp-plot, Estimated Survival and Hazard Curves and the Profile of  

Log-Likelihood Function for the TG Distribution for Windshields data 

 

9. CONCLUDING REMARKS 
 

 This paper studies the three parameters transmuted Gompertz distribution and derive 

several theoretical properties of this model with application. We obtain the analytical 

shapes of density and hazard functions. This model is capable of modeling increasing 

hazard rate function for lifetime data. We derive the explicit expressions for the 

moments, moment generating function, incomplete moments, probability weighted 
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moments, quantile function, Renyi, Shannon and q-entropies, mean deviation, Bonferroni 

and Lorenz curves. We also derive the     moment of     order statistics. The practical 

relevance and applicability of the TG distribution are illustrated using windshields data. 

Based on the goodness of fit measures, the TG distribution provides better fit than the 

other three lifetime distributions. Therefore, we conclude that the model under study 

provides more flexibility for fitting windshields data.  
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