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ABSTRACT 
 

 This paper presents the estimation of the parameters of the multiple linear regression 

model when errors are assumed to follow the independent extended skew normal 

distribution. The estimators of the regression parameters are determined using the 

maximum likelihood and least squares methods. In addition, the asymptotic distributions 

of the estimators are studied. The properties of the estimators under both approaches are 

compared based on a simulation study and a real data set is applied for illustration. 
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1. INTRODUCTION 
 

 The multiple linear regression (MLR) model is a common tool which is usually used 

for analyzing data, especially in the applied areas such as agriculture, environment, 

biometrics and social science, see for example, Arellano-Valle et al. (2005). However, 

there are many cases where the assumption of normality is not feasible, may be due to the 

presence of outliers or skewness in the data. If the observed data is skewed, it is difficult 

to apply the assumption of normality because it may lead to unrealistic results. Many 

researchers have used the transformation method to obtain normality by transforming the 

data to near normal. Instead of applying the transformation on the data, some symmetric 

distributions such as student-t, logistic, power exponential and contaminated normal are 

adopted to deal with the lack of fit to the normal distribution, see Cordeiro et al. (2000), 

for example. However, in this study, the extended skew normal distribution is assumed 

when applying the multiple linear regression model on the data.  
 

 Azzalini (1985) has introduced a new class of distribution known as the skew normal 

distribution by including the skewness parameter in addition to the scale and location 

parameters to model the skewed data. One may refer to Liseo and Loperfido (2003), 

Genton et al. (2001) and Capitanio et al. (2003) for more detailed works on skew normal 

distribution and its applications. Azzalini and Capitanio (1999) have conducted a study 

on the applications of skew normal distributions and some aspects of statistical inference. 
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Recently, Cancho et al. (2010) have provided the statistical inference for non-linear 

regression model based on the skew normal error model as suggested by Sahu et al. 

(2003). In addition to the skew normal distribution, the extended skew normal (ESN) 

distribution has also been considered in modeling the data with the presence of skewness. 

This ESN distribution has been introduced by Adcock (2010). As explained in his work, 

if a random variable   is said to follow an independent extended skew normal 

distribution with location parameter  , scale parameter   , skewness parameter   and 

extra parameter  , then the probability density function of   is given by 
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      (   )

√       
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where   (        ) represents the parameters,  (      ) and  (      ) denote the 

probability density function (pdf) and cumulative distribution function (CDF) of the 

normal distribution respectively. The notation      (        ) can be used to describe 

the density of  . The main purpose of this paper is to determine the estimators for the 

parameters of the multiple linear regression model where the errors follow the 

independent extended skew normal distribution. In addition to determining the 

estimators, the properties of these estimators are also studied. In Section 2, we present the 

multiple linear regression model under ESN errors. In Section 3, we show two methods 

of parameter estimation, i.e., maximum likelihood and least squares methods. In Section 

4, we derive the asymptotic distributions for the estimators of the multiple linear 

regression model denoted as  ̂   ̂  and  ̂ . In Section 5, we conduct a simulation study 

for computing the maximum likelihood and the least square estimates of the parameters. 

In Section 6, we apply the findings to the Scottish hills races data. Finally, we conclude 

the article with a discussion of the results found.  

 

2. MULTIPLE LINEAR REGRESSION MODEL WITH ESN ERRORS 
 

 In this section, we consider the multiple linear regression model when the errors are 

independent and identically distributed following the extended skew normal distribution 

given by 
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 In order to simplify the mathematical derivation, we write the pdf of    as follows: 
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 Then the joint pdf of   is given by   
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 We can easily show that the expectation and variance-covariance of   as follows: 
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3. METHODS OF ESTIMATION  
 

Maximum Likelihood Estimation  

 We can find the maximum likelihood estimation (MLE) for each parameter in vector 

  by taking the derivative of      (   ) with respect to each parameter and setting the 

derivatives to zero as follows: 
 

1. Derivative with respect to  : 
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4. Derivative with respect to  : 
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 We used the numerical technique to solve the equations above. 
 

 Least Square Estimation of the Parameter vector   
 

 We seek estimators that minimize the sum of squares of the deviation of the n 

observed    from their predicted values   ̂ It can be easily shown that  ̂  (   )      

and the variance    
 

   
 (     ̂    )  Then, the properties of the least squares 

estimator can be described by the following theorem: 
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 This theorem can easily be proven by referring to  Rencher and Schaalje (2008) 
 

4. ASYMPTOTIC DISTRIBUTIONS FOR THE ESTIMATORS OF THE 

MULTIPLE LINEAR REGRESSION MODEL 
 

 Consider the following multiple linear regression model: 
 

                                  
 

where       and    are unknown parameters and    is the     error term. The least 

squares estimator for the parameters are:  
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 Using equation (4.1) and with some straightforward simplification, we have  
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 Similarly, we can rewrite  ̂  and  ̂  given in (4.1) to obtain 
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 It is easy to show that the estimators  ̂    ̂       ̂  are unbiased for                  

respectively and the variances of these estimators as the following: 
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 In order to derive the asymptotic distributions of  ̂    ̂       ̂   we need to use  

Berry-Esseen theorem and Slutsky’s theorem. For more details (see Chow and Teicher, 

1978; Alodat et al., 2010).  

 

Theorem 2. (Berry-Esseen) 

 If *      + are independent random variables such that,  (  )      

 (  
 )    
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  (     and     ∑    
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Theorem 3. 
 

 By using Slutsky theorem and Berry-Esseen theorem, we have  
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 For the proofs of Theorem 3, see the Appendix. 

 

5. SIMULATION  
 

The Maximum Likelihood Estimation (MLE) Method 

 In order to estimate the parameters of the multiple linear regression model under 

extended skew normal errors (ESN-MLR) and normally distributed errors  

(N-MLR) using the maximum likelihood method, we conduct a simulation study  

for sample sizes      and 10000 iterations. Then, we compare the bias and mean 

square errors (MSE) for the estimators in both cases. The simulation results are shown in 

Table (1).  
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Table 1 

Maximum Likelihood Estimates, Bias and Mean Square Errors  

Assuming Certain Values for Parameters  

Parameters 
N-MLR ESN-MLR 

Estimate Bias Mse Estimate Bias Mse 

  ( ) 2.1268 0.0282 0.0355 2.0485 0.0071 0.0107 

  ( ) 2.9902 -0.0042 0.0014 3.0156 0.0003 0.0006 

  ( ) 4.9850 -0.0522 0.1537 4.9676 0.0031 0.0005 

 (   ) - - - 0.3184 -0.1418 0.0657 

  ( ) 0.8783 -0.0457 0.0085 0.9971 -0.5969 0.5254 

 (   ) - - - 0.4872 0.09759 0.0363 

 

 Based on the Table (1), we have parameter estimates for N-MLR and ESN-MLR, in 

addition to the estimates of bias and MSE for the respective estimators which have been 

found based on simulation. In general, we note from Table (1) that the estimates of bias 

and MSE for the ESN-MLR are smaller than those in the N-MLR. 

 

The Least Squares Estimation (LSE) Method  

 The LSE is a common method which can also be used for estimating the parameters 

         and    for both MLR-N and MLR-ESN. So, we conduct a simulation  

study to compare the standard errors for the estimators obtained. The results are shown in 

Table (2). 

 

Table 2 

Least Square Estimates and Standard Errors  

Assuming Certain Values of the Parameters  

Parameters 
N-MLR ESN-MLR 

Estimate S.E Estimate S.E 

  ( ) 2.1979 0.1733 2.1117 0.1635 

  ( ) 3.0797 0.0381 2.9819 0.0295 

  ( ) 4.9973 0.0439 4.9908 0.0338 

 (   ) - - - - 

  ( ) 1.1012 1.0494 0.9020 0.9498 

 (   ) - - - - 

 

 From Table (2), we can notice that the standard errors of the parameter estimates are 

found to be smaller for ESN-MLR as compared to N-MLR, indicating that the estimation 

is more precise under ESN-MLR errors.  
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6. AN APPLICATION: THE SCOTTISH HILLS RACES DATA 
 

 The Scottish hills races data, which has also been applied by Chatterjee and Hadi 

(2012), consist of      observations where the response variable         

(in seconds) is related to two other predictor variables, namely,             (in mile) 

and          (in feet). This set of data is also available in the R package call (MASS). 

To investigate the presence of skewness in the data, as shown in Figure 1, normal and 

skew normal probability density functions are fitted to the histogram of the residual 

found after fitting the skew normal error model. As given in Figure 2, the data are further 

plotted on the normal Q-Q plot. Several points fall away from the straight line on the 

normal Q-Q plot, indicating the presence of outliers. It will be further shown in the 

analysis that the extended skew normal model can nicely account for the presence of 

outliers in the data. 

  

 
Figure 1: The histogram of the residuals of the Scottish hills races data  

and the fitted normal and skew normal model 



Alhamide, Ibrahim and Alodat 89 

 
Figure 2: The normal Q-Q plots of the Scottish hills races data 

 

 Both N-MLR and ESN-MLR are fitted by using the maximum likelihood and least 

square methods to the Scottish hills races data and the results found are given in Table (3) 

and (4) respectively. Also, note that the Akaike Information Criterion (AIC) values 

shown in Table (3) indicate that ESN-MLR outperforms N-MLR since the smaller value 

is obtained when extended skew normal errors are assumed. 

 

Table 3 

Results of Fitting N-MLR and ESN-MLR to the Scottish Hills Races Data 

Involving Maximum Likelihood Estimates and Standard Errors 

Parameters 
N-MLR ESN-MLR 

Estimate S.E Estimate S.E 

   -10.2728 1.8421 -10.4404 2.1872 

   6.72021 0.2469 6.71300 0.2332 

   0.00787 0.0010 0.0079 0.009 

  - - 0.3439 - 

   34.5378 5.8769 48.4769 6.9625 

  - - 1.776735e-09 - 

Log-likelihood -104.6752 -80.2972 

AIC 217.3504 172.5944 
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Table 4 

Results of Fitting N-MLR and ESN-MLR to the Scottish Hills Races Data Involving 

Least Squares Estimates and Standard Errors 

Parameters 
N-MLR ESN-MLR 

Estimate S.E Estimate S.E 

   -10.3616 1.8976 -10.3616 1.7031 

   6.6921 0.2543 6.6921 0.2531 

   0.0080 0.0011 0.0080 0.0011 

  - - - - 

   36.6489 6.054 36.6489 6.051 

 

CONCLUSION 
 

 In this paper, we study the statistical inference and estimation for the parameters 

using the maximum likelihood and least squares methods for the multiple linear 

regression model under normal and extended skew normal errors. Also, we have derived 

the asymptotic distributions of the estimators for the parameters of the multiple linear 

regression model under extended skew normal errors. From the comparison of the 

parameter estimates found based on the simulation study for the regression model under 

normal and extended skew normal errors using the maximum likelihood method, the 

fitted model is better for the latter case. The results are further supported by the model 

fitting of real data since the response variable in the data exhibits some skewness 

properties due to the presence of outlying observation. There are more potential 

applications which can be investigated for this proposed regression model in addition to 

the given example. 
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APPENDIX 

 
Proofs for the asymptotic distribution of the estimators  ̂   ̂  and  ̂   
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 The following inequality, as given in Bhattacharya and Rao (1976), is used for 

proving the theorem:  
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and with more simplification, we obtain  
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Proof 3. 

 Using equation (4.2) and applying Berry-Esseen theorem, we can prove the 

following: 
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