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ABSTRACT 
 

 This article proposes a robust procedure for multivariate regression based on the 

multivariate least trimmed squares estimator of Agullo et al. (2008). An Orthogonalized 

Gnanadesikan-Kettenring estimator otherwise refers to as OGK covariance determinant 

concentration algorithm produces a preliminary estimator. Residual distances computed 

from this preliminary estimator serves as a distance metric for agglomerative hierarchical 

cluster, (AHC) analysis. The AHC then partition the data into main cluster of “half set” 

and a minor cluster of one or more groups. An initial least squares estimate is obtained 

from the main cluster. The initial estimate is thereafter, optimized using concentration 

steps that lower the objective function of the residuals at each concentration step. To 

improve the efficiency of the initial estimates, a DFFITS-statistic is used to activate the 

minor cluster. We derived the appropriate theoretical properties of the resulting estimator 

following Agullo et al. (2008) and applied it to a multivariate regression artificial 

datasets. Simulation experiment shows that the proposed estimator is resistant to data 

contaminations of various sorts and is devoid of enormous computational demand. 
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1. INTRODUCTION  
 

 In linear regression analysis, the multivariate case can be defined as: 
  

  t= +y Xb Í                   (1) 
 

with q-variate response denoted as ( )1 qy ,..., yy =  and p-variate predictors

( )1 pX = x ,..., x . The thi case is ( ) ( )1 2 1 2, , ,..., ; , ,...t t
i i i i pi i i qix x x y y y=x y where the 

intercept at 1 1ix =  can be omitted from the case. It is assumed that the q-variate error 

term Í has an elliptically contoured density with zero location and a positive definite 

symmetric (PDS) matrix of dispersion parameter Íä PDS(q). It is further assumed that 

the errors Í  are i.i.d and are independent of the predictor variables. The matrix 
p q³Íb  holds the regression coefficients. The unknown parameters b and ä are to 
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be estimated from an observed data set ( ): , ; 1,...,
t

t t p q
n i i i i n +ë û
= = = Ëì ü

ýí
Z z x y . Note 

that this model generalizes the univariate regression model (q = 1) as well as the 

multivariate location and scatter model ( 1; 1 1,..., )ip x for i n= = = . Let the location of 

the joint ( , )x y  variables be m and their scatter matrix by ä. Partitioning m and ä 

yield the formulae 
 

  

ɛ

ɛ

å õ
=æ ö
ç ÷

X

Y

ɛ  and 
ä äå õ

=æ ö
ä äç ÷

XX XY

YX YY

ä

  

 Conventionally, m is estimated by the sample mean m̂ and ä is often estimated by 

the sample covariance matrix ä̂. The conventional method for estimating b is the least 

squares (LS) estimator ˆ
LSb  defined as a function of the component of ä̂ below. 

 

  
1ˆ ˆˆ -ä äXX XYɓ =LS           (2)

 

and  

  ( )
ˆ ˆ ˆˆ ˆt
Íä =ä - äYY XXɓ ɓ

LS LS LS              (3) 

 

 Enormous literatures exist on the application of univariate and multivariate regression 

in fields such as genetics, bioassay, environmental studies and medicine. Most often, 

applications of Multivariate regression in areas such as genetics, bioassay, environmental 

studies, medicine, and other disciplines adapts the least squares method in estimating 

Equations (2) and (3). Several of these literatures have it that the least squares multiple 

regression estimator is highly susceptible to contaminated and spurious data points in 

datasets. This ill-effect is carried over to the multivariate regression scenario (Rousseuw 

et al., 2004). In order to provide an alternative estimator that can resist the influence of 

contaminated and spurious data points in datasets, this article proposes a robust 

alternative algorithm to the multivariate least trimmed squares, (MLTS) estimator of 

Agullo et al. (2008). The algorithms methodology is a potpourri of existing tricks to form 

a new regression methodology with evidence that their combination works better than ad 

hoc proposals in estimating Equations (2) and (3) when data is contaminated with various 

sorts of outliers and leverages. 
 

 Maronna and Yohai (1997) implemented the simultaneous equation model approach 

to obtain a generalized robust estimator for multivariate linear regression parameter 

estimates. According to Agullo et al. (2008), this approach is a generalized form of the 

multivariate regression method defined in Equation (1) because for each model, it 

accommodates different predictors in the model equation. Koenker and Portnoy (1990) 

implemented the M-regression estimator in a coordinatewise manner for each model 

equation and Bai et al. (1990) adopted to minimize the error distance in form of the 

Euclidean norm. Nevertheless, the two approaches do not satisfy affine transformation 

criteria and hence, they are not affine equivariant (Agullo et al., 2008). A technique that 

is based on estimating the mean vector and the covariance matrix in a robust way prior to 

regression parameter estimation can be found in Olliha et al. (2002) and Olliha et al. 
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(2003) in form of finding the rank of the covariance matrices and in Rousseeuw et al. 

(2004) using the FastLTS algorithm of Rousseeuw and Driessen (2000) for minimum 

covariance determinant (MCD) estimator otherwise known as FastMCD. According to 

Agullo et al. (2008), these techniques do not consider the fixed effect design and hence 

they can only work well with designs that are centered on random experiments. Agullo et 

al. (2008) proposed the (MLTS) estimator that is obtained by minimizing the MCD of the 

residual covariance matrix. Their method works well in parameter estimation when data 

are highly contaminated. However, two issues arise from the MLTS; one is with the 

inconsistency of LTS and the other with poor efficiency of LTS. 
 

 Although the LTS is robust and has high breakdown point of 50%, it‟s repeated 

subsampling leads to internal variability as a result of several local minima. This 

phenomenon leads to coefficient instability and dramatic change in the sign of the slope 

parameters (see Hawkins and Olive., 2002 and Lawrence et al., 2014). Furthermore, low 

efficiency and variability in local convergence in high dimensional datasets has 

classically twisted LTS to initial estimator for other robust methods Lawrence et al. 

(2014). This illustrates a potential problem with LTS and in general, methods that 

implement resampling algorithms. According to Lawrence et al. (2014), LTS may not be 

reproducible. This is because LTS is greatly susceptible to a little variation in the center 

of the predictor hyper plane. The resampling procedure can easily lead to dramatic 

converging estimates for LTS. As a result, analyzing the same data with different initial 

estimates but with the same regression approach may lead to an entirely different output. 

The MLTS of Agullo et al. (2008) turns out to inherit the ill effects of LTS. Hence its 

inconsistency and inefficiency account for the one step re-weighted technique adopted to 

stabilize the estimates. This makes the MLTS not better than an initial estimator for other 

robust methods. 
 

 This article adapts the Orthogonalized Gnanadesikan Kettenring (OGK) estimator as 

an alternative estimator of location and dispersion that utilizes the maximum information 

about the data. The OGK is used to construct a distance metric with which the J0-initial 

subset is selected. The resulting estimator is consistent at normal model and resistant to 

influential observations. The cluster-based multivariate regression (CMR) estimator 

proposed in this article turns out to inherit the consistency and resistant properties of the 

OGK at a reasonable level of efficiency. 
 

 The remainder of the paper is organized in the following way: The OGK estimation 

algorithm is presented in section 2, for selecting the 0J initial subset of size (k + 1). 

Section 3 gives a formal description of Cluster-based Multivariate Regression (CMR) 

estimator and investigates its breakdown point. In what follows in section 4 is the 

algorithm to compute the CMR-estimator, an artificial data illustration and Monte Carlo 

simulation experiment that evaluates the CMR-estimator relative to other robust methods 

and multivariate regression Artificial data application. Section 5 concludes the paper with 

summary of results. 
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2. THE OGK ESTIMATOR  
 

 Enormous literatures exist on location and dispersion estimators. A few list includes: 

Stahel (1981), Donoho (1982), Rousseeuw (1984), Hampel et al. (1986), Rousseeuw and 

Leroy (1987), Rousseeuw and van Zomeren (1990), Hadi (1992), Billor et al. (2006). 

Most of these estimators compute the location and dispersion estimator from a subset of 

data corresponding to some criterion function through a concentration steps and 

resampling algorithms. Hence they utilize limited information about the population 

distribution from which the sample is taken. The OGK on the other hand, projects the 

dataset on the eigenvectors arising from the “correlation matrix” computed from the 

transformed dataset. Thus, the OGK utilizes full information about the distribution from 

which the data is taken. This explains why this article adapts the OGK estimator for 

location and dispersion matrix. 
 

 Proposed earlier by Gnanadesikan and Kettenring (1972), Maronna and Zamar (2002) 

discussed the generalized approach for obtaining a near affine equivariant covariance 

matrix estimator that is robust. The resulting multivariate location and dispersion 

estimators are called OGK estimators and are calculated as follows Maronna and Zamar 

(2002): 

 

2.1 Algorithm 1: The OGK Algorithm  
 

Step 1:  

 Denote (.)m  and 2 (.)s  as the mean and variance obtained from a robust estimator in 

the univariate context. 
 

Step 2:  

 Let 1
i i

-g =D z for 1,...,i n=  where () ( )( )1 ,..., kdiag s sD = z z . 

 

Step 3:  

 Estimate the “association matrix” U from ( )1,..., kg gg = , and define  

  
( ) ( )

2 2
1 4jk j k j ku s s
å õ

= g +g - g -gæ ö
ç ÷

. 

 

Step 4:  

 Estimate the matrix E  of eigenvectors of U then, 

a) Trace the data trend on the estimated eigenvectors, that is V = Ⱥ;g  

b) Estimate the “robust variance” of ( )1,..., kV V=V  that is 

() ( )( )2 2
1 ,..., ;kdiag s V s VL =  

c) Set the 1k+  vector ˆ( )=Ⱥɀ,m g such that ( )( )1,..., ,
t

km V Vm =  then compute the 

covariance matrix ˆ .t( )=ȺLȺgä  
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Step 5:  

 Transform the estimates to the original dataset ,iz  that is, ˆ ˆ( )G =O K Dm m g and 

ˆ ˆ .t
OGK = ( )D Dgä ä  The robust Mahalanobis distances based on the OGK  mean 

ˆ ˆ( )G =O K Dm m g and its variance, ˆ ˆ t
OGK = ( )D Dgä ä is given as: 

 

  ( ) ( ) ( )1ˆ ˆˆ ˆ ˆ, , .
t

i i G OGK i G OGK i Gd -= - -O K O K O Kz z zm m mä ä       (4) 

 

 The OGK algorithm above can be implemented in R software using the built in 

function, covOGK in package robustbase. Theoretical properties of OGK such as the 

influence function and asymptotic efficiency can be found in Genton and Ma (1999). 

 

3. DESCRIPTION AND ROBUSTNESS PROPERTIES OF THE CMR  
 

 Most robust multivariate regression methods starts by randomly selecting a subsample 

0J  of size p + q and then, the sample mean vector and covariance matrix are estimated 

from this subsample, 0J . Supposed the subsample, 0J  contains any outlier, the resulting 

parameter will be estimated in a biased way, and hence the robustness of the overall 

estimator will be highly affected by the masking effect. This will mean that the approach 

may not be able to identify multiple outliers as a result of masking effect. Furthermore, 

misclassifying “good” data points as outliers result to swamping effect. Since the 

parameters are wrongly estimated at the beginning, estimations in the proceeding 

iterations will result to errors and hence, the overall estimate is influenced by masking 

and/or swamping effects. In order to minimize the masking and swamping effects, it is 

reasonable to screen the raw data for likely outliers before the selection of 0J -initial 

subset. If the likely outliers can be rightly identified and removed from the 0J -initial 

dataset, the multivariate regression method will perform well even if a number of outliers 

are present in the raw dataset. The proposed method uses the concentration algorithm 

combined with cluster methodology to screen the dataset of likely outliers prior to overall 

parameter estimation. 
 

 The proposed procedure involves finding subsample of size h data points which 

possesses the characteristics that the determinant of the covariance matrix computed from 

residuals obtained by fitting an LS -regression to the subsample is minimal. This 

approach also allow for the consideration of the correlation among different components 

of the residual. Moreover, the approach is designed in such a way that the algorithm 

returns an LS estimate if there are no outliers in the data. The CMR procedure is more 

general to accommodate both the fixed and random design. This is because the CMR is a 

function of the dispersion matrix of the random error terms computed from the OGK 

dispersion estimator in step 5 of algorithm 2.1. This way, the overall estimator attains 

high breakdown point and the objective function is suitable for one that can 

accommodate initial estimator for one or more step algorithms. 
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3.1 Definitions 

 Following Agullo et al. (2008), let ( ): , ; 1,...,
t

t t p q
n i i i n +ë û

= = Ëì ü
í ý

Z = z X y  with 

n p q² + and for any p q³Íb , denote ( ) t
i i ir y x= -b b  as the resulting residuals. Let 

{ }{ }1,..., | #H n H h= Ë =W  be the group of all subsamples of size h . For all HÍW, let 

the LS -fit obtained from observations corresponding to { }( , );j jx y j HÍ  be defined as 

ˆ ( ).LS Hɓ  Again, for all HÍW and ,p q³Íb  let the dispersion matrix of the errors 

(residuals) based on fit from b that is a member to the subsample H  be defined by  
 

  ( )( )
1

( , ) := ( ) ( ) ( ) ( ) ,
t

j H j H
j H

cov H r r r r
h Í

- -äb b b b b        (5) 

where 
1

( ) := ( ).H j
j H

r r
h Í

äb b Then, the CMR estimator is defined as  

 

  ˆˆ ˆ ˆ ˆ( ) ( ), det ( )CMR LS LS
H

H H argmin H
ÍW

= Í äZb b        (6) 

 

where ( )ˆ ˆ( ) ( )LS LSH cov H, Hä = b  for all HÍW. The dispersion matrix of the residuals 

can be computed using  
 

  ( ) ( )ˆ ˆ ˆ
CMR n f LSc Hä = äZ                (7) 

 

where fc  makes the estimator consistent at normal model. Hence, for h = n (i.e., no 

outlier in nZ ), the CMR reduces to the classical least-squares regression estimator. 
 

 In order for estimability of the CMR, we assume that all h subsample in the dataset 

( ): , ; 1,...,
t

t t p q
n i i i n +ë û

= = Ëì ü
í ý

Z = z X y does not lie on the same subspace of p q+ . This 

is because if points lie on a subspace then there is extreme multicollinearity. Hence, we 

rather want the points to lie on a plane. Formally, this assumption means that for all 
pqÍ  and qpÍ , it suffices that 

 

  ( ){ }# , | 0t
i i i ix y x y hq +p = <             (8) 

 

unless otherwise q and pare all null vectors. 
 

 For data sets satisfying assumption in Equation (8) we now give the robustness 

property for CMR estimator by first showing that CMR is obtained as the estimator b 

that minimizes the determinant of the OGK  dispersion matrix estimated from its error 

terms. For all ,p q³Íb  define ( )qOGK b  to be the OGK -dispersion matrix of 

residuals obtained from b. Then, we have that 
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  0

1
( ) ( , ) ( ) ( )t

q j j
j H

OGK cov H r r
h Í

= = äb b b b         (9) 

 

where 0
ˆ det ( , ).

H

H argmin cov H
ÍW

Í b The covariance matrix of residuals considered in this 

work is centered at zero. 

 

Proposition 1.  

 For data set nZ  satisfying Equation (8), we have that 
 

  ˆˆ ˆ ˆdet ( ) ( ) | det ( )q LS LS
H

argmin OGK H H argmin H
b ÍW

ë û
= Í äì ü
í ý

b b       (10) 

 

 This implies that any b minimizing the determinant of OGK dispersion estimates of 

its residuals is a solution to Equation (6). Since the data is assumed to lie on a plane 

rather than on a subspace, there exists a certainty of a unique solution. Hence we can  

re-write Equation (10) as 
 

  ( )ˆ det ( )CMR n qargmin OGK
b

=Zb b                (11) 

while the residual dispersion matrix can be written as 
 

  ( ) ( )( )ˆ ˆ .CMR n f CMR n
q

c OGKä =Z Zb                (12) 

 

 For any p q³Íb  and ()PDS ,qSÍ  we denote the squared distance of residuals 

obtained from the fit involving B of CMR as 
 

  2 1( , ) : ( ) ( ).t
i i id r r-=b b bS S                   (13) 

 

 Let 1: :( , ) ... ( , )n n nd d¢ ¢b bS S be the ordered sequence of the residual distance in 

Equation (13) above, then the CMR estimator is defined in proposition 2. 
 

Proposition 2.  
 Give 

  
2
:

1,

( )
h

j n
j

argmin d
=b S

ä b,S              (14) 

 

where the minimum is over all p q³Íb  and ()PDS qSÍ . For nZ  satisfying Equation 

(8), it suffices that 
 

  ( ) ( ) ( )2
:

1,

ˆˆ ˆ ˆ ˆ, ( , ) | det .
h

j n LS LS
j H

argmin d H H argmin H
=b S

ë ûë ûî î
| Í = Í äì ü ì ü

í ýî îí ý
äb b b bS S (15) 
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 Proposition 2 depicts that any b that minimizes the sum of the h least squared 

residual distances is also a solution to Equation (6) and for data set nZ  satisfying 

Equation (8), proposition 2 implies that 
 

  ( ) 2
:

1,

ˆ ( )
h

CMR n j n
j

argmin d
=b S

= äZb b,S                (16) 

 

 Hence the CMR is an estimator whose objective function minimizes the sum of the  

h-least squared distance of its error terms. 
 

3.2 Robustness Properties 

 According to Donoho and Huber (1983), for a given data set nZ , the breakdown 

point of a regression estimator nT  is the least proportion of data points from nZ  that is 

required to be swapped to carry nT  outside all bounds. This is expressed as 
 

  ( ) ( ) ( )* , : sup || ||
n

n n n n n n m
Z

m
T min T T

n

ë ûî î
e = - =¤ì ü

î îí ý
Z Z Z           (17) 

 

such that the supremum is over all likely subsamples mZ  in nZ  that is obtained by 

swapping m subsamples by arbitrary values. On the other hand, the breakdown point of a 

dispersion matrix is the least proportion of outliers that can make the biggest eigenvalues 

outrageously big or the least eigenvalues outrageously small (Rousseuw et al., 2004). The 

breakdown point of CMR is given below. 
 

 For any data set ,p q
n

+ËZ  define ( ),nf Z  as the highest number of data points 

from nZ  lying in the same hyper plane of .p q+  Given that nZ  satisfy Equation (8), it 

suffices that ( )nf h<Z . If ,p q
n

+ËZ  satisfy Equation (8) for q > 1, it suffices to write 
 

  ( )
{ }* 1, ( )

ˆ , .
n

n CMR n

min n h h f

n

- + -
e =

Z
Zb              (18) 

 

 Denote h n=g where g is a fraction that lie in the interval 0 1¢g¢. The resulting 

breakdown point (BDP) is given as ( ) { }* ˆ , 1 1/ , ( ) /n CMR n nmin n f ne = -g+ g-Z Zb .  

If the dataset nZ  has a continuous distribution function say F-distribution, then  

there exist a probability of near 1 that all p q+  subsamples does not lie on the  

same hyper plane .p q+  Hence, it suffices that ( ) 1nf p q= + -Z  and 

( ) { }* ˆ , 1, 1 /n CMR n min n h h p q ne = - + - - +Zb . Given that h n=g, the BDP of CMR 

tend to { }1 ,min -g g. It suffices that, given the dataset ( ) 1nf p q= + -Z , any alternative 

[ ]( ) / 2n p q+ + ¢h  ≤ [ ]( 1) / 2n p q+ + +  leads to the highest BDP of CMR as 
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[ ]{ }( ) / 2 1 / 1/ 2 50%n p q n- - + = =. Therefore, for data sets ,p q
n

+ËZ  with q > 1 

satisfying Equation (8), we conclude that 

  ( ) ( )
( ){ }* 1 * 0

1,
ˆ ˆ, , .

n

n CMR n n CMR n

min n h h f

n

- + -
e =e =

Z
Z Zb b         (19) 

 

4. CMR ALGORITHM  
 

 Multivariate outlier identification procedures that implement forward search 

algorithms often adopt a „start‟ with an initial subset. It turns out that the performance of 

the algorithm, in part relies on how robust the initial subsample is. According to Fan et al. 

(2013), if the initial subsample includes any outlier, the resulting estimates from it will be 

biasedly inflated. Hence, the algorithm may fail to identify multiple outliers due to 

masking and swamping effects. For this reason, the OGK estimator is used to select the 

initial subset mJ . This way, the initial estimator computed from it will be robust and the 

algorithm will converge faster. 
 

 Let 1H ÍW  with the corresponding estimate 1   1
ˆ ˆ: ( )LS H=b b  and 1   1

ˆ ˆ: ( )LS H=S S . 

Define 2H  to be the set of observations whose set of indices corresponds to the h least 

residual distances ( ) ( )1: 1 1 : 1 1
ˆ ˆˆ ˆ, ... ,n n nd d¢ ¢b bS S . In the same way as 1H , assign 

2   2
ˆ ˆ: ( )LS H=b b  and 2   2

ˆ ˆ: ( ).LS H=S S Continuing in this way, the following stepwise 

procedure computes the ˆ
CMRb  estimates. 

 

Step 1:  

 Draw 1m p q= + + subset mJ  from nZ  to be the observation with indices 

corresponding to the smallest m-Mahalanobis distances computed from OGK algorithm 

in Equation (4). Calculate the corresponding LS estimates  
ˆ ˆ: ( )m LS mJ=b b  and 

 
ˆ ˆ: ( )m LS mJ=S S . 

 

Step 2:  

 Compute the residual distances ( ) ( ) ( )2 1ˆ ˆ ˆˆ, :
t

i m m i m m i md r r-=b b bS S
 
and arrange nZ  in 

ascending order according to ( ) ( )1: :
ˆ ˆˆ ˆ, ... , .n m m n n m md d¢ ¢b bS S  

 

Step 3:  

 Increase the initial subset m by one observation at a time and repeat steps 1 and 2 

until h-observations from nZ  are in m. Note that for an observation to enter the initial 

subset m, its residual distance must be the smallest among those outside the initial m 

subset. Thereafter, compute the corresponding distances ( )2 ˆ ˆ,i m md b S  and use it to 

perform agglomerative hierarchical cluster analysis which then partition the dataset nZ  
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into main cluster, mC  of size greater or equal to h and minor clusters, gC  containing 

smaller groups of observation that are outlying from the general trend of nZ . 
 

Step 4:  
 Determine leverage weights for the observations in the following way. Let the current 

size of m when h -observations are in m  be hmC  and the current residual distance be  

id . Compute the leverage weight vector ( )idp  whose elements are defined by 

  

2
1,

1

( )
1,

hm

ki i
hm

i

if i C

d
min if i C

d

- a

Íë
îî å õcp =ì

æ ö Îî æ ö
î ç ÷í

            (20) 

 

Step 5:  

 Compute LS  estimates 0b̂  from observations in the main cluster, mC only. 

Furthermore, compute the weighted least squares regression estimates, 1b̂  using ( )idp  

as the weights and obtain the median absolute deviation of the residuals denoted as 2ŝ . 
 

Step 6:  

 Let l  be the size of the minor cluster, compute a 2
lDFFITS+  statistic as 

  
( ) ( )( )

1 0

2

2

2

ˆ ˆ

ˆ

n

i i
i

l

y y

DFFITS
l

b b

+

-

=
s

ä
                (21) 

 

where ( )1
ˆ
i

y
b

 is the LS -fit from both mC  and gC  data points and ( )0

ˆ
i

y
b

 is the LS -fit 

from mC  data points only.  
 

Step 7:  

 Define the scaler d to be the cutoff value for 2
lDFFITS+  statistic. The final CMR-

regression estimates becomes 

  

2
1

2
0

ˆ ,ˆ
ˆ ,

l
CMR

l

if DFFITS

if DFFITS

+

+

ë ¢dî
=ì

>dîí

b
b

b
                (22) 

where ( )
2
1 ,q-a

d~c . 

 

 In summary, step 1 of the algorithm selects the initial subset and computes the initial 

regression estimates. Note that the initial subset is a “clean” subset hence, estimates 

computed from it is robust. Step 2 determines the criteria for increasing the size of the 

initial subset so that outlier data points will not enter into it. Step 3 implements the 

criteria for increasing the initial subset by loading it with the observations that correspond 

to the smallest residual distances until h -observations are in m . Note that the residual 

distance is computed from the clean subset hence, it is robust. Thereafter, cluster analysis 

classify outliers into various clusters depending on how far away the outliers are from the 
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bulk of the data. Steps 1-3 can be seen as a C -steps ( C  for concentration) which lowers 

the objective function by minimizing the residual term at each step. Note also that in the 

C -steps, only the observations corresponding to h  subset are been utilized and the 

remaining ( n − h )-subset have not been utilized in computing the CMR estimates. As a 

result, these observations are said to be inactive. The activation process of ( n − h )-

observations is described in steps 4-6 of the algorithm. Step 4 computes the leverage 

weights based on the residual distances computed from the observations in the main 

cluster. Initial CMR estimates emerge based on the observations corresponding to mC . 

Steps 5 to 7 activate the outlier cluster and examine their influence on the inlier cluster 

through a DIFFITS -statistic. If the activation of outliers clusters exhibit arbitrary 

influence on the CMR estimates, then they receive zero weights and remain inactive 

throughout the estimation process. If otherwise, then they receive weights greater than 

zero and they become active in the estimation process but their influence is bounded by 

the weight they receive. 
 

4.1 The CMR Numerical Demonstration 

 In order to facilitate the understanding of the CMR algorithm, and the working 

mechanisms, a follow up numerical illustration is given below. A multivariate regression 

artificial data is generated in the following way. Three predictor variables are obtained as 
 

  

( )

( )
( )

( )

( )

1

2
1 ,0.99

2

2
2 ,0.99

3

2
3 ,0.99

15, 2.25 35

0.5 , 0.1 36 40

5.4,1.5 35

:
0.5 , 0.1 36 40

(25, 5.5) 35

0.7 , 0.1 36 40

i

i p

i

i p

i

i p

x N i

x N i

x N i

X
x N i

x N i

x N i

ë ~ ¢
î
î ~ c ¢ ¢
î
î ~ ¢
î
=ì

~ c ¢ ¢î
î

~ ¢î
î
~ c ¢ ¢î

í

           (23) 

 

 The two response variables are defined by the Equation (24) below 
 

( )

( )

1 1 2 3 1 1

2
1 ,0.99

2 1 2 3 2 2

2
2 ,0.99

30 3 2 0.5 , (0,0.25); 1,...,35,

10 , 0.1 , 36 40.

:
120 0.9 1.5 2 , (0,0.25); 1,...,35,

0.5 , 0.1 , 36 40.

i i i i i i

i p

i i i i i i

i p

y x x x e e N i

y N i

Y
y x x x e e N i

y N i

= + - + + ~ =ë
î
î ~ c ¢ ¢
î
=ì

= - - + + ~ =î
î

~ c ¢ ¢î
í

 

(24) 
 

 Observations indexed 36-40 are contaminated data points in the predictor and 

response space generated according to ( )2
,0.99 , 0.1 , 0.5 10j PN jl c ¢ ¢. The resulting 

data is presented in Table 1 below. In what followed is the stepwise implementation of 

CMRR algorithm on the simulated multivariate regression artificial data. 
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Table 1 

Multivariate Regression Artificial Data  

i x1i x2i x3i y1i y2i 

1 11.356 7.966 28.536 62.671 155.182 

2 18.028 6.717 28.232 85.435 150.605 

3 12.843 3.073 16.990 70.033 136.713 

4 18.767 6.269 24.792 86.512 143.843 

5 13.971 7.455 26.765 70.723 149.619 

6 15.987 6.120 27.386 79.287 151.659 

7 17.354 5.499 25.461 83.625 146.771 

8 13.552 6.839 24.594 69.490 145.990 

9 18.440 6.662 24.786 84.336 143.422 

10 14.573 5.967 25.783 74.997 149.193 

11 12.210 4.760 27.701 71.660 156.808 

12 13.283 4.644 39.035 79.557 178.624 

13 13.178 3.930 24.174 73.187 151.424 

14 14.195 7.346 24.987 69.971 146.323 

15 14.058 4.846 26.424 74.748 153.119 

16 20.361 3.464 20.685 94.436 137.824 

17 15.176 8.702 28.312 71.924 149.633 

18 15.456 5.561 20.409 76.267 138.191 

19 20.273 5.689 29.051 93.477 151.641 

20 13.924 6.087 27.289 73.181 153.199 

21 17.027 7.436 30.405 81.969 153.997 

22 17.208 10.014 25.107 73.572 139.215 

23 15.099 4.431 27.706 80.212 155.244 

24 15.679 7.525 25.140 74.974 144.194 

25 11.178 2.344 21.937 70.491 150.410 

26 12.869 6.090 28.099 70.353 155.947 

27 16.918 6.068 23.984 80.539 143.200 

28 14.929 5.065 29.140 79.556 158.055 

29 17.377 6.817 24.851 81.583 144.582 

30 14.880 4.327 26.957 80.488 154.261 

31 14.688 6.523 19.943 70.787 136.692 

32 18.196 2.602 21.932 91.382 143.861 

33 12.888 6.779 20.666 65.603 139.422 

34 16.006 4.578 16.106 76.969 131.236 

35 16.959 5.203 21.819 81.492 140.581 

36 1.606 16.787 2.411 33.301 1.722 

37 1.493 16.843 2.482 33.554 1.685 

38 1.804 16.767 2.426 33.771 1.710 

39 1.653 16.780 2.442 33.692 1.689 

40 1.623 16.925 2.422 33.508 1.646 
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Step 1:  

 The Mahalanobis distances ( )ˆˆ, ,i i G OGKd O Kz m ä  computed using Equation (4) of the 

OGK algorithm alongside its rank denoted as dR  are as presented in Table 2 

 

Table 2 

Mahalanobis Distance from OGK Estimator 

i  ( )ˆˆ, ,i i G OGKd O Kz m ä  dR  i  ( )ˆˆ, ,i i G OGKd O Kz m ä  dR  

1 0.842 35 21 1.698 22 

2 0.966 13 22 1.736 8 

3 1.092 25 23 1.799 5 

4 1.247 4 24 1.861 23 

5 1.270 7 25 1.898 34 

6 1.272 17 26 1.911 32 

7 1.293 1 27 1.949 6 

8 1.323 15 28 1.955 16 

9 1.341 31 29 2.079 11 

10 1.351 10 30 2.281 24 

11 1.352 28 31 2.291 2 

12 1.407 14 32 2.548 12 

13 1.453 27 33 2.644 19 

14 1.464 20 34 2.648 9 

15 1.470 30 35 2.741 21 

16 1.515 3 36 10.567 38 

17 1.552 33 37 10.612 37 

18 1.573 29 38 10.628 39 

19 1.679 26 39 10.799 40 

20 1.683 18 40 10.948 36 

 

 From Table 2, mJ  becomes the 1p q+ + observation with index numbers 35, 13, 25, 

4, 7, and 17. The corresponding least squares estimates are given as 
 

  

33.0637 3.0057 1.9693 0.3645ˆ
119.2142 0.8627 1.6614 2.0503

t

m

-è ø
=é ù

- -ê ú
b  

and  

  

0.3512 0.1127
ˆ

0.1127 0.4126
m

-è ø
=é ù
-ê ú

S  

 

Step 2:  
 The residual distances alongside its ranks are presented in Table 3 below 
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Table 3 

Mahalanobis Distance of Residuals and Its Ranks 

i Mah. Dist. Rank i Mah. Dist. Rank 

1 258.223 12 21 338.243 22 

2 291.648 3 22 343.377 20 

3 293.284 11 23 344.744 31 

4 301.688 8 24 348.555 33 

5 304.432 24 25 348.667 2 

6 305.508 7 26 348.985 6 

7 307.248 21 27 353.955 26 

8 307.441 27 28 354.853 14 

9 311.246 16 29 355.901 9 

10 311.996 10 30 357.665 4 

11 312.594 23 31 358.129 28 

12 317.633 32 32 363.487 1 

13 317.794 18 33 364.098 34 

14 320.495 25 34 368.138 13 

15 323.676 19 35 377.793 29 

16 325.640 30 36 16025.643 40 

17 330.207 17 37 16038.122 38 

18 330.414 35 38 16077.130 36 

19 332.376 5 39 16106.318 39 

20 332.754 15 40 16159.124 37 

 

 From Table 3, observation index number 12 becomes the first to enter Jm because it 

has the smallest residual distance among all observations outside Jm. Continuing in that 

order, the convergence distance after h observations are in m is presented in step 3. 
 

Step 3:  

 Steps 1 and 2 are iterated until h = (n + p + q + 1)/2 = 23-observations from nZ  are in 

m. At convergence of this iteration, the h-observations in m are observations with index 

corresponding to 4:10, 13:15, 17:20, 22:27, 32:33, and 35. The corresponding distance at 

convergence is presented in Table 4. 
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Table 4 

Mahalanobis Distance of Residual and Its Rank  

at Convergence of Steps 1 and 2 

i Mah. Dist. Rank i Mah. Dist. Rank 

1 0.010 17 21 0.640 22 

2 0.048 19 22 0.743 15 

3 0.131 35 23 0.821 32 

4 0.155 18 24 0.989 16 

5 0.165 9 25 1.068 31 

6 0.220 20 26 1.539 1 

7 0.221 33 27 1.605 34 

8 0.232 6 28 1.796 29 

9 0.283 14 29 2.004 28 

10 0.300 25 30 2.154 11 

11 0.308 23 31 2.245 2 

12 0.410 10 32 2.375 21 

13 0.411 7 33 2.849 30 

14 0.430 8 34 4.389 12 

15 0.461 26 35 8.402 3 

16 0.465 27 36 10496.158 40 

17 0.481 24 37 10502.995 38 

18 0.527 4 38 10525.402 36 

19 0.531 5 39 10542.208 39 

20 0.620 13 40 10572.575 37 

 

 The corresponding dendrogram plot is presented in Figure 1. 
 

 
Fig. 1: Dendrogram Plot of Multivariate Linear Regression Data 
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 The dendrogram plot shows observations index numbers 4:10, 13:20, 22:27, 32:33, 

and 35 are in the main cluster Cm while observations index 1:3, 11:12, 21, 28:30 and 35 

as well as 36:40 are in the minor cluster Cg 
 

Step 4:  
 Based on the current size of m and the current residual distances in step 3, the 

leverage weights are presented in Table 5. 

 

Table 5 

The leverage weights π(di) 

i πi(di) i πi(di) i πi(di) i πi(di) 

1 1.000 11 0.195 21 0.195 31 1.000 

2 1.000 12 1.000 22 0.195 32 0.195 

3 0.534 13 1.000 23 0.195 33 1.000 

4 1.000 14 1.000 24 1.000 34 1.000 

5 0.534 15 1.000 25 1.000 35 1.000 

6 0.534 16 1.000 26 1.000 36 1.000 

7 1.000 17 1.000 27 1.000 37 0.195 

8 0.435 18 0.195 28 1.000 38 0.195 

9 0.195 19 0.195 29 1.000 39 0.195 

10 1.000 20 1.000 30 0.195 40 0.195 

 

Step 5:  

 The LS estimate of observations in Cm is computed as  
 

  
0

32.0050 2.9933 2.0518 0.4357ˆ
119.1824 0.8900 1.6297 2.0579

t
-è ø

=é ù
- -ê ú

b  

 

and the weighted least squares using ( )idp  for all observations in nZ  is computed as  

  
1

30.5862 3.0027 2.032 0.4857ˆ ˆ
118.9240 0.8570 1.6100 2.0443

t

CMR

-è ø
= =é ù

- -ê ú
b b  

 

Step 6:  

 From the dendrogram plot in Figure 1, l=9, the median absolute deviation of the 

residuals  
 

  2ŝ = 0.6320 and the 2
lDFFITS = 0.2333 while δ = 5.9915. 

 

Step 7:  

 Since 2
lDFFITS = 0.2333< δ = 5.9915, 1

ˆ ˆ
CMR=b b. 

 

 The MLTS of Agullo et al. (2008) can be computed for the data in Table 1 using R 

software with the function mlts and the corresponding parameter estimates is given as: 

  

30.9597 2.9969 2.0553 0.4815ˆ
119.9756 0.8727 1.5747 2.0034

t

MLTS

-è ø
=é ù

- -ê ú
b  
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 The OLS estimate without the outliers (i.e. without observations 36:40) denoted as 

ˆ
OLSWOb  is given as  

  

30.0942 3.0152 2.0316 0.4977ˆ
119.1275 0.8548 1.5514 2.0192

t

OLSWO

-è ø
=é ù

- -ê ú
b  

 

 Apart from providing insightful information summary about the outlier structure 

through the dendrogram plot in Figure 1, the CMR estimate competes favorably with the 

MLTS as well as the OLSWO estimates when outliers (observations 36:40) are removed 

from the data. Furthermore, the performance of CMR is not different from the OLSWO 

when outliers are trimmed. Since OLS is the “best” estimator for regression parameters 

when data follows normal distribution with iid errors and in the absence of outlier 

contaminations, it suffice that the CMR is resistant to outliers and can produce better 

estimates of regression parameters in the presence of outlier contaminations especially 

when data follows a normal distribution. 
 

4.2 Monte Carlo Simulation Experiment 

 This section examines the performance of CMR-estimator in comparison with other 

robust multivariate regression estimators. They include robust multivariate regression of 

Rousseeuw et al. (2004), denoted as MCDreg, multivariate regression S-estimator of Van 

Aelst and Williems (2005), denoted as MSreg, and the multivariate least-trimmed squares 

estimator of Agullo et al. (2008), also denoted as MLTS. We conducted Monte Carlo 

Simulation experiment for five regimes, each regime describing the sample size and 

number of predictors, for instance; Regime 1:{n=30, p=q=3}; Regime 2:{n=100, p=10, 

q=5}; Regime 3: {n=200, p=15, q=10}; Regime 4:{n=400, p=q=20}; Regime 5:{n=600, 

p=60, q=30}. Within each regime, we considered four levels of contaminations, namely, 

d =0%, d = 20%, d = 30% and d = 40%. Two types of contamination are considered 

namely, the y-outliers and the x-leverages. A point ( ),t t
i iy x  which does not follow the 

linear pattern of the bulk of the data but whose t
ix  is not outlying is called vertical 

outlier. A point ( ),t t
i iy x  whose t

ix  is outlying is called a leverage point. We say that a 

point ( ),t t
i iy x  is a bad leverage point when it does not follow the pattern of the bulk of 

the data; otherwise, it is a good leverage point (this is because it does not harm the 

regression fit). 
 

 Since regression estimators often breakdown in the presence of vertical outliers 

and/or bad leverage points, the dataset is generated with both types of contaminations in 

the following way. For the clean dataset, we simulate ( )0,n kZ N I~  for 1,...,i n m= -  

which correspond to setting b =0, where m n= gé ùê ú and γ is the percentage of 

contamination. We then generated the contaminated datasets in such a way that 

( )2
, 0.992 , 0.1 , ,...i qy N i n m na=~ c = -  is a vector of vertical outlier while 
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( )2
, 0.992 , 0.1 , ,...i px N i n m na=~ c = -  is a vector of bad leverage point. The 

simulation experiment is conducted for r=1000 runs, and for each dataset r
nZ , the (p × 

q)-regression coefficients is computed using the CMR, MCDreg, MSreg, and MLTS 

estimators. The following performance measures were considered. Each of these 

performance measures should be as close to zero as possible. 

(a) The bias of the regression coefficients ()ˆbias b  

(b) The mean squared error of the coefficients ()ˆMSE b  

(c) The computing time t (in sec) 
 

 Note that the bias and the mean squared error of a univariate component T is given by 
 

  () ()( ) () ()( )
2

and 
r r

r r
bias T ave T MSE T n ave T= -q = ³ -q         (25) 

 

where θ is the true value of the parameter. The bias and MSE of the coefficients 

computed from the simulated datasets are defined as 
 

  () ( ) () ( )( )
2

, ,

ˆ ˆ ˆ ˆ, andj j
j k j k

bias ave bias MSE ave MSE
å õ

= =æ ö
ç ÷

b b b b        (26) 

 

 Tables 6 to 8 below summarizes the result of the simulation experiment 

 

Table 6 

Simulation result of Bias of Coefficient Matrix 

Estimators 
Contamination  

Levels 

Regime 

A B C D E 

CMR 

d = 0% 0.071 0.066 0.064 0.051 0.050 

d = 20% 0.120 0.048 0.014 3e
−5

 1e
−6

 

d = 30% 0.122 0.049 0.021 6e
−4

 4e
−6

 

d = 40% 0.884 0.795 0.586 0.202 0.106 

MCDreg 

d = 0% 0.240 0.202 0.084 0.041 0.030 

d = 20% 0.321 0.201 0.200 0.082 0.061 

d = 30% 0.421 0.411 0.320 0.201 0.016 

d = 40% 1.001 0.801 0.661 0.581 0.318 

MSreg 

d = 0% 0.230 0.180 0.081 0.064 0.057 

d = 20% 0.201 0.164 0.071 0.051 0.040 

d = 30% 0.401 0.322 0.212 0.012 0.011 

d = 40% 0.865 0.745 0.402 0.114 0.034 

MLTS 

d = 0% 0.430 0.264 0.221 0.104 0.020 

d = 20% 0.507 0.216 0.140 0.060 0.060 

d = 30% 0.531 0.472 0.314 0.201 0.022 

d = 40% 0.930 0.808 0.603 0.476 0.416 
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Table 7 

Simulation result of MSE of Coefficient Matrix 

Estimators 
Contamination 

Levels 

Regime 

A B C D E 

CMR 

 

d = 0% 1.438 1.404 1.230 1.002 0.983 

d = 20% 1.431 1.212 1.011 0.914 0.641 

d = 30% 1.321 1.721 1.141 1.014 0.832 

d = 40% 1.431 1.321 1.210 1.220 1.011 

MCDreg 

 

d = 0% 2.632 2.432 2.404 2.062 2.012 

d = 20% 2.411 2.321 1.883 1.731 1.441 

d = 30% 2.463 2.340 2.420 1.862 1.721 

d = 40% 3.211 3.041 2.841 2.412 2.041 

MSreg 

 

d = 0% 1.501 1.493 1.443 1.432 1.342 

d = 20% 1.621 1.441 1.451 1.323 1.101 

d = 30% 2.461 2.124 1.946 1.721 1.324 

d = 40% 3.241 3.314 2.142 2.214 1.848 

MLTS 

 

d = 0% 2.415 2.321 2.012 1.833 1.681 

d = 20% 1.872 1.642 1.531 1.414 1.305 

d = 30% 3.624 3.414 3.031 2.641 2.540 

d = 40% 4.151 3.814 3.562 3.280 3.040 

 

Table 8 

Simulation result of Computing Time (t in sec.) of Coefficient Matrix  

Estimators 
Contamination 

Levels 

Regime 

A B C D E 

C MR 

 

d = 0% 0.019 0.029 0.096 1.776 5.749 

d = 20% 0.241 0.243 0.534 8.844 12.120 

d = 30% 1.468 2.314 3.456 14.101 21.334 

d = 40% 7.440 12.620 19.149 24.330 32.170 

MCDreg 

 

d = 0% 0.022 0.051 0.105 2.323 6.815 

d = 20% 0.032 0.067 0.206 4.641 7.339 

d = 30% 0.841 0.966 2.486 6.691 10.332 

d = 40% 1.344 5.646 12.131 18.170 26.243 

MSreg 

 

d = 0% 0.028 0.048 0.216 2.634 7.321 

d = 20% 0.064 0.123 1.021 3.312 9.147 

d = 30% 0.081 0.421 2.374 5.395 12.780 

d = 40% 1.660 6.840 14.718 20.120 28.861 

MLTS 

 

d = 0% 0.091 0.290 0.051 2.164 3.328 

d = 20% 0.342 0.614 1.761 3.646 12.881 

d = 30% 0.102 0.633 3.414 6.821 13.211 

d = 40% 1.460 7.062 18.040 23.210 30.620 
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 Tables 6-8 above show that the proposed estimator, CMR performed significantly 

better in terms of bias and mean squared error (MSE) of estimates. The MSreg estimator 

is the next in performance to the CMR especially in terms of bias and MSE. MCDreg 

favorably outperformed the proposed estimator as well as other robust methods 

considered in this article in terms of computing time. The MCDreg and MLTS estimators 

are similar in all the performance measures considered. 

 

 
 

Fig. 2: Regime plot of bias for simulated data: (ai) Bias plot at zero percentage 

outlier (d=0%), (aii) Bias plot at d=20% outliers (aiii) Bias plot at d=30% 

outliers and (aiv) Bias plot at d=40% outliers. 
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Fig. 3: Regime plot of computing time for simulated data: (bi) Time plot at zero 

percentage outlier (d=0%), (bii) Time plot at d=20% outliers (biii) Time plot 

at d=30% outliers and (biv) Time plot at d=40% outliers. 

 

 Note that we did not present the regime plot for MSE because the regime plots of 

MSE for all the estimators are similar to that of the regime plot for biases. Figures 1 and 2 

are the regime plots that describe the biases and computation times for the five regimes 

considered and it shows the following: 

1. The computing time grows as the regime increases the sample size and number of 

predictors. See Figures 2(bi)-2(biv). 

2.  The bias and MSE decreases as the sample size increases over the five regimes for 

all the robust estimators. See Figures 1(ai)-1(aiv). 
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3. The robustness of all the estimators decreases as the level of contamination 

increases above 40%. See Figures 2(aii)-2(aiv). 

4. The CMR performed fairly well when there are no contaminations in datasets. Its 

performance becomes better than other robust methods as the level of 

contamination increases. 

 

5. CONCLUSION 
 

 A multivariate regression algorithm estimator known as cluster-based multivariate 

regression (CMR) is introduced. The first phase of the algorithm consist of a C-step that 

lowers the objective function at each step through a residual distance computed from 

initial “clean” subset. This subset is loaded increasingly until h-observations are in it. The 

second phase of the algorithm activates the outlier clusters with bounded influence 

weights. The CMR has a positive BDP that is a function of h. Like the MLTS of Agullo et 

al. (2008), the algorithm allows the user to ultimately determine the BDP. The common 

choice of h is made to allow for a compromise between efficiency and BDP. The two 

most feasible alternatives of h are h=[(n+k+1)/2] which leads to the highest BDP of 50% 

at a low efficiency and h=0.75n which result in a better trade-off between BDP of 25% 

and an improved efficiency. 
 

 The use of OGK location and dispersion estimator greatly improved the performance 

of the CMR algorithm particularly in the cluster analysis where the initial “clean” subset 

is selected. The dendrogram plot is an additional feature of CMR that provides an 

informative summary of the outlier structure. This is depicted in the multivariate 

regression artificial data illustration where the bulk of the data merge into main cluster of 

size n=35 and three minor clusters of sizes 2, 2, and 1 respectively. The finite sample 

simulation experiment depicts the outstanding performance of CMR. Its practical 

application is illustrated through the multivariate regression artificial dataset. The overall 

CMR algorithm estimator is robust, consistence with little change at the middle of the 

regressor space, and is fast to implement. 
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