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ABSTRACT 
 

 This paper considers a mathematical model for the spread of Plasmodium knowlesi 

malaria. The model incorporates recruitment of human, mosquito and macaque 

populations through a constant immigration, with a fraction of infective immigrants. The 

basic properties of model and equilibriums for the models are analyzed rigorously. The 

sensitivity analysis of the model is carried out to recognize the most sensitive parameters 

for the disease transmission. Thus, control strategy is presented and studied. Optimal 

control theory is applied to investigate optimal strategies for controlling the spread of the 

malaria using quarantine, insecticide spray and culling as the control variables. The 

results obtained from numerical simulation of the model show possible significant 

reduction of the disease spread using the combine control strategies.  
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1. INTRODUCTION 
 

 Malaria is mostly ignored in the South-East Asia, although it has the highest figure of 

populace more vulnerable to the disease [1]. In the Region the disease exhibits strange 

epidemiological rareness such as “jungle malaria” and malaria due to movement across 

intercontinental borders [1]. Others include rising resistance to drugs and insecticides, 

detecting and treating Plasmodium knowlesi malaria. Broader challenges around health 

system capacity also exists which impact on the ability of countries to sustain control 

activities and work towards eradication of the disease (Malaria 2012) [2]. Its eradication 

is now a target of a lot of countries in the region and the Western Pacific. However, huge 

reduction in the disease occurrence has been achieved [3, 4]. The major challenge lingers, 

and though the threats of artemisinin resistance have been the center of much 

intercontinental concern, zoonotic malaria species (Plasmodium knowlesi malaria) have 

received less consideration [3, 4]. Plasmodium knowlesi malaria is the most significant 

emerging vector-borne infectious disease [4]. Presently, this malaria species is prevalent 

in Southeast Asia where the mosquito and its reservoir host, the macaque, are abundant 

[5-7]. In 1931, the parasite was first recognized in India from an imported long-tailed 

macaque from Singapore [8]. Its capability to transmit a disease to humans was earliest 

depicted in 1932, after Knowles and Das Gupta effectively transmitted the parasite to two 

human who offer themselves on free will by blood passages from infected macaques [8].  
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 The management of the disease is still unknown, and the malaria cure guidelines by 

WHO malaria reports (2012) do not provide any suggestions for its treatment [9, 10].  

The infectivity has been treated effectively with mefloquine, quinine and chloroquine 

[10, 11]. The disease is transmitted by Anopheles leucosphyrus to human and macaques, 

where the macaques serve as the origin and the reservoirs of the parasite [12]. Human can 

be infected everywhere within the distribution restrictions of Anopheles leucosphyrus 

mosquitoes if the infected macaques are present [13]. Forest dwelling mosquitoes of the 

Anopheles leucosphyrus group, such as Anopheles latens, Anopheles leucosphyrus, and 

Anopheles dirus are responsible for the disease transmission from human to human only 

[14]. Countries such as Malaysia, Thailand, China, Singapore, Philippines, Vietnam, 

Myanmar and Indonesian have recorded human infections of the disease [14].  
 

 Traditionally, human movements have added to the stretch of diseases [15, 16]. 

Failure to reflect on this reason contributed to decline of success of malaria eradication 

fights in the 1950s and 1960s [17]. Humans often travel across national borders, and 

national malaria control efficacy can be compromised by imported malaria [18]. Imported 

malaria cases transmit parasites, as well as resistant strains, even when at asymptomatic 

stage [19]. Although Plasmodium knowlesi malaria infection among western travelers 

returning from prevalent area has been reported intermittently for years, there has been no 

logical description of the clinical pattern of Plasmodium knowlesi malaria infection 

among travelers [5]. The international transfer of malaria can come about during the 

movement of an infected mosquito into a non endemic-disease area; this is described as 

airport malaria [15]. The mosquitoes are typically moved into non endemic-disease 

nations on an intercontinental flight. For instance, accidental search of aircrafts at 

Gatwick Airport (London) established that 12 of 67 aircrafts from tropical nations 

contained mosquitoes [15, 20]. After leaving the plane, mosquito might live long enough 

to take a blood meal and spread the disease, habitually in the neighborhood of an airport 

[15, 20]. Though the occurrence of these circumstances is low, they account for the 

majority of the disease spread in developed countries [5]. A traveler infected with the 

disease can aid as a reservoir and seed localized outbreaks or epidemics in those areas, 

and thus infected travelers become “active transmitters” of infection in low transmission 

areas [21, 22]. 
 

 Some malaria models have been developed for drug resistance and effect of infective 

immigrants. These include the studies of Aneke, (2002) [23] that formulated a 

deterministic model which illustrates the incident of drug resistant malaria in a hyper 

prevalent region by a scheme of ordinary differential equations models. Meanwhile, no 

control strategy is incorporated into the model. Koella & Antia (2003) [24] derived a 

model to examine the spread of anti-malarial resistance. The authors concluded that the 

models developed in their work are an initial stage in thoughtful of the causes of malaria 

drug resistance and assessing measures to ease the stretch of resistance. Although, this is 

one of the earliest drug resistance malaria model, but the precise suggestion for the 

management of resistance were not given due to unavailability of data. Chiyaka et al., 

(2009) [25] formulated and analyzed a model for management and stretch of drug 

resistance in a population with partly resistant humans. The model extends the model of 

(Aneke, 2002; Koella & Antia 2003; Bacaër & Sokhna 2005) [23, 24, 26] by including 

discrete time delays on the dormant stage in both vectors and humans and fractional 
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resistance. They also reflect on occasions where the treated humans are contagious and 

while they are not transmittable. They concluded that the stretch of drug resistance with 

management as a control measure relies on the fraction of the contagious time of treated 

and untreated humans. Also the spread rates from infectious humans with resistant and 

sensitive strains. The shortcomings of the model includes: not considering the recovered 

humans and the return path from infected humans to the susceptible.  
 

 Esteva et al., (2009) [27] derived a deterministic model for examining the effect of 

drug resistance on the spread of malaria in humans. The model extends the earlier work 

of (Koella & Antia 2003; Aneke, 2002) [23, 24] this is by including the infectious 

mosquitoes as a variable and also allows treated humans with the wild strain to advance 

to the resistance strain. The aim was to observe the epidemiological impact of the anti-

malarial drug in dropping the infection saddle in known inhabitants. Also to observe the 

impact predisposed by the development of resistance in addition to the suitability of the 

resistant strain. The authors concluded that while the two strains exist together, the 

fraction of humans with the resistant strain at equilibrium-state reduces with growing 

scale of resistance. However, no control strategies were suggested. Tumwiine et al., 

(2010) [28] formulated a human-mosquito model for the transmission of malaria that 

includes humans recruitment via a steady migration, with a portion of infective migrants. 

The model extended the earlier model by Tumwiine et al., (2007) [29] where recruitment 

into the humans was via birth. They established that because of immigration of infective 

humans, a steady state with a positive portion of infectivity is constantly present. 

Therefore, the disease-free steady state of the model will not exist and only the endemic 

steady state where the infection perseveres in the population for an extended period. 

However, the model does not consider any control strategies and infective immigrants in 

the mosquito population. Tchuenche et al., (2011) [30] formulated and analyzed a 

deterministic model for malaria with effect of treatment and they recognized three classes 

of resistance in individuals. The model includes in cooperated responsive and resistant 

strains of the parasites in humans and the mosquitoes. The authors established that the 

model exhibits backward bifurcation and that with specific model suppositions; when 

medication is increased it would have an inadequate advantage, particularly in setting 

with extraordinary transference rate. The aim of this work thus, is to build a model that 

would illustrate the essential procedures of the progress and the dependent investigation 

of the equilibrium points. Their conclusions entail that more advanced stages of 

medication will possibly guide to amplify endemic extent and the scope to which this 

happens relies on additional issues, for instance the degree of medication and resistance 

advancement. However, efficiency of the anti-malarial medications or medication 

sensitivity is not included into the medication section of the model and no control 

strategy was considered.  
 

 Makinde & Okosun (2011) [31] developed and investigated a deterministic model 

that illustrates the dynamics of the disease infectivity with the conscription of infected 

migrants, management of infective and the use of insecticides to counter the vectors in 

the inhabitants. The work aimed at developing a deterministic model with infected and 

transmittable migrants such that they examine the function of introduction of infected 

migrants in the disease spread. They applied Pontryagin’s Maximum Principle, to obtain 

the best possible approaches for the disease management. However, they concluded that 
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infected migrants have no robust effect in the spread of the infection, if there is an 

efficient management system and the vector control. Although, the model considered the 

control measures and sensitivity analysis but the model is more suitable for Plasmodium 

falciparium. Furthermore, infected immigrants are some sources of resistance strain the 

disease. Okosun & Makinde (2012) [32] derived and analyzed a mathematical model that 

differs from those earlier works on drug-resistant anti-malaria; since it includes the 

compartments of both humans and mosquitoes with drug-resistant strain parasites. The 

study aimed at addressing the extent of lack of basic amenities and drug resistance strains 

manipulating the spread of malaria disease. The authors examined and established the 

likely effect of control measures on the stretch of the disease. They established the 

conditions necessary for best possible management of the disease applying the 

Pontryagin’s maximum principle to establish best possible management for the stretch of 

the infection. They concluded that using best possible management actions can lead the 

disease to a stable disease free equilibrium state (DFE). Although, control strategies were 

suggested and sensitivity analysis evaluated, the model is more suitable for Plasmodium 

falciparium.  
 

 Tumwiine et al., (2014) [32] extended the model of Tumwiine et al., (2007) [29], by 

adding to human population drug resistance and drug sensitive humans. The model was 

formulated and analyzed. The authors concluded that, model can help out in determining 

control measures and can present broad assessment of model assumptions that manipulate 

decisions. However, the model does not suggest any control strategy. Although, the 

mosquito population ought to have both drug resistance and drug sensitive due to their 

interaction with human population.  
 

 Few studies have been carried out to quantify the impact of Plasmodium knowlesi 

malaria infection in human and macaques [34, 35]. From the work of [34] they 

formulated a deterministic system of differential equations with three classes with 

infected humans, mosquitoes and macaques to study the vector preference and host 

competence. The work of [35] use a deterministic system of differential equations to 

study the impact of treatment, biological and chemical control strategies in controlling 

the spread of Plasmodium knowlesi malaria in a model. In this paper, culling as a control 

strategy for dislodging mosquitoes and it larvae as used in [36, 37], and also for 

macaques control by removing the macaques from the endemic areas to a reserved area. 

Then, the time dependent control measure using optimal control theory is considered. The 

theory has been applied with malaria model see for example [36-40]. Imai et al., (2014) 

[41] the authors developed a new model that is the extension of an earlier model of the 

disease by Yakob et al., (2010) [35]. The extension includes addition of three 

characteristic geographical sites (forest (J), farm (F) and village (V)) in which exposure 

to infection and transmission can occur. The model is aimed at how helpful currently 

accessible malaria control strategies are against the disease was as well a vital concern 

that was explored using the model. The authors use the model to assess the probable 

impact of rapid treatment and the use of insecticide-treated bed nets in preventing wider 

spread of this rising infectivity. The authors conclude that their outcome demonstrated 

that continued human-vector or human transmission is unlikely to be taking place at 

present. As ecological alteration continues, there is the possible for the occurrence of the 

disease to amplify and to turn out to be an important public health crisis. These outcomes 
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also draw attention to the need for continued control and alertness of this zoonotic 

malaria mostly as Malaysia enters the pre-elimination phase for other malaria species.  
 

 The aim is to develop a deterministic mathematical model and suggest possible optimal 

control for the disease. This is to incorporate the effect of immigrations (humans, 

mosquitoes and macaques) and drug resistance. The extension to consider the effect of 

infective immigrants is motivated by some earlier work on malaria (see, for instance, 

Tumwiine et al., 2010; Makinde & Okosun 2011; Okosun & Makinde 2012; Tumwiine  

et al., 2014) [28, 31-33]. And effect of drug resistance is inspired by the work of (Aneke, 

2002; Koella & Anita 2003; Chiyaka et al., 2009; Esteve et al., 2009; Tumwiine et al., 

2011) [23-25, 27] The sensitivity analysis of the model will be carried out to recognize the 

most sensitive parameters for the disease transmission. This is inspired by the some recent 

research on malaria epidemics (see, for instance, Okosun & Makinde 2013; Okosun et al., 

2013) [42, 43]. The paper is organized as follows: Section 2 is dedicated to model depiction 

and equilibrium analysis. Sensitivity analysis of the model is presented in section 3. In 

section 4, the existence of control problem stated and then applies the Pontryagin’s 

Maximum Principle to find the necessary conditions for optimal control. Numerical 

simulations of the models are carried out in section 5 and finally conclusion in section 6.  

 

2. MODEL FORMULATION 
 

 The model sub-divides the total human population at a time t , denoted by  hN t , 

into the following sub populations of susceptible human  ( ) ,hS t  human infected with 

parasite sensitive to artemisinin  ( ) ,hsI t  human infected with parasite that is artemisinin 

resistant strain  ( )hrI t  and recovered or immune human  ( ) .hR t  Thus,  
 

  
( )h h hs hr hN t S I I R     

 

 The model sub-divides the total macaque population at a time t , denoted by ( )mN t , 

into the following sub populations of susceptible macaque  ( )mS t , macaque infected 

with parasite sensitive to artemisinin  ( ) ,msI t  macaque infected with parasite that is 

artemisinin resistant strain  ( )mrI t  and the recovered or immune macaque  ( ) .hR t  So 

that,  
 

  
( )m m ms mr mN t S I I R     

 

 The model sub-divides the total mosquito population at a time t , denoted by ( )mN t , 

into the following sub populations of susceptible mosquitoes  ( )vS t  mosquito infected 

by the parasites sensitive to artemisinin
 
 ( ) ,vsI t

 
and mosquitoes infected by malaria 

parasites with artemisinin resistant strain  ( ) .vrI t  Therefore, mosquito populations are 

given by;  
 

  
( )v v vs vrN t S I I    
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 It is assumed that humans are born susceptible without infection at a rate h . The 

model with flow into the population that is either infected with the parasite that is 
sensitive to artemisinin or parasite with artemisinin resistant strain or susceptible humans 

is considered. This flow is assumed to occur through immigration at constant rate h . A 

fraction hs  is human infected with parasite sensitive to artemisinin, a fraction hr  is 

human infected with parasite with artemisinin resistance strain and the remaining fraction 

  1 hs hr    is susceptible human. The human population suffers a natural death at a 

rate h  and disease induced death at a rate 0 . Susceptible humans infected with 

parasites sensitive to artemisinin are moved to the infected humans with parasite sensitive 

to artemisinin  ( )hsI t  class at a rate hs s vsc I , where hs  is the transmission probability 

per bite, sc  is the contact rate of human with mosquitoes with parasite sensitive to 

artemisinin. Susceptible human infected with parasites with artemisinin resistant strain 

 ( )vrI t  move to infected humans with artemisinin resistant strain at a rate hr r vrc I , 

where hr is the transmission probability per bite, rc  is the contact rate of human with 

artemisinin resistant strain mosquitoes. A fraction of humans with parasites sensitive to 
artemisinin after treatment progress to the recovered/immune class with at a rate 

 1 .d   The fraction d  of treated infected humans who develop artemisinin resistant 

strains are moved to the infected human with artemisinin resistant strain class. The 

recovered individuals lose their immunity at a constant rate, h  and returned to the 

susceptible class. 
 

 The mosquito population is recruited at a rate v . A fraction vs  is mosquito 

infected with parasite sensitive to artemisinin, a fraction vr  is mosquito infected with 

parasite with artemisinin resistance strain. The remaining fraction   1 vs vr    is 

susceptible mosquito. Mosquito population suffers a natural death at a rate v . The 

susceptible mosquitoes hS
 

move to infected class at a rate  vs s hs msc I I   and 

 vr r hr mrc I I   where vs  is the transmission probability per bite of either the humans 

infected with parasite sensitive to artemisinin hsI  or macaques infected with the parasites 

with sensitive to artemisinin msI . Other possibility is macaques infected with parasites 

resistance to artemisinin mrI  or infected human with artemisinin resistant strain .hrI vr  

is the transmission probability per bite of either the humans infected with parasite 
resistance to artemisinin. Susceptible mosquitoes infected with malaria parasites sensitive 
to artemisinin are moved to the class of infected mosquitoes with malaria parasite 

sensitive to artemisinin vsI . And those susceptible mosquitoes infected with parasites 

with artemisinin -resistant strain are moved to the class of infected mosquitoes with drug-

resistant strain vrI . 
 

 It is assumed that the macaque population, increased through birth or immigration at 

constant rate m . A fraction ms  is macaque infected with parasite sensitive to 
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artemisinin. A fraction mr  is macaque infected with parasite with to artemisinin 

resistance strain and the remaining fraction   1 ms mr    is a susceptible macaque. 

The macaque population suffers a natural death at a rate m  and disease induced death at 

a rate 1 . Susceptible macaque infected with the parasites sensitive to artemisinin are 

then moved to the infected humans with parasite sensitive to artemisinin  ( )msI t  class at 

a rate ms s vsc I , where ms  is the transmission probability per bite, sc  is the contact rate 

of macaque with mosquitoes with parasite sensitive to artemisinin. Susceptible macaque 

infected with parasites with artemisinin resistant strain  ( )mrI t  moved to infected 

humans with artemisinin resistant strain at a rate mr r vrc I , where mr  is the transmission 

probability per bite, rc  is the contract rate with artemisinin resistant strain. Infected 

macaque recovers from the disease by acquiring immunity at a rate m . The recovered 

macaques lose their immunity at a constant rate, m  and return to the susceptible class. 

These assumptions lead to the following coupled system of ordinary differential 
equations which describe the progress of the disease (see Table 1 and 2 for the variables 
description and numerical values of the parameters of the model).  
 
 

    

 

 

   

       

0

1

1

1

h
hs hr h h h h hs s vs hr r vr h h

hs
hs h hs s vs h

hr
hr h hr r vr h

h

v
vs vr v vs s h

h hs

hs h

s ms vr r hr

r h hr

h

mr

s h h h

v v

vs
vs

dS
R c I c I S

dt

dI
c I S

dt

dI
c I S

dt

dR

dt

dS
c

I

d I I

d

I I c I I
dt

dI

R

S

d

I

t

 

             

   

    



 

 

   

    

        

   

 

    

 

 

 

1

1

v vs s hs ms v

vr
vr v vr r hr mr v

m
ms mr m m m m ms s vs mr r vr m

ms
ms m ms s vs m

mr
mr m mr r vr m

v vs

v vr

m

m m ms

mr m mr

m m m m m
m

c I I S

dI
c I I S

dt

dS
R c I c I S

dt

dI
c I S

dt

dI
c I S

dt

I

dR

I

I

I

I R
dt

















  

    

    

    

  

 

       

   

   

   
























 

(1) 
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where; 

   
 

 

vs vs s hs

hs hs

ms

vr vr r hr mr

ms ms ms s vs

hs s vs

hr h

mr mr m

r hr r vr

vs

vr

r r vr

c I I

c I

c I

I

c I

c

c I

I

   

   

 



  

  

   

   


 

 

refer to mass action force of infection for infected human with strain sensitive to 

artemisinin, infect human with artemisinin resistant strain, mosquito infected with 

sensitive strain to artemisinin, mosquito infected with resistance strain to artemisinin, 

macaques infected with sensitive strain to artemisinin and macaques infected with 

resistance strain to artemisinin respectively. 
 

2.1 Basic Properties 

 In this section, the basic dynamical features of the model (1) will be explored. The 

next is asserted; 
 

Lemma 1: 

 The closed set  

  

  11, , , , , , , , , , :

; ;

,

h hs hr h v vs vr m ms mr m

h h v
h hs hr h v vs vr

h v

h h
h hs hr h

h

S I I R S I I S I I R

S I I R S I I

S I I R

  

   
      

 

   
    

 

 

 

is positively-invariant and attracting with respect to the basic model (1).  
 

Proof: 

 

Adding the first four equations for humans, the next three equations for mosquitoes 

and the last four equations for the macaques in the model respectively yields: 
 

   0
h

h h h h hs hr hr

dN
N I I

dt
                  (2)  

   

v
v v v

dN
N

dt
  

 

                 (3) 

and 

  
1

m
m m m m ms mr mr

dN
N I I

dt
                  (4) 

 

 Assuming  0hs hr ms mrI I I I   
 

thus, equation

 

model equation (2) and (4) 

becomes;
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h
h h h h

dN
N

dt
      

  

v
v v v

dN
N

dt
  

 

  

m
m m m m

dN
N

dt
    

 
 

 Since , and ,h v m
h h h h v v v m m m m

dN dN dN
N N N

dt dt dt
            

it follows that 0, 0 and 0,h v mdN dN dN

dt dt dt
    if ,h h

h
h

N
  




 andv
v

v

N





 

,m m
v

m

N
  




 respectively. 

 

 Thus, using the standard comparison theorem (Lakshmikantham et al., 1988) [44] it 

has been shown that  
 

     ( ) ( ) ( )
( ) 0 1 , ( ) 0 1h h v v

t t t th h v
h h v v

h v

N t N e e N t N e e
     

        
    

 
and 

    ( ) ( )
( ) 0 1m mt tm m

m m
m

N t N e e
  

   
 

. 

 

 In particular, , andh h v m m
h v v

h v m

N N N
    

  
  

, if  0 ,h h
h

h

N
  




 

 0 v
v

v

N





 and 0 ,m m
v

m

N
 




 respectively. Thus,   is positively-invariant. 

Moreover, if ,h h v
h v

h v

N N
  

 
 

and ,m m
v

m

N
  




 then either the solution 

enter   in finite time, or ( )hN t  approaches h h

h

  


, ( )vN t  approaches v

v




 and 

( )mN t  approaches m m

m

  


, and the infected variables , , , , andhs hr vs vr ms mrI I I I I I  

approached zero. Hence   is attracting (that is, all solutions in 11
  eventually enter  ).  

Thus, in  , the model is well-posed epidemiologically and mathematically. Hence it is 

sufficient to study the dynamics of the model in  . 

 

6.2.2 Disease Free Equilibrium (DFE) 

 The Plasmodium Knowlesi malaria model (1) has a DFE, obtained by setting the 

right-hand sides of the equations in the model (1) to zero, given by the following;  
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   (5) 

 

 The disease-free equilibrium points (DFE) are equilibrium-state solutions where there 

is no disease (Plasmodium knowlesi malaria). The “diseased” classes in the human, 

mosquito and macaque populations are equal to zero. Thus, the (DFE) of the basic model 

(1) is given by,  
 

  

 0 , , , , , , , , , ,

,0,0,0, ,0,0, ,0,0,0 ,

h hs hr h v vs vr m ms mr m

h h v m m

h v m

E S I I R S I I S I I R          

       
  

   
 

 

 This represents the state where there exist no infectivity in a community and it is 

acknowledged as the disease-free equilibrium point (DFE). 
 

 The linear stability of the disease can be established using the next generation 

operator method (Van den Driessche & Watmough 2002) [45] on the model equation (1), 

the matrix F and V, for the new infection terms and the remaining transfer terms, are 

respectively given by; 
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 It follows that the drug sensitive basic reproduction number of the model equation (1) 

denoted by s . And given by;  
 

      
  

2
1 0

2
0 1

vs m hs m m h h h ms m m h v s

s

h m m m h v

c                 


        
 

                        (6) 

and the drug resistance basic reproduction number is;  
 

  
      

  

2

2

r m hr mr m h h h mr hr h m m vr v

r

hr h mr m m h v

c                


      
 (7)  

 

 Furthermore, using Theorem 2 of (Van den Driessche & Watmough 2002) [45] the 

following result is established.  
 

Theorem 6.1.1  

 The DFE  of the model (1), given by
 s  is locally asymptotically stable (LAS) if

1,s   and
 
unstable if 1.s    

 

3. SENSITIVITY ANALYSIS OF MODEL PARAMETERS 
 

 Sensitivity of each parameter is examined with respect to the basic reproduction 

number r . In this way, the parameters that are more sensitive to the disease 
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transmission are identified. And by either reducing or increasing such parameters will as 

well reduce or increase the transmission of the disease. Sensitivity index of the basic 

reproduction number,
 r  with respect to each parameter is computed as given in Table 1 

for the model equation  1  
 

Definition:  

 The normalized forward sensitivity index of a variable with respect to a parameter is 

the ratio of the relative change in the variable to the relative change in the parameter. 

When the variable is a differentiable function of the parameter, the sensitivity index 

perhaps is on the other hand defined using partial derivatives as:  
 

  

r

mr

mr

mr

r

r



  


 

 

6.3.1 Sensitivity indices of r  
 Thus, the Sensitivity of r  to each of the (14) different parameters described in table 

6.1 are determined using drug resistance basic reproduction number of the basic model  

(1) stated; 
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 The Sensitivity indices of r with respect to , , ,v vr v rc    for example are,  
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                (8) 

 

 These parameters do not depend on any parameter values, while the remaining 

parameter depends of other parameters for their values. The parameters values are given 

on Table 3 
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Table 3 

Sensitivity Indices of  r  
 Parameter Value Sensitivity Index 

1 rc  0.502 +1 

2 v  0.04 -1 

3 m  0.02 -0.7245 

4 vr  0.83 +0.5 

5 v  0.071 +0.5 

6 mr  0.83 +0.4830 

7 m  0.2 +0.4812 

8 mr  0.02 -0.2415 

9 h  0.0004 -0.01715 

10 hr  0.17 +0.01701 

11 hr  0.05 -0.01688 

12 h  0.00076 +0.01486 

13 h  0.00011 +0.002151 

14 m  0.00076 +0.001828 

 
 Table 3 above entails that an increase in the mosquito deaths has an optimistic impact 
in controlling the disease. The parameters are prearranged starting from the most 

sensitive to the least. The most sensitive parameters are rc  is the contact rate of human 

and macaques with artemisinin resistant strain mosquitoes and mosquito death rate v . 

This is followed by death rate of macaques m  and recruitment rate of mosquitoes v . 

Other important parameters include probability of infection of macaques with artemisinin 

resistant strain mosquitoes mr , immigration rate of macaques m  and the least sensitive 

is the birth rate of macaques m . The sensitivity index of r  with respect to probability 

of mosquitoes getting infected with artemisinin resistant strain  vr  is +0.5, this implies 

that decreasing (or increasing) the  vr  by 20%, decreases (or increases)
 r  by 10% is 

the same with recruitment rate of mosquitoes, v . Since 0 1,
rc

    increasing (or 

decreasing) rc
 
by 20%, decreases (or increases) the 0  by 20%. Therefore, reducing the 

number of contacts between human and macaques with artemisinin resistant strain 
mosquitoes, through reducing the number of mosquitoes, will reduce the contact and 
biting rate with both human and macaques. Thus, the number of bits that human and 
macaques will receive will have a large effect on disease transmission.  

 

4. OPTIMAL CONTROL MODEL DESCRIPTION 
 

 In order to investigate the optimal control measures for the control of the disease, 

some control parameters are considered. Based on the sensitivity analysis result, the 
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following control strategies will be considered; quarantine, spray of insecticides and 

culling. The quarantine will be used against human immigrants and imported macaques, 

spray of insecticides against the mosquitoes and culling against the macaques. Model 

equation (1) will be extended to include the three control strategies stated above. Thus, 

the modified model description is given below;  
 

 Susceptible humans are recruited at a rate   11 hs hr hu     where hs  and hr  

are the fractions of humans infected with the parasite sensitive to artemisinin and 

resistance artemisinin respectively and  1 10 1u u   is the control efforts of 

immigrants (quarantine). Susceptible humans get infected following contact with infected 

mosquitoes with both strains at a rate   21 hs s vs hr r vru c I c I   . And  2 20 1u u   is 

the control on the use of insecticide spray.  
 

 The mosquitoes are recruited at a rate   21 vs vr vu     where vs  and vr  are 

the fractions of mosquitoes infected with the parasite sensitive to artemisinin and 

resistance artemisinin respectively and  2 20 1u u   is the use of insecticide spray. 

Susceptible mosquitoes  vS  get infected following effective contacts with either from 

infected humans or infected macaques with sensitive to artemisinin and resistance 

artemisinin the disease at a rate    21 vs s hs ms vu c I I S   ,    21 vr r hr mr vu c I I S  
 

respectively.  
 

 The macaques are recruited at a rate   11 ms mr mu     where hs  and hr  are 

the fractions of macaques infected with the parasite sensitive to artemisinin and resistance 

artemisinin respectively and  1 10 1u u 
 

is the control efforts of immigrants 

(quarantine). Susceptible macaques get infected following contact with infected 

mosquitoes with both strains at a rate   31 ms s vs mr r vru c I c I   . And  3 30 1u u   

is the control on the use of culling.  
 

 Therefore, putting the above formulations and assumptions together gives the 

following human – mosquito - macaque model, given by system of ordinary differential 

equations below as; 
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(9) 

 

 In investigating the optimal control efforts that would be needed to control the 

disease, it is necessary to consider an optimal control problem with the objective (cost) 

functional given by; 
 

   
1 2 3

2 2 2
1 2 3 1 4 2 5 30

, ,
min

T
hr mr

u u u
J A I A I A u A u A u                (10)  

 

where , 1,...,5iA i   are positive weights. A quadratic cost on the controls is chosen that is 

similar to others in literature (see, for instance, Okosun & Makinde 2013; Okosun et al., 

2013) [42, 43]. With the given objective function  1 2 3, ,J u u u ; this is aimed to minimize 

the number of infected humans with resistance artemisinin strain to hrI  and infected 

macaques with resistance artemisinin strain mrI , while minimizing the cost of controls

1 2 3( ), ( )and ( )u t u t u t . Therefore, an optimal control 1 2 3, ,u u u    is obtained such that; 
 

  
    

1 2 3

1 2 3 1 2 3 1 32, ,
, , min , , , ,

u u u
J u u u J u u u u u u Y                 (11)  

 

where the control set; 

    1 2 3, , :[0, ] [0,1], 1, 2,3 .iY u u u u T Lebesgue measurable i           (12) 
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4.1 Pontryagin’s Maximum Principle 

 The necessary conditions that an optimal control must satisfy come from the 

Pontryagin’s Maximum Principle (Pontryagin et al., 1964) [46]. The principle converts 

(9) (10)
 
into a problem of minimizing point wise a Hamiltonian H , with respect to

 1 2 3, ,u u u . Using the optimal control theory, let   ,i t
 

be adjoint variables with 

1,...,11i  . The Hamiltonian for the present optimal control problem is given by; 
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(13) 

 

Theorem 1  

 For the optimal control triple 1 2 3, ,u u u    that minimizes  1 2 3, ,J u u u
 
over , then 

there exists adjoint variables for 1,...,11i i 
 
satisfying  
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4.2 Adjoint System 
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(14) 

 

 As the optimal control just has initial conditions it is necessary to find the 

transversality conditions, that corresponds to a terminal condition in the adjoint equation, 

 

4.3 Transversality Conditions  
 

   0, 1,...,11i for i                       (15) 

 

4.4 Stationary Values  

 The control 1 2,u u   and 3u  satisfy the optimality condition 
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 (16) 

 

Proof:  

 The governing equations of the adjoints variables are solved via differentiation of the 

Hamiltonian function, estimated at the optimal control. Then the adjoint system can be 

written as;  
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(17) 

 

and with transversality conditions 
 

  
0, 1,...,11i for i  

  
 

 On the interior of the control set, where 0 1, 1,2,3i for i     yields 
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This in another clear form becomes  
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 Thus, it is obtained that, 
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 By standard control arguments involving the bounds on the controls, it can be 

concluded that 
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u if
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
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  


    


 

 

                  (19)

 

where
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 (20) 

 

       1 1 2 2 3 3min 1, , min 1, , min 1, .u u u                       (21) 

 

 Subsequently, the numerical solutions of the optimality system and the corresponding 

optimal control pair, the parameter choices, and the interpretations from various cases are 

discussed. 

 

5. NUMERICAL ANALYSIS 
 

 In this section, the effect of the optimal control strategies on the transmission of 

disease is investigated numerically. Using the iterative method, the optimality system, 

consisting of 11 ordinary differential equations from the state and adjoint equations, 

coupled with the three control characterizations is solved. The state differential equations, 

with initial estimates for controls and the state are solved using fourth order Runge-Kutta 

scheme. Using the result of state and the given final time values, the adjoint system is 

then solved backward in time, using fourth order Runge-Kutta scheme. The state and the 

adjoints system are used to update the three control strategies using the characterizations 
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given by (16). The process is repeated and the iterative process complete when the 

current state, adjoint, and control values converge sufficiently (Lenhart & Workman 

2007) [47]. 
 

 Then, the effect of the following optimal control strategies on the spread of the 

disease in a population is investigates numerically. Using two controls at a time while 

setting the other to zero and finally considering the three controls at same time.  
 

 Strategy A: combination of use of quarantine and insecticide spray. 

 Strategy B: combination of use of insecticide spray and culling.  

 Strategy C: combination of use of quarantine and culling.  

 Strategy D: combination of use of insecticide spray, quarantine and culling.  
 

 For the numerical simulation the following weight factors are used 5, 1,...,5iA i   

and use the parameter values from table 6.2. Initial states variables are chosen as 

(0) 100, (0) (0) 0, (0) 0, (0) 1000, (0) (0) 0,h hs hr h v vs vrS I I R S I I      
 

(0) 100,mS 

(0) (0) 0, (0) 0.ms mr mI I R    Other parameter values are in table 6.2 to illustrate the 

effect of different optimal. 

 

Table 1 

Description of Variables 

Var. Description 

hS  Susceptible human 

hsI  Infected human with parasite sensitive to artemisinin 

hrI
 

Human infected with parasite that is artemisinin resistant strain 

hR  Recovered/immune human 

vS  Susceptible mosquito 

vsI  Infected mosquito with parasite sensitive to artemisinin 

vrI
 

Infected  mosquito with parasite that is artemisinin resistant strain 

mS  Susceptible macaque 

msI
 

Infected macaque with parasite sensitive to artemisinin 

mI  Infected macaque with parasite that is artemisinin resistant strain 

mR  Recovered/immune macaque 
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Table 2 

Description of Parameters of Model (1) 

Par. Est. Value Ref 

h  0.00011 Augusto et al., (2012) [38] 

h  
0.00076 Chiyaka et al., (2008) [48] 

v  0.071 Augusto et al., (2012) [38] 

m  0.2 Assumed 

m  
0.00076 Assumed 

h  0.0004 Niger & Gumel, (2008) [49] 

hr
 

0.05 Okosun &Makinde (2012) [32] 

0  0.05 Hove-Musekwa, (2008) [50] 

m  0.02 Assumed 

mr
 

0.02 Assumed 

1  0.06 Assumed 

h   1
2 365  

Menach et al., (2005) [51] 

hs  0.03 Menach et al., (2005) [51] 

hr
 

0.17 Chiyaka et al., (2008) [48] 

sc  0.6 Chitnis et al., (2006) [52] 

d
 

0.02 Okosun &Makinde (2012) [32] 

vs  0.09 Menach et al., (2005) [51] 

vr
 

0.83 Chiyaka et al., (2008) [48] 

ms  0.03 Assumed 

mr
 

0.03 Assumed 

rc  0.502 Assumed 

m  0.5 Assumed 

  0.8 Augusto et al., (2012) [38] 

v  0.04 Chiyaka et al., (2008) [48] 

m   1
2 365  

Assumed 

ms
 

0.0005 Assumed 

mr
 

0.0005 Assumed 

hs
 

0.00005 Assumed 

hr
 

0.00005 Assumed 

vs
 

0.036 Assumed 

vr
 

0.035 Assumed 
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5.1 Optimal Use of the Quarantine
 1( )u  and Insecticide Spray 2( )u  

 With this control strategy, quarantine
 1( )u

 
and insecticide spray

 2( )u
 
are both used to 

optimize the objective functional J , while the control culling 3( )u is set to zero. In figure 

1, the result shows a significant difference in the ,hr mrI I
 
and vI

 
with optimal control 

strategy compared to ,hr mrI I
 
and vI

 
without control. It was observed in Figure 1(a) that 

the infected humans with resistance artemisinin strain ( )hrI  decrease as a result of 

control strategies against the increase in the uncontrolled case. In Figures 1(b) and 1(c), 

similar situation was also observed in the case of infected macaques with resistance 

artemisinin strain and infected mosquitoes.  

 

 
Figure 1(a) 
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Figure 1(b) 

 

 
Figure 1(c) 

Fig. 1: Simulations of the Plasmodium Knowlesi Malaria Model Showing Effect of 

Optimal Use of Quarantine and Insecticide Spray on the Spread of the Disease 
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 In this control strategy, use of insecticide spray 2( )u  and culling 3( )u are both used to 

optimize the objective functional J , while the control biological control 2( )u
 
is set to 

zero. In figure 2, the result shows a significant difference in the mrI  and vI
 
with optimal 
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control strategy compared to mrI  and vI
 
without control. It was observed in Figure 2(a) 

that the infected macaques with resistance artemisinin strain ( )mrI  decrease as a result of 

control strategies against the increase in the uncontrolled case. In Figure 2(b) similar 

situation been also observed in the case of infected mosquitoes.  
 

 
Figure 2(a) 

 

 
Figure 2 (b) 

Fig. 2: Simulations of the Plasmodium Knowlesi Malaria Model Showing Effect of 

Optimal Use of Insecticide Spray and Culling on the Spread of the Disease 
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6.6.3 Optimal use of the Quarantine 1( )u  and Culling 3( )u
 

 In this control strategy, quarantine 1( )u
 
and culling 3( )u

 
are both used to optimize 

the objective functional J , while the control insecticide spray 2( )u
 
is set to zero. In 

figure 3, the result shows a significant difference in the hrI  and mrI
 
with optimal control 

strategy compared to hrI  and mrI
 

without control. It was observed in Figure 3(a) 

infected humans with resistance artemisinin strain ( )hrI  decrease as a result of control 

strategies against the increase in the uncontrolled case. In Figure 3(b) similar situations 

been also observed in the case of infected macaques with resistance artemisinin strain. 
 

 
Figure 3(a) 

 

 
Figure 3(b) 

Fig. 3: Simulations of the Plasmodium Knowlesi Malaria Model Showing Effect of 

Optimal Use of Quarantine and Culling on the Spread of the Disease 
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5.4 Optimal Use of the Quarantine 1( )u , Insecticide spray 2( )u  and Culling 3( )u
 

 Here, all the control strategies 1 2 3( , , )u u u  are used to optimize the objective 

functional J . In figure 4, the result shows a significant difference in the ,hr v mrI I and I  

with optimal control strategy compared to ,hr v mrI I and I
 

without control. It was 

observed in figure 4(a) that the infected humans with resistance artemisinin strain ( )hrI  

decrease as a result of control strategies against the increase in the uncontrolled case. In 

Figures 4(b) and 4(c) similar situations been also observed in the case of infected 

macaques with resistance artemisinin strain and the infected mosquitoes.
 

 

 
Figure 4(a) 
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Figure 4(c) 

Fig. 4: Simulations of the Plasmodium Knowlesi Malaria Model Showing  

Effect of Optimal Use of Insecticide Spray, Quarantine  

and Culling on the Spread of the Disease 
 

CONCLUSIONS 
 

 In this paper, a mathematical model for the spread of Plasmodium knowlesi malaria is 
developed. The model incorporates recruitment rate of the three populations through a 
constant immigration, with a fraction of infective immigrants. The effect of drug 
resistance is also considered. The impact of a control measure, culling against larvae and 
macaques is considered. The sensitivity index of the model is investigated to understand 
the importance of each parameter to the disease transmission. The condition for optimal 
Plasmodium knowlesi malaria were derived and analyzed with time dependent 
preventive. The optimal control has a very desirable effect for reducing the Plasmodium 
knowlesi malaria. However, based on the results of the analysis, three control strategies 
were considered, insecticide spray, quarantine and culling. The numerical simulation 
results have shown that the best control strategies for control of the disease combination 
of the three control strategies (Strategy D). However, the implication of using all the 
controls is that additional cost will be incurred. This is because strategy D and insecticide 
spray and quarantine (strategy A) has same effect on this control of the disease. It can be 
concluded that to control the disease, the most cost-effective of all the strategies is the use 
of insecticide spray and quarantine (strategy A) in the presence of infective immigrations 
and drug resistance. Public health establishments ought to choose the appropriate control 
strategy where their situation lies in the scenarios discussed in the result. 
 

ACKNOWLEDGMENT 
 

 The present work is supported by short term grant (PMATHS/6313040) from RCMO, 
Universiti Sains Malaysia. The authors would like to express their sincere thanks to 
School of Mathematical Sciences for providing adequate facilities for the research. 
 

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

Time (days)

In
fe

c
te

d
 M

o
s
q
u
it
o
e
s

 

 

Without control

Optimal control Strategy D



A Mathematical Analysis of the Effects of Control of Plasmodium… 512 

REFERENCES 
 

1. Bharati, K. and Ganguly, N.K. (2013). Tackling the malaria problem in the South-
East Asia Region: Need for a change in policy? The Indian Journal of Medical 
Research, 137(1), 36-47.  

2. Lynch, C. and Hewitt, S. (2012). Malaria in the Asia-Pacific: Burden, success and 
challenges. 

3. World Health Organization (2011). World Malaria Report 2011, World Health 
Organization, Geneva. 

4. William, T., Rahman, H.A., Jelip, J., Ibrahim, M.Y., Menon, J., Grigg, M.J., Yeo, 
T.W. Anstey, N.M. and Barber B.E. (2013). Increasing incidence of Plasmodium 
Plasmodium knowlesi malaria following control of P. falciparum and P. vivax 
Malaria in Sabah, Malaysia. PLoS Neglected Tropical Diseases, 7(1), e2026. 
doi:10.1371/journal.pntd.0002026. 

5. ÔàÓÑáØÑ, Ô. (2012). Plasmodium Plasmodium knowlesi malarial infection in 
western travelers returning from Southeast Asia. Archives of Hellenic Medicine, 
29(1), 58-60. 

6. Sabbatani, S., Fiorino, S. and Manfredi, R. (2010). The emerging of the fifth malaria 
parasite (Plasmodium Plasmodium knowlesi): A public health concern? Brazilian 
Journal of Infectious Diseases, 14(3), 299-309. 

7. Vythilingam, I. (2010). Review Paper Plasmodium Plasmodium knowlesi in humans: 
a review on the role of its vectors in Malaysia. Tropical Biomedicine, 27(1), 1-12. 

8. Jeslyn, W.P.S., Huat, T.C., Vernon, L., Irene, L.M.Z., Sung, L.K., Jarrod, L.P., Singh, 
B. and Ching, N.L. (2011). Molecular epidemiological investigation of Plasmodium 
Plasmodium knowlesi in humans and macaques in Singapore. Vector-Borne and 
Zoonotic Diseases, 11(2), 131-135.  

9. William, T., Menon, J., Rajahram, G., Chan, L. Ma, G., Donaldson, S., Khoo, S., 
Fredrick, C., Jelip, J., Anstey, N.M. and Yeo, T.W. (2011). Severe Plasmodium 
knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg. Infect. Dis., 
17(7), 1248-1255. 

10. World Health Organization (2012). World Malaria Report 2012. Accessed 2
nd

 
October, 2013.  
http://www.who.int/malaria/publications/world_malaria_report_2012/report/en/  

11. Bronner, U., Divis, P.C., Färnert, A. and Singh, B. (2009). Swedish traveller with 
Plasmodium knowlesi malaria after visiting Malaysian Borneo. Malaria Journal, 
8(1), 15. doi:10.1186/1475-2875-8-15. 

12. Jongwutiwes, S., Putaporntip, C., Iwasaki, T., Sata, T. and Kanbara, H. (2004). 
Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerging 
Infectious Diseases, 10(12), 2211-2213. 

13. Kantele, A., Marti, H., Felger, I., Müller, D. and Jokiranta, TS. (2008). Monkey 
malaria in a European traveler returning from Malaysia. Emerging Infectious 
Diseases, 14(9), 1434-1436. 

14. Collins, W.E. and Barnwell, J.W. (2009). Plasmodium knowlesi: finally being 
recognized. Journal of Infectious Diseases, 199(8), 1107-1108. 

15. Martens, P. and Hall, L. (2000). Malaria on the move: Human population movement 
and malaria transmission. Emerging Infectious Diseases, 6(2), 103-109. 

16. Prothero, R.M. (1977). Disease and mobility: a neglected factor in epidemiology. 
International Journal of Epidemiology, 6(3), 259-267.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Singh%20B%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ching%20NL%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=William%20T%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Menon%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rajahram%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Chan%20L%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ma%20G%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Donaldson%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Khoo%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fredrick%20C%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Jelip%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Anstey%20NM%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yeo%20TW%5Bauth%5D
http://www.who.int/malaria/publications/world_malaria_report_2012/report/en/


Abdullahi, Hasan and Abdullah 513 

17. Bruce-Chwatt, L.J. (1968). Movements of populations in relation to communicable 
disease in Africa. East African Medical Journal, 45(5), 266-275. 

18. Molineaux, L, Wernsdorfer, W.H. and McGregor, I. (1988). The epidemiology of 
human malaria as an explanation of its distribution, including some implications for 
its control. Malaria: Principles and Practice of Malariology, 2, 913-998. 

19. Marques, A.C. (1986). Migrations and the dissemination of malaria in Brazil. 
Memórias do Instituto Oswaldo Cruz, 81, 17-30. 

20. Curtis, C.F. and White, G.B. (1984). Plasmodium falciparum transmission in 
England: entomological and epidemiological data relative to cases in 1983. Journal of 
Tropical Medicine and Hygiene, 87(3), 101-114. 

21. Lynch, C. and Roper, C. (2011). The transit phase of migration: circulation of malaria 
and its multidrug-resistant forms in Africa. PLoS Medicine, 8(5), e1001040. 

22. Prothero R.M. (1987). Populations on the Move. Third World Quarterly, 9,  
1282-1310.  

23. Aneke, S.J. (2002). Mathematical modelling of drug resistant malaria parasites and 
vector populations. Mathematical Methods in the Applied Sciences, 25(4), 335-346. 

24. Koella, J.C. and Antia, R. (2003). Epidemiological models for the spread of anti-
malarial resistance. Malaria Journal, 2(1), 3. doi:10.1186/1475-2875-2-3. 

25. Chiyaka, C., Garira, W. and Dube, S. (2009). Effects of treatment and drug resistance 
on the transmission dynamics of malaria in endemic areas. Theoretical Population 
Biology, 75(1), 14-29. 

26. Bacaër, N. and Sokhna, C. (2005). A reaction-diffusion system modeling the spread 
of resistance to an antimalarial drug. Math. Biosci. Eng., 2(2), 227-238. 

27. Esteva, L., Gumel, A.B. and De LeóN, C.V. (2009). Qualitative study of transmission 
dynamics of drug-resistant malaria. Mathematical and Computer Modelling, 50(3), 
611-630. 

28. Tumwiine, J., Mugisha, J.Y.T. and Luboobi, L.S. (2010). A host-vector model for 
malaria with infective immigrants. Journal of Mathematical Analysis and 
Applications, 361(1), 139-149. 

29. Tumwiine, J., Mugisha, J.Y.T. and Luboobi, L.S. (2007). A mathematical model for 
the dynamics of malaria in a human host and mosquito vector with temporary 
immunity. Applied Mathematics and Computation, 189(2), 1953-1965. 

30. Tchuenche, J.M., Chiyaka, C., Chan, D., Matthews, A. and Mayer, G. (2011). A 
mathematical model for antimalarial drug resistance. Mathematical Medicine and 
Biology, 28(4), 335-355. 

31. Makinde, O.D. and Okosun, K.O. (2011). Impact of Chemo-therapy on Optimal 
Control of Malaria Disease with Infected Immigrants. BioSystems, 104(1), 32-41. 

32. Okosun, K.O. and Makinde, O.D. (2012). On a drug-resistant malaria model with 
susceptible individuals without access to basic amenities. Journal of Biological 
Physics, 38(3), 507-530. 

33. Tumwiine, J., Hove-Musekwa, S.D. and Nyabadza, F. (2014). A Mathematical Model 
for the Transmission and Spread of Drug Sensitive and Resistant Malaria Strains 
within a Human Population. International Scholarly Research Notices. ISRN 
Biomathematics, 2014 Article ID 636973, 12 pages. 

34. Yakob, L., Bonsall, M.B. and Yan, G. (2010). Modelling Plasmodium knowlesi 
malaria transmission in humans: vector preference and host competence. Malaria 
Journal, 9(1), 329.  



A Mathematical Analysis of the Effects of Control of Plasmodium… 514 

35. Abdullahi, M.B., Hasan, Y.A. and Abdullah, F.A. (2014). Optimal Control of 
Plasmodium knowlesi Malaria in Human and Macaques. British Journal of 
Mathematics & Computer Science, 4(2), 16-31. 

36. Gourley, S.A., Liu, R. and Wu, J. (2007). Eradicating vector-borne diseases via age-
structured culling. Journal of Mathematical Biology, 54(3), 309-335. 

37. Hu, X., Liu. Y and Wu, J. (2009). Culling structured hosts to eradicate vector-borne 
diseases. Mathematical Biosciences and Engineering, 6(2), 301-319. 

38. Agusto, F.B., Marcus, N. and Okosun, K.O. (2012). Application of optimal control to 
the epidemiology of malaria. Electronic Journal of Differential Equations, 2012(81), 
1-22. 

39. Magombedze, G., Chiyaka, C. and Mukandavire, Z. (2011). Optimal control of 
malaria chemotherapy. Nonlinear Anal. Modell. Contr., 16(4), 415-434. 

40. Okosun, K.O., Rachid, O. and Marcus, N. (2013). Optimal control strategies and cost-
effectiveness analysis of a malaria model. Biosystems, 111(2), 83-101. 

41. Imai, N., White, M.T., Ghani, A.C. and Drakeley, C.J. (2014). Transmission and 
Control of Plasmodium knowlesi: A Mathematical Modelling Study. PLoS Neglected 
Tropical Diseases, 8(7), e2978. 

42. Okosun, K.O. and Makinde, O.D. (2013). Optimal control analysis of malaria in the 
presence of non-linear incidence rate. Applied and Computational Mathematics 
(Impact Factor: 0.75), 12, 20-32.  

43. Okosun, K.O., Rachid, O. and Marcus, N. (2013). Optimal control strategies and cost-
effectiveness analysis of a malaria model. Biosystems, 111(2), 83-101. 

44. Lakshmikantham, V., Leela, S. and  artyni         u   k, A.A. (1988). Stability Analysis of 
Nonlinear Systems. CRC Press. 

45. Van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-
threshold endemic equilibria for compartmental models of disease transmission. 
Mathematical Biosciences, 180(1), 29-48. 

46. Pontryagin, L.S. Boltyanskii, V.G., Gamkrelidze, R.V. and Mishchenko, E. (1964). 
The mathematical theory of optimal processes (Translated by D.E. Brown) A 
Pergamon Press Book. The Macmillan Company New York pp 56-57. 

47. Lenhart, S. and Workman, J.T. (2007). Optimal control applied to biological models 
(Vol. 15). CRC Press New York.  

48. Chiyaka, C., Tchuenche, J.M., Garira, W and Dube, S. (2008). A mathematical 
analysis of the effects of control strategies on the transmission dynamics of malaria. 
Applied Mathematics and Computation, 195(2), 641-662.  

49. Niger, A.M. and Gumel, A.B. (2008). Mathematical analysis of the role of repeated 
exposure on malaria transmission dynamics. Differential Equations and Dynamical 
Systems, 16(3), 251-287. 

50. Hove-Musekwa, S.D. (2008). Determining effective spraying periods to control 
malaria via indoor residual spraying in sub-saharan Africa. Advances in Decision 
Sciences, 2008. 

51. Menach, A.L., McKenzie, F.E., Flahault, A. and Smith, D.L. (2005). The unexpected 
importance of mosquito oviposition behaviour for malaria: non-productive larval 
habitats can be sources for malaria transmission. Malaria Journal, 4(1), 23.  

52. Chitnis, N., Cushing, J.M. and Hyman, J.M. (2006). Bifurcation analysis of a 
mathematical model for malaria transmission. SIAM Journal on Applied Mathematics, 
67(1), 24-45. 


